首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
G Voordouw  R S Roche 《Biochemistry》1975,14(21):4659-4666
Thermomycolase, the thermostable, extracellular, serine protease of the fungus Malbranchea pulchella (G. Voordouw, G. M. Gaucher, and R. S. Roche (1974), Can J. Biochem. 52, 981-990), binds one calcium ion with an apparent binding constant of 5 X 10(5) M-1 at 25degreesC, pH 7.50, and ionic strength 0.1. There is very little change in the overall conformation of thermomycolase upon binding of this calcium ion: no change can be detected, beyond experimental error, in the sedimentation coefficient or the aromatic and peptide circular dichroism of the enzyme. However, binding of calcium changes the absorption spectrum, the ultraviolet difference spectrum being characterized by a strong band at 237 nm and smaller bands at 280 and 295 nm. The difference molar extinction coefficient at 237 nm parallels the calcium-binding isotherm. The small changes in equilibrium properties are constrasted by large calcium-dependent changes in the rates of autolytic degradation and thermal and urea denaturation. The dependence of the second-order rate constant for autolytic degradation on the free calcium ion concentration can be quantitatively accounted for by a model in which only conformers with an unoccupied calcium binding site serve as substrates in the reaction. The calcium dependence of the first-order rate constant for thermal denaturation at 70degreesC and pH 7.0 can also be accounted for quantitatively by a model in which the critically activated intermediate has a smaller calcium-binding constant than the native form of the enzyme under these conditions. The same model also accounts for the denaturation in 8 M urea at 50degreesC, pH 7.0. Rates of hydrogen-tritium exchange are shown to decrease when the calcium ion is bound. Irrespective of the occupancy of the calcium-binding site 33% of the backbone peptide hydrogens of thermomycolase do not exchange within 24 hr at 25degreesC, pH 8.0, and ionic strength 0.1.  相似文献   

2.
G Voordouw  C Milo  R S Roche 《Biochemistry》1976,15(17):3716-3724
The total kinetic thermal stability of a protein molecule, expressed as the total free energy of activation in thermal denaturation reactions, can be separated into an intrinsic contribution of the polypeptide chain and a contribution due to the binding of calcium ions. The theory for this procedure is applied to thermal denaturation data, obtained at the pH of optimum stability, for the serine proteases, thermomycolase and subtilisin types Carlsberg and BPN', and for the zinc metalloendopeptidases, thermolysin and neutral protease A. The results, obtained from Arrhenius plots at high and low free calcium ion concentrations, reveal a considerable variation in the calcium ion contribution to the total kinetic thermal stability of the various enzymes. In the serine protease group, at 70 degrees C, the stability is largest for thermomycolase, mainly due to a relatively high intrinsic contribution. For the metalloendopeptidases the total kinetic thermal stability is largest for thermolysin, the difference between thermolysin and neutral protease A being dominated by bound calcium ion contributions. The intrinsic kinetic thermal stability of the polypeptide chain of thermolysin is considerably smaller than that of any of the serine proteases and is probably of the same order of magnitude as that of neutral protease A. Thus, the well known total kinetic thermal stability of thermolysin is due mainly to a single calcium ion (Voordouw, G., and Roche, R. S. (1975), Biochemistry 14, 4667) that binds with high affinity even at very high temperatures (K congruent to 6 X 10(7) M-1 at 80 degrees C).  相似文献   

3.
EF-hand peptides have been shown to bind calcium and dimerize to form an intact protein domain [Shaw, G.S., Hodges, R.S. & Sykes, B.D. (1990). Science, 249, 280-283]. A synthetic 33-residue EF-hand peptide with the sequence of carp parvalbumin CD site demonstrated a seven-fold increase in the apparent calcium dissociation constant with a eight-fold decrease in peptide concentration when fit to a single-site calcium-binding model. This observation is consistent with EF-hand dimerization. This paper describes a method to determine the dimerization dissociation constant and the calcium dissociation constants for both the monomer and dimer forms of this EF-hand peptide using circular dichroism techniques. By monitoring the increase in negative molar ellipticity at 222 nm with increasing peptide concentration under calcium-saturating conditions the dimerization dissociation constant for the synthetic parvalbumin CD site was determined to be 55.68+/-10.76 microM. Using the dimerization constant, the calcium dissociation constants for both the monomer and dimer forms of this peptide were determined by monitoring the change in ellipticity of peptide solutions on addition of increasing amounts of calcium. A fit of this data to a mathematical model that takes into account dimerization results in calcium dissociation constants of 421.3+/-21.56 and 47.06+/-6.72 microM for the monomer and dimer forms, respectively.  相似文献   

