首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethylsulfoniopropionate (DMSP) lyase enzymatically cleaves DMSP, an algal metabolite, to produce acrylate, a proton, and dimethyl sulfide (DMS), the most abundant volatile sulfur compound emitted from oceans. The physiology of DMS production by DMSP lyase was studied in vivo in an Alcaligenes-like organism, strain M3A, a salt marsh bacterial isolate, and in a marine strain, Pseudomonas doudoroffii. Enzymes from both strains were induced at optimum rates by 1 mM DMSP and vigorous aeration. P. doudoroffii was very sensitive to continued aeration and lost activity rapidly; the enzyme was more stable when aeration ceased. In addition to DMSP, acrylate and several of its analogs acted as inducers of DMSP lyase in Alcaligenes sp. strain M3A but not in P. doudoroffii. Turnover of DMSP by P. doudoroffii was enhanced by 3.5% NaCl or seawater, whereas the Alcaligenes sp. strain M3A enzyme was not salt dependent and salt did not greatly affect its activity. The pH profile showed two peaks of DMSP lyase activity (6.5 and 8.8) for Alcaligenes sp. strain M3A and a single peak at pH 8 for P. doudoroffii. Enzyme activity in both organisms was inhibited by methyl-3-mercaptopropionate and homocysteine. Cyanide, azide and p-chloromercuribenzoate inhibited only the P. doudoroffii DMSP lyase. The apparent K(infm) values for DMSP for cell cultures of Alcaligenes sp. strain M3A and P. doudoroffii were ca. 2 mM and <20 (mu)M, respectively. The differences in the physiology of DMSP metabolism in these two bacterial isolates may enable them to exist in diverse ecological niches.  相似文献   

2.
K Sakai  K Oshima    M Moriguchi 《Applied microbiology》1991,57(9):2540-2543
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

3.
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

4.
A thermostable aspartase was purified from a thermophile Bacillus sp. YM55-1 and characterized in terms of activity and stability. The enzyme was isolated by a 5-min heat treatment at 75 degrees C in the presence of 11% (w/v) ammonium sulfate and 100 mM aspartate, followed by Q-Sepharose anion-exchange and AF-Red Toyopearl chromatographies. The native molecular weight of aspartase determined by gel filtration was about 200,000, and this enzyme was composed of four identical monomers with molecular weights of 51,000 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Unlike Escherichia coli aspartase, the enzyme was not activated by the presence of magnesium ion at alkaline pH. At the optimum pH, the Km and Vmax were 28.5 mM and 700 units/mg at 30 degrees C and 32.0 mM and 2200 units/mg at 55 degrees C, respectively. The specific activity was four and three times higher than those of E. coli and Pseudomonas fluorescens enzymes at 30 degrees C, respectively. Eighty percent of the activity was retained after a 60-min incubation at 55 degrees C, and the enzyme was also resistant to chemical denaturants; 80% of the initial specific activity was detected in assay mixtures containing 1.0 M guanidine hydrochloride. The purified enzyme shared a high sequence homology in the N-terminal region with aspartases from other organisms.  相似文献   

5.
Pseudomonas sp. M grown on mevalonate as the sole source of carbon has 200- to 800-fold induced levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. The enzyme, which was purified to a homogeneous state in 54% yield (final specific activity, 60.5 mumol of NAD+ reduced per min per mg of protein), converted R-mevalonate (Km = 0.15 mM) to S-HMG-CoA. Activity was sensitive to sulfhydryl modifying reagents. The apparent molecular weight of the holoenzyme was 178,000 and that of the subunit 43,000. The enzyme thus appears to be a tetramer. Comparison of a 23-residue amino-terminal sequence with the cDNA-derived sequence of Chinese hamster ovary cell HMG-CoA reductase showed little homology and antibody raised against the Pseudomonas enzyme did not appear to cross-react with rat liver HMG-CoA reductase. Addition of mevalonate to cells growing on glucose was followed by a rapid and biphasic induction of HMG-CoA reductase activity. During phase I, mevalonate or its catabolites may accumulate in intact cells of Pseudomonas sp. M and acetoacetate, a competitive inhibitor of HMG-CoA reductase (Ki = 3.2 mM), may feedback inhibit the enzyme under these conditions.  相似文献   

6.
The expression of xenobiotic-degradative genes in indigenous bacteria or in bacteria introduced into an ecosystem is essential for the successful bioremediation of contaminated environments. The maintenance of naphthalene utilization activity is studied in Pseudomonas putida (ATCC 17484) and an Alcaligenes sp. (strain NP-Alk) under different batch culture conditions. Levels of activity decreased exponentially in stationary phase with half-lives of 43 and 13 h for strains ATCC 17484 and NP-Alk, respectively. Activity half-lives were 2.7 and 5.3 times longer, respectively, in starved cultures than in stationary-phase cultures following growth on naphthalene. The treatment of starved cultures with chloramphenicol caused a loss of activity more rapid than that measured in untreated starved cultures, suggesting a continued enzyme synthesis in starved cultures in the absence of a substrate. Following growth in nutrient medium, activity decreased to undetectable levels in the Alcaligenes sp. but remained at measurable levels in the pseudomonad even after 9 months. The induction of naphthalene degradation activities in these cultures, when followed by radiorespirometry with 14C-labeled naphthalene as the substrate, was consistent with activity maintenance data. In the pseudomonad, naphthalene degradation activity was present constitutively at low levels under all growth conditions and was rapidly (in approximately 15 min) induced to high levels upon exposure to naphthalene. Adaptation in the uninduced Alcaligenes sp. occurred after many hours of exposure to naphthalene. In vivo labeling with 35S, to monitor the extent of de novo enzyme synthesis by naphthalene-challenged cells, provided an independent confirmation of the results.  相似文献   

7.
L-Aspartate 4-decarboxylase (Asd) is a major enzyme used in the industrial production of L-alanine. Its gene was cloned from Pseudomonas sp. ATCC 19121 and characterized in the present study. The 1,593-bp asd encodes a protein with a molecular mass of 59,243 Da. The Asd from this Pseudomonas strain was considerably homologous to other Asds and aminotransferases, and has evolved independently of these enzymes from gram-positive microbes. Productivity rate of the C-terminal His-tagged fusion Asd was at 33 mg/l of Escherichia coli transformant culture. The kinetic parameters K (m) and V (max) of the fusion protein were 11.50 mM and 0.11 mM/min, respectively. Gel filtration analysis demonstrated that Asd is a dodecamer at pH 5.0 while 4.4 % of the recombinant protein dissociated into dimer when the pH was increased to 7.0. Asd exhibited its maximum activity at pH 5.0 and specific activity of 280 U/mg, and remained stable over a broad range of pH. The optimum temperature for Asd reaction was 45 degrees C, and 92 % of the activity remained when the enzyme was incubated at 40 degrees C for 40 min. This enzyme did not have any preferred divalent cation for catalysis. The recombinant Asd also exhibited aminotransferase activity when D,L-Asp, L-Glu, L-Gln, and L-Ala were utilized as substrates. However, the decarboxylation activity of L-aspartate was 2,477 times higher than its aminotransferase activity. The present study is the first investigation on the important biochemical properties of the purified recombinant Asd.  相似文献   

8.
Quinoprotein glucose dehydrogenase (EC 1.1.99.17) from Acinetobacter calcoaceticus L.M.D. 79.41 was purified to homogeneity. It is a basic protein with an isoelectric point of 9.5 and an Mr of 94,000. Denaturation yields two molecules of PQQ/molecule and a protein with an Mr of 48000, indicating that the enzyme consists of two subunits, which are probably identical because even numbers of aromatic amino acids were found. The oxidized enzyme form has an absorption maximum at 350 nm, and the reduced form, obtained after the addition of glucose, at 338 nm. Since double-reciprocal plots of initial reaction rates with various concentrations of glucose or electron acceptor show parallel lines, and substrate inhibition is observed for glucose as well as for electron acceptor at high concentrations, a ping-pong kinetic behaviour with the two reactants exists. From the plots, Km values for glucose and Wurster's Blue of 22 mM and 0.78 mM respectively, and a Vmax. of 7.730 mumol of glucose oxidized/min per mg of protein were derived. The enzyme shows a broad substrate specificity for aldose sugars. Cationic electron acceptors are active in the assay, anionic acceptors are not. A pH optimum of 9.0 was found with Wurster's Blue and 6.0 with 2,6-dichlorophenol-indophenol. Two types of quinoprotein glucose dehydrogenases seem to exist: type I enzymes are acidic proteins from which PQQ can be removed by dialysis against EDTA-containing buffers (examples are found in Escherichia coli, Klebsiella aerogenes and Pseudomonas sp.); type II enzymes are basic proteins from which PQQ is not removed by dialysis against EDTA-containing buffers (examples are found in A. calcoaceticus and Gluconobacter oxydans).  相似文献   