4.
Calcium ion binding to phospholipase A2 and its zymogen has been studied by 43Ca NMR. The temperature dependence of the band shape of the calcium-43 NMR signal has been used to calculate the calcium ion exchange rate. The on-rate was calculated to be 5 X 10(6) M-1 s-1, which is 2 orders of magnitude less than the diffusion limit of the hydrated Ca2+ ion in water. The 43Ca quadrupole coupling constant for calcium ions bound to phospholipase, chi = 1.4 MHz, is significantly larger than those found for EF-hand proteins, indicating a less symmetric site. For prophospholipase A2, we found chi = 0.8 MHz, indicating a calcium binding site, which is somewhat more symmetric than the EF-hand sites. The dependence of the 43Ca NMR band shape on the calcium ion concentration showed that there are two cation binding sites on the phospholipase A2 molecule: K1 = 4 X 10(3) M-1 and K2 = 20 M-1. The strong site was found to be affected by a pKa = 6.5 and the weak site by pKa = 4.5.  相似文献   

5.
G S Shaw  R S Hodges  B D Sykes 《Biochemistry》1991,30(34):8339-8347
Three 34-residue peptides corresponding to the high-affinity calcium-binding site III and two variant sequences from the muscle protein troponin C (TnC) were synthesized by solid-phase techniques. The two variant 34-residue peptides had amino acid modifications at either the coordinating positions or both the coordinating and noncoordinating positions, which corresponded to the residues found in the low-affinity calcium-binding site II of TnC. High-field 1H NMR spectroscopy was used to monitor calcium binding to each peptide to determine the effect these amino acid substitutions had on calcium affinity. The dissociation constant of the native site III peptide (SCIII) was 3 x 10(-6) M, smaller than that of the peptide incorporating the ligands from site II (LIIL), 8 x 10(-6) M, and that with the entire site II loop (LII), 3 x 10(-3) M, which bound calcium very weakly. These calcium dissociation constants demonstrate that very minor amino acid substitutions have a significant effect on the dissociation constant and give some insight into why the dissociation constants for site III and IV in TnC are 100-fold smaller than those for sites I and II. The results suggest that the differences in coordinating ligands between sites II and III have very little effect on Ca2+ affinity and that the noncoordinating residues in the site II loop are responsible for the low affinity of site II compared to the high affinity of site III in TnC.  相似文献   

6.
The acid pair hypothesis describing the interaction of calcium with the helix-loop-helix conformation of EF hands in calmodulin and related proteins predicts that these calcium-binding sites will have increased affinity for calcium if the anionic amino acid dentates in the loop region which interact directly with the cation are paired on the axial vertices of the resulting octahedral arrangement of chelating residues about the cation. As a test of this hypothesis, synthetic 33 residue analogs of bovine brain calmodulin calcium-binding site III have been prepared by the solid-phase method and analyzed for calcium affinity. The native sequence has a Kd of 735 microM for calcium and contains three anionic ligands which assume the +x, +y, and -z coordinates of the octahedral arrangement about the cation, thus precluding any pairing of the anionic ligands. This dissociation constant is 26 times weaker than that obtained from a synthetic analog of the sequentially homologous calcium-binding site III of rabbit skeletal TnC (Kd = 28 microM) which has four anionic ligands paired on the x and z axes. An analog of calmodulin site III with substitutions in the chelating residues at positions 1, 3, 5, 7, 9, and 12 of the 12-residue loop region to make these positions identical to those of rabbit skeletal troponin C site III decreased the calcium dissociation constant of the calmodulin peptide to 19 microM, similar to the troponin C peptide. Two synthetic analogs of calmodulin site III which contain three anionic ligands with two ligands paired on the x axis and two on the z axis have a Kd for calcium of 524 and 59 microM, respectively. This study provides strong support for and a better definition of the acid pair hypothesis and further demonstrates the usefulness of synthetic calcium-binding fragments in delineating the mechanism of calcium regulation of calmodulin and related proteins.  相似文献   