9.
K S Kim  Y T Ro    Y M Kim 《Journal of bacteriology》1989,171(2):958-964
A brown carbon monoxide dehydrogenase from CO-autotrophically grown cells of Acinetobacter sp. strain JC1, which is unstable outside the cells, was purified 80-fold in seven steps to better than 95% homogeneity, with a yield of 44% in the presence of the stabilizing agents iodoacetamide (1 mM) and ammonium sulfate (100 mM). The final specific activity was 474 mumol of acceptor reduced per min per mg of protein as determined by an assay based on the CO-dependent reduction of thionin. Methyl viologen, NAD(P), flavin mononucleotide, flavin adenine dinucleotide, and ferricyanide were not reduced by the enzyme, but methylene blue, thionin, and dichlorophenolindophenol were reduced. The molecular weight of the native enzyme was determined to be 380,000. Sodium dodecyl sulfate-gel electrophoresis revealed at least three nonidentical subunits of molecular weights 16,000 (alpha), 34,000 (beta), and 85,000 (gamma). The purified enzyme contained particulate hydrogenase-like activity. Selenium did not stimulate carbon monoxide dehydrogenase activity. The isoelectic point of the native enzyme was found to be 5.8; the Km of CO was 150 microM. The enzyme was rapidly inactivated by methanol. One mole of native enzyme was found to contain 2 mol of each of flavin adenine dinucleotide and molybdenum and 8 mol each of nonheme iron and labile sulfide, which indicated that the enzyme was a molybdenum-containing iron-sulfur flavoprotein. The ratio of densities of each subunit after electrophoresis (alpha:beta:gamma = 1:2:6) and the number of each cofactor in the native enzyme suggest a alpha 2 beta 2 gamma 2 structure of the enzyme. The carbon monoxide dehydrogenase of Acinetobacter sp. strain JC1 was found to have no immunological relationship with enzymes of Pseudomonas carboxydohydrogena and Pseudomonas carboxydovorans.  相似文献   

10.
A new enzyme, NAD+-dependent 4-N-trimethylamino-1-butanol dehydrogenase from Pseudomonas sp. 13CM, was purified 526-fold to apparent homogeneity in 5 chromatographic steps. The enzyme had a molecular mass of 45 kDa and appeared to be a monomer enzyme. The isoeletric point was found to be 4.8. The optimum temperature was 50 degrees C, and the optimum pHs for the oxidation and reduction reactions were 9.5 and 6.0 respectively. The purified enzyme was further characterized with respect to substrate specificity, kinetic parameters, and amino acid terminal sequence. The Km values for trimethylamino-1-butanol and NAD+ were 0.54 mM and 0.22 mM respectively. In the reduction reaction, the apparent Km values for trimethylaminobutylaldehyde and NADH were 0.67 mM and 0.04 mM, respectively. The enzyme was inhibited by SH reagents, chelating reagents, and heavy metal ions. The N-terminal 12 amino acid residues were sequenced.  相似文献   

11.
We found that a psychrophilic bacterium isolated from Antarctic seawater, Cytophaga sp. KUC-1, abundantly produces aspartase [EC4.3.1.1], and the enzyme was purified to homogeneity. The molecular weight of the enzyme was estimated to be 192,000, and that of the subunit was determined to be 51,000: the enzyme is a homotetramer. L-Aspartate was the exclusive substrate. The optimum pH in the absence and presence of magnesium ions was determined to be pH 7.5 and 8.5, respectively. The enzyme was activated cooperatively by the presence of L-aspartate and by magnesium ions at neutral and alkaline pHs. In the deamination reaction, the K(m) value for L-aspartate was 1.09 mM at pH 7.0, and the S(1/2) value was 2.13 mM at pH 8.5. The V(max) value were 99.2 U/mg at pH 7.0 and 326 U/mg at pH 8.5. In the amination reaction, the K(m) values for fumarate and ammonium were 0.797 and 25.2 mM, respectively, and V(max) was 604 U/mg. The optimum temperature of the enzyme was 55 degrees C. The enzyme showed higher pH and thermal stabilities than that from mesophile: the enzyme was stable in the pH range of 4.5-10.5, and about 80% of its activity remained after incubation at 50 degrees C for 60 min. The gene encoding the enzyme was cloned into Escherichia coli, and its nucleotides were sequenced. The gene consisted of an open reading frame of 1,410-bp encoding a protein of 469 amino acid residues. The amino acid sequence of the enzyme showed a high degree of identity to those of other aspartases, although these enzymes show different thermostabilities.  相似文献   

12.
The dehydrogenation of substituted 3,5-cyclohexadiene-1,2-diol-1-carboxylic acids by dihydrodihydroxybenzoic acid dehydrogenases from benzoate grown cells of Alcaligenes eutrophus and Pseudomonas sp. B 13 and 3-chlorobenzoate grown cells of the latter organism was examined. No significant differences (Km and Vrel values) were detected for the enzymes from both organisms. The same dihydrodihydroxybenzoic acid dehydrogenase is formed in Pseudomonas sp. B13 during growth on benzoate as well as on 3-chlorobenzoate. The lower turnover rates of 3- and 5-chlorodrodihydroxybenzoic acid compared to dihydrodihydroxybenzoic acid are counterbalanced by an increase in specific activity. With the exception of 4-substituted dihydrodihydroxybenzoic acids exhibiting relative high Km values, only slight sterical and electronic substituent effects are evident. Reaction rates were never reduced to a critical level.  相似文献   

13.
The kinetics of dimethylsulfoniopropionate (DMSP) uptake and dimethylsulfide (DMS) production from DMSP in two bacterial species, Alcaligenes sp. strain M3A, an isolate from estuarine surface sediments, and Pseudomonas doudoroffii, from seawater, were investigated. In Alcaligenes cells induced for DMSP lyase (DL) activity, DMS production occurred without DMSP uptake. In DL-induced suspensions of P. doudoroffii, uptake of DMSP preceded the production of DMS, indicating an intracellular location of DL; intracellular DMSP levels reached ca. 7 mM. DMSP uptake rates in noninduced cells showed saturation at three concentrations (K(inft) [transport] values, 3.4, 127, and 500 (mu)M). In DL-induced cells of P. doudoroffii, DMSP uptake rates increased ca. threefold (V(infmax), 0.022 versus 0.065 (mu)mol of DMSP taken up min(sup-1) mg of cell protein(sup-1)), suggesting that the uptake binding proteins were inducible. DMSP uptake and DL activity in P. doudoroffii were both inhibited by CN(sup-), 2,4-dinitrophenol, and membrane-impermeable thiol-binding reagents, further indicating active uptake of DMSP by cell surface components. The respiratory inhibitors had limited or no effect on DL activity by the Alcaligenes sp. Of the structural analogs of DMSP tested for their effect on DMSP metabolism, glycine betaine (GBT), but not methyl-3-mercaptopropionic acid (MMPA), inhibited DMSP uptake by P. doudoroffii, suggesting that GBT shares a binding protein with DMSP and that MMPA is taken up at a separate site. Two models of DMSP uptake, induction, and DL location found in marine bacteria are presented.  相似文献   