7.
Intracellular free calcium concentration in the sea urchin egg was calculated to increase from 0.1 mM in an unfertilized egg to 1 mM in a fertilized egg 10 min after fertilization, based on measurement of the dissociation constant between free calcium and sea urchin egg homogenate. The dissociation constant between free calcium (dialyzable calcium) and homogenate of sea urchin eggs was measured by means of dialysis equilibrium. The dissociation constant of the unfertilized egg was about 10–4 M and that of the fertilized egg was about 10–3 M in three species of sea urchin, Hemicentrotus pulcherrimus, Anthocidaris crassispina, and Pseudocentrotus depressus. An increase in the dissociation constant of the unfertilized egg homogenate was observed after the addition of calcium ion at a concentration above 0.3 mM, the dissociation constant becoming the same as that observed in the fertilized egg homogenate after the administration of CaCl2 at a concentration above 1 mM. Sodium ion also caused a decrease in the calcium-binding ability of the unfertilized egg homogenate. Therefore, penetration of calcium ion or sodium ion upon fertilization might induce an increase in the dissociation constant and then intracellular concentration of free calcium would increase at fertilization. Almost all calcium-binding ability of the egg homogenate was found in the microsomal fraction, and the substance which bound calcium was thought to be protein in nature, since trypsin could decrease the level of calcium-binding substance in the homogenate of the eggs.  相似文献   

8.
The X-ray crystal structure of a 19 kDa active fragment of human fibroblast collagenase has been determined by the multiple isomorphous replacement method and refined at 1.56 Å resolution to an R-factor of 17.4%. The current structure includes a bound hydroxamate inhibitor, 88 waters and three metal atoms (two zincs and a calcium). The overall topology of the enzyme, comprised of a five stranded β-sheet and three α-helices, is similar to the thermolysin-like metalloproteinases. There are some important differences between the collagenase and thermolysin families of enzymes. The active site zinc ligands are all histidines (His-218, His-222, and His-228). The presence of a second zinc ion in a structural role is a unique feature of the matrix metalloproteinases. The binding properties of the active site cleft are more dependent on the main chain conformation of the enzyme (and substrate) compared with thermolysin. A mechanism of action for peptide cleavage similar to that of thermolysin is proposed for fibroblast collagenase. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The structure of bovine intestinal calcium-binding protein (ICaBP) has been determined crystallographically at a resolution of 2.3 A and refined by a least squares technique to an R factor of 17.8%. The refined structure includes all 600 non-hydrogen protein atoms, two bound calcium ions, and solvent consisting of one sulfate ion and 36 water molecules. The molecule consists of two helix-loop-helix calcium-binding domains known as EF hands, connected by a linker containing a single turn of helix. Helix-helix interactions are primarily hydrophobic, but also include a few strategic hydrogen bonds. Most of the hydrogen bonds, however, are found in the calcium-binding loops, where they occur both within a single loop and between the two. Examination of the hydrogen bonding patterns in the calcium-binding loops of ICaBP and the related protein, parvalbumin, reveals several conserved hydrogen bonds which are evidently important for loop stabilization. The primary and tertiary structural features which promote the formation of an EF hand were originally identified from the structure of parvalbumin. They are modified in light of the ICaBP structure and considered as they apply to other calcium-binding proteins. The C-terminal domain of ICaBP is a normal EF hand, with ion binding properties similar to those of the calmodulin hands, but the N-terminal domain is a variant hand whose calcium ligands are mostly peptide carbonyls. Relative to a normal EF hand, this domain exhibits a similar KD for calcium binding but a greatly reduced affinity for calcium analogs such as cadmium and the lanthanide series. Lanthanides in particular may be inappropriate models for calcium in this system.  相似文献   

10.
Calcium binding isotherms were determined for thermolysin in the range pH 5.6-10.5, and from 5 to 45 degrees C. An extensive statistical analysis of the binding data suggests that at least two of the four binding sites bind Ca2+ with complete positive cooperativity and independently of the other two. Nonlinear regression analysis of the binding data was used to calculate cooperative (K1) and independent (K2) binding constants for the four calcium sites. Thermodynamic parameters obtained from a van't Hoff analysis indicate that calcium binding to both cooperative and independent sites is an entropy-driven process. At pH 7.0, delta H1 = 90.4 kJ/mol; delta H2 = 97.5 kJ/mol; delta S1 = 456 J K-1 mol-1; delta S2 = 262 J K-1 mol-1. These results are compared to those obtained for other calcium-binding proteins. An analysis of the pH dependence of the calcium binding constants indicates that the binding of four protons at the cooperative site and one to two protons at the independent sites, modulates the calcium affinity. This confirms an earlier structural assignment of the double-site as the locus of the two cooperatively binding Ca2+. Calcium binding to thermolysin is enhanced in the presence of an active site directed inhibitor, suggesting that there may be positive cooperativity between substrate and calcium binding.  相似文献   

11.
Neutral protease from Bacillus cereus exhibits a 73% amino acid sequence homology to thermolysin, for which an accurate crystal structure exists. The B. cereus enzyme is, however, markedly less thermostable. The neutral protease was crystallized and diffraction data to 3.0 A resolution were recorded by oscillation photography. The crystal structure was solved by molecular replacement methods using thermolysin as a trial molecule. The solution was improved by rigid-body refinement and model rebuilding into electron density omit-maps. The atomic co-ordinates were refined to R = 21.7% at 3.0 A resolution. Comparison of the resultant model with the thermolysin structure shows that the two enzymes are very similar with a root-mean-square deviation between equivalent C alpha-atoms of 0.88 A. The gamma-turn found in thermolysin is transformed into a beta-turn in the neutral protease by the insertion of a glycine residue. There appear to be no contributions to the enhanced thermostability of thermolysin from additional salt bridges, whereas contributions in the form of extra hydrogen bonding interactions could be important. Other factors that may affect thermostability include the two glycine to alanine exchanges and perturbations in the environment of the double calcium site.  相似文献   

12.
Proteins that bind calcium in a phospholipid-dependent manner   总被引:2,自引:0,他引:2  
Three proteins (Mr = 64K, 32K, and 22K) that bind to phospholipids in a calcium-dependent manner were purified from bovine brain. The calcium-binding properties of these proteins were investigated by equilibrium dialysis and by gel filtration chromatography. The 64- and 32-kDa proteins were found to have calcium- and phospholipid-binding properties strikingly similar to those of protein kinase C [Bazzi, M.D., & Nelsestuen, G.L. (1990) Biochemistry 29, 7624]. The free proteins bound limited divalent metal ion even at 200 microM calcium. However, they bound eight to nine calcium ions per protein in the presence of membranes containing acidic phospholipids. The calcium concentrations needed for protein-phospholipid binding were different for these two proteins and were strongly influenced by the phospholipid composition of the vesicles; vesicles of higher phosphatidylserine content required lower concentrations of calcium for protein-membrane association. These properties described a general type of calcium-interacting system where simultaneous interaction of all three components (protein, phospholipids, and calcium) is required. The free proteins may provide only partial coordinate bonds to each calcium ion, but complete calcium-binding sites could be generated at the protein-phospholipid interface. In contrast to the 64- and 32-kDa proteins, the 22-kDa protein bound similar amounts of calcium (two to three ions/protein) in the presence or the absence of phospholipids. The 22-kDa protein had the lowest affinity for phospholipid and the highest affinity for calcium of the three proteins tested. Thus, calcium-dependent phospholipid-binding proteins consist of several types. For example, the 64- and 32-kDa proteins appear to be quite abundant and may even function as a calcium buffer to modulate signaling events.  相似文献   

13.
Centrin is an EF-hand calcium-binding protein closely related to the prototypical calcium sensor protein calmodulin. It is found in microtubule-organizing centers of organisms ranging from algae and yeast to man. In vitro, the C-terminal domain of centrin binds to the yeast centrosomal protein Kar1p in a calcium-dependent manner, whereas the N-terminal domain does not show any appreciable affinity for Kar1p. To obtain deeper insights into the structural basis for centrin's function, we have characterized the affinities of the C-terminal domain of Chlamydomonas reinhardtii centrin for calcium and for a peptide fragment of Kar1p using CD, fluorescence, and NMR spectroscopy. Calcium binding site IV in C. reinhardtii centrin was found to bind Ca2+ approximately 100-fold more strongly than site III. In the absence of Ca2+, the protein occupies a mixture of closed conformations. Binding of a single ion in site IV is sufficient to radically alter the conformational equilibrium, promoting occupancy of an open conformation. However, an exchange between closed and open conformations remains even at saturating levels of Ca2+. The population of the open conformation is substantially stabilized by the presence of the target peptide Kar1p-(239-257) to a point where a single ion bound in site IV is sufficient to completely shift the conformational equilibrium to the open conformation. This is reflected in the enhancement of the Ca2+ affinity in this site by more than an order of magnitude. These data confirm the direct coupling of the Ca2+ binding-induced shift in the equilibrium between the closed and open conformations to the binding of the peptide. Combined with the common localization of the two proteins in the microtubule organizing center, our results suggest that centrin is constitutively bound to Kar1p through its C-terminal domain and that centrin's calcium sensor activities are mediated by the N-terminal domain.  相似文献   

14.
T M Lohman 《Biochemistry》1984,23(20):4665-4675
The dissociation kinetics of bacteriophage T4 coded gene 32 protein-single-stranded nucleic acid complexes have been examined as a function of monovalent salt concentration, temperature, and pH in order to investigate the details of the dissociation of cooperatively bound protein. Fluorescence stopped-flow techniques were used, and irreversible dissociation was induced by a combination of [NaCl] jumps and mixing with excess nucleic acid competitor. This made it possible to directly investigate the irreversible dissociation process over a wide range of NaCl concentrations [e.g., from 50 mM to 0.60 M for the gene 32 protein-poly(A) complex], in the absence of reassociation. Over the entire salt range, the only dissociable species observed is the singly contiguously bound gene 32 protein which dissociates from the ends of protein clusters. However, the [NaCl] dependence of the dissociation rate constant suggests that two competing pathways exist for dissociation of cooperatively bound gene 32 protein from the ends of protein clusters. At high monovalent salt concentrations, dissociation is dominated by a single-step process, with log ke/log [NaCl] = 6.5 +/- 0.5; i.e., the dissociation rate constant increases with increasing NaCl concentration due to the uptake of approximately six monovalent ions upon dissociation. This indicates that singly contiguous protein dissociates directly into solution. However, at much lower [NaCl] the data suggest that gene 32 protein, when bound at the end of a protein cluster, dissociates by first sliding off the end to form a noncooperatively bound intermediate which subsequently dissociates. A quantitative model which incorporates the sliding pathway [Berg, O. G., Winter, R. B., & von Hippel, P. H. (1981) Biochemistry 20, 6929-6948] in the dissociation mechanism fits the data reasonably well and suggests that noncooperatively bound monomers of gene 32 protein may be capable of one-dimensional translocation along single-stranded nucleic acids as suggested by independent kinetic data on the association reaction [Lohman, T. M., & Kowalczykowski, S. C. (1981) J. Mol. Biol. 152, 67-109]. It is also observed that both the absolute dissociation rate constant for T4 gene 32 protein and its salt dependence are sensitive to the average molecular weight and polydispersity of the nucleic acid sample used. This is a general phenomenon exhibited by proteins that bind to nucleic acids in a highly cooperative manner.  相似文献   

15.
The binding of calcium and terbium to purified chick vitamin D-dependent intestinal calcium-binding protein was studied by terbium fluorescence, circular dichroism, and intrinsic protein fluorescence techniques. Calcium-binding protein bound, with high affinity, at least 3 mol of terbium/mol of protein; numerous low affinity terbium-binding sites were also noted. The three highest affinity sites were resolved into one very high affinity site (site A) and two other sites (sites B and C) with slightly lower affinity. Resonance energy transfer from tryptophan residues to terbium occurred only with site A. This site was filled before sites B and C. Competition experiments in which calcium was used to displace terbium bound to the protein showed that larger amounts of calcium were needed to displace terbium from site A than from sites B and C. Energy transfer from terbium to holmium indicated that the terbium-binding sites (B and C) were located close to each other (about 7-12 A) but were distant (greater than 12 A) from site A. The addition of EDTA to calcium-binding protein resulted in a 25% decrease in intrinsic protein fluorescence, suggesting a conformational change in the protein. The titration of EDTA-treated calcium-binding protein with calcium resulted in recovery of intrinsic protein fluorescence. A reversible calcium-dependent change in the ellipticity of calcium-binding protein in circular dichroism experiments was also seen. These observed properties suggest that vitamin D-dependent chick intestinal calcium-binding protein behaves in a manner similar to other well-known calcium-binding regulatory proteins.  相似文献   

16.
Equilibrium and kinetic studies of the unfolding and autolysis of the two domain protein thermolysin in guanidine hydrochloride are described. Enzyme activity, circular dichroism, fluorescence, sedimentation, size exclusion chromatography, and viscosity measurements were used to monitor conformational transitions and characterize the native and denatured states. The observation of biphasic transitions for the unfolding of apothermolysin and the spectroscopic changes associated with each phase of the overall unfolding process suggest unfolding of the N-terminal domain at less than 1 M guanidine hydrochloride, followed by the unfolding of the C-terminal domain, with the transition midpoint at 3 M guanidine hydrochloride. The refolding of the C-terminal domain is reversible; however, refolding of the N-terminal domain could not be demonstrated owing to protein aggregation. A quantitative analysis of the two transitions suggest that the unfolding of the two structural domains of thermolysin is not completely independent. Attempts to measure the unfolding of holothermolysin were hampered by autolysis. However, it was possible to show that at least three calcium ions serve to stabilize thermolysin against autolysis or unfolding in guanidine hydrochloride. Similar stabilization was observed for thermolysin with a single terbium ion bound at calcium site S(1). This result is consistent with our earlier findings, which suggest that calcium bound at sites S(1)-S(2) are located at a critical point on the unfolding pathway of thermolysin and serve to act as an interdomain lock.  相似文献   

17.
Two crystal forms (P6(3) and R3) of human annexin V have been crystallographically refined at 2.3 A and 2.0 A resolution to R-values of 0.184 and 0.174, respectively, applying very tight stereochemical restraints with deviations from ideal geometry of 0.01 A and 2 degrees. The three independent molecules (2 in P6(3), 1 in R3) are similar, with deviations in C alpha positions of 0.6 A. The polypeptide chain of 320 amino acid residues is folded into a planar cyclic arrangement of four repeats. The repeats have similar structures of five alpha-helical segments wound into a right-handed compact superhelix. Three calcium ion sites in repeats I, II and IV and two lanthanum ion sites in repeat I have been found in the R3 crystals. They are located at the convex face of the molecule opposite the N terminus. Repeat III has a different conformation at this site and no calcium bound. The calcium sites are similar to the phospholipase A2 calcium-binding site, suggesting analogy also in phospholipid interaction. The center of the molecule is formed by a channel of polar charged residues, which also harbors a chain of ordered water molecules conserved in the different crystal forms. Comparison with amino acid sequences of other annexins shows a high degree of similarity between them. Long insertions are found only at the N termini. Most conserved are the residues forming the metal-binding sites and the polar channel. Annexins V and VII form voltage-gated calcium ion channels when bound to membranes in vitro. We suggest that annexins bind with their convex face to membranes, causing local disorder and permeability of the phospholipid bilayers. Annexins are Janus-faced proteins that face phospholipid and water and mediate calcium transport.  相似文献   

18.
The binding of heparin causes a conformational change in antithrombin to give an increased heparin binding affinity and activate the inhibition of thrombin and factor Xa. The areas of antithrombin involved in binding heparin and stabilizing the interaction in the high-affinity form have been partially resolved through the study of both recombinant and natural variants. The role of a section of the N-terminal segment of antithrombin, residues 22-46 (segment 22-46), in heparin binding was investigated using rapid kinetic analysis of the protein cleaved at residues 29-30 by limited proteolysis with thermolysin. The cleaved antithrombin had 5.5-fold lowered affinity for heparin pentasaccharide and 1.8-fold for full-length, high-affinity heparin. It was shown that, although the initial binding of heparin is slightly enhanced by the cleavage, it dissociates much faster from the cleaved form, giving rise to the overall decrease in heparin affinity. This implies that the segment constituting residues 22-46 in the N terminus of antithrombin hinders access to the binding site for heparin, hence the increased initial binding for the cleaved form, whereas, when heparin is bound, segment 22-46 is involved in the stabilization of the binding interaction, as indicated by the increased dissociation constant. When the heparin pentasaccharide is bound to antithrombin prior to incubation with thermolysin, it protects the N-terminal cleavage site, implying that segment 22-46 moves to interact with heparin in the conformational change and thus stabilizes the complex.  相似文献   

19.
The calcium-binding properties of equine and pigeon lysozyme as well as those of bovine and human alpha-lactalbumin were investigated by 43Ca NMR spectroscopy. All proteins were found to contain one high-affinity calcium-binding site. The chemical shifts, line widths, relaxation times (T1 and T2), and quadrupole coupling constants for the respective 43Ca NMR signals were quite similar; this is indicative of a high degree of homology between the strong calcium-binding sites of these four proteins. The measured chemical shifts (delta approximately -3 to -7 ppm) and quadrupole coupling constants (chi approximately 0.7-0.8 MHz) are quite distinct from those observed for typical EF-hand calcium-binding proteins, suggesting a different geometry for the calcium-binding loops. The correlation times for bound calcium ions in these proteins were on the order of 4-8 ns, indicating that the flexibilities of these binding sites are limited. The apparent pKa values for the high-affinity sites ranged from 3.4 to 4.7, confirming the participation of carboxylate-containing residues in the coordination of the calcium ion. Competition experiments with EDTA showed that the affinities of these proteins for calcium follow the series bovine alpha-lactalbumin approximately human alpha-lactalbumin greater than pigeon lysozyme greater than equine lysozyme (KD approximately 5 x 10(-8) to 10(-6) M). Evidence for the existence of a second weak calcium-binding site (KD = 3 x 10(-3) M) was obtained for bovine alpha-lactalbumin, but not for the other proteins studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Drp35 is a protein induced by cell wall-affecting antibiotics or detergents; it possesses calcium-dependent lactonase activity. To determine the molecular basis of the lactonase activity, we first solved the crystal structures of Drp35 with and without Ca(2+); these showed that the molecule has a six-bladed beta-propeller structure with two calcium ions bound at the center of the beta-propeller and surface region. Mutational analyses of evolutionarily conserved residues revealed that the central calcium-binding site is essential for the enzymatic activity of Drp35. Substitution of some other amino acid residues for the calcium-binding residues demonstrated the critical contributions of Glu(48), Asp(138), and Asp(236) to the enzymatic activity. Differential scanning calorimetric analysis revealed that the loss of activity of E48Q and D236N, but not D138N, was attributed to their inability to hold the calcium ion. Further structural analysis of the D138N mutant indicates that it lacks a water molecule bound to the calcium ion rather than the calcium ion itself. Based on these observations and structural information, a possible catalytic mechanism in which the calcium ion and its binding residues play direct roles was proposed for the lactonase activity of Drp35.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号