14.
Growth of Pseudomonas sp. NRRL B3266 in the presence of oleic acid resulted in the induction of two enzymes: oleate hydratase, which produced 10(R)hydroxyoctadecanoate, and hydroxyoctadecanoate dehydrogenase, which catalyzed the oxidized nicotinamide adenine dinucleotide-dependent production of 10-oxooctadecanoate. This latter enzyme was purified to homogeneity and shown to consist of two polypeptide chains of about 29,000 daltons each. The enzyme had a broad substrate specificity, catalyzing the dehydrogenation of a number of 18-carbon hydroxy fatty acids. The kinetic parameters for various 10- and 12-hydroxy fatty acids were similar (Km ca. 5 micron and Vmax ca. 50 to 200 mumol/min per mg of protein). The enzyme also catalyzed the dehydrogenation of unsubstituted secondary alcohols. The effectiveness of these alcohols as substrates was highly dependent on their hydrophobicity, the Km decreasing from 9 mM for 4-heptanol to 7 micron for 6-dodecanol. Inhibition of the enzyme by primary alcohols also showed a dependence on hydrophobicity, the Ki decreasing from 350 mM for methanol to 90 micron for decanol.  相似文献   

15.
【目的】研究芽孢杆菌(Bacillus sp.) P38中乳酸脱氢酶对其产高光学纯L-乳酸(光学纯度>99%)的影响。【方法】全基因组测序显示在该菌中存在3个乳酸代谢关键酶,分别为L-乳酸脱氢酶(L-LDH)、D-乳酸脱氢酶(D-LDH)和苹果酸或L-乳酸脱氢酶(M/L-LDH)。通过将这3个酶进行异源表达、纯化与酶学特性分析,结合Native-PAGE、实时荧光定量PCR等方法,初步确定该菌高产光学纯L-乳酸的机理。【结果】Bacillus sp. P38中L-LDH对丙酮酸的催化活性(Kcat/Km值)最高,分别是D-LDH的2.9倍和M/L-LDH的4.3倍。其中M/L-LDH主要起L-LDH的功能。Native-PAGE实验中未检测到D-LDH活性。Bacillus sp. P38所有发酵阶段ldhL的转录水平均高于ldhD和ldhM/L。【结论】L-LDH是Bacillus sp. P38产高光学纯L-乳酸的主要关键酶。  相似文献   

16.
Polyhydroxyalkanoate (PHA) biosynthesis genes were cloned and characterized from Alcaligenes sp. SH-69 which can synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a single carbon source. The DNA sequence analysis revealed two consecutive genes coding for PHA synthase and -ketothiolase and the gene coding for acetoacetyl-CoA reductase located about 2-kbp downstream of the two genes. Recombinant Escherichia coli strains with the cloned PHA biosynthesis genes synthesized poly(3-hydroxybutyrate) in Luria-Bertani medium containing 2% glucose and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in M9 minimal medium supplemented with 1% glucose, 1 mM valine, and 2 mM threonine, which demonstrates that the PHA biosynthesis genes of Alcaligenes sp. SH-69 are functional in E. coli. © Rapid Science Ltd. 1998  相似文献   

17.
A thermostable lipase produced by a thermophilic Bacillus sp. J33 was purified to 175-fold with 15.6% recovery by ammonium sulphate and Phenyl Sepharose column chromatography. The enzyme is a monomeric protein having molecular weight of 45 kDa. It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C12 and C4. The Km and Vmax for lipase with pNP-laurate as substrate was calculated to be 2.5 mM and 0.4 M min-1 ml-1 respectively. The immobilized enzyme was stable for 12 h at 60°C. Polyhydric alcohols such as ethylene glycol (2.5 M), sorbitol (2.5 M) and glycerol (2.5 M) were used as thermostabilizers. Lipase acquired a remarkable stability, since no deactivation occurred at 70°C for 150 min in the presence of additives.  相似文献   

18.
The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 has been applied to the conversion of benzamide and hydroxylamine to benzohydroxamic acid. The unique features of the acyl transfer activity of this organism include its optimal activity at 50 °C and very high substrate (100 mM benzamide) and product (90 mM benzohydroxamic acid) tolerance among the hitherto reported enzymes. The bench scale production of benzohydroxamic acid was carried out in a fed-batch reaction (final volume 1 l) by adding 50 mM benzamide and 250 mM of hydroxylamine after every 20 min for 80 min in 0.1 M potassium phosphate buffer (pH 7.0) at 50 °C, using resting cells equal to 4.0 mg dcm/ml of reaction mixture. From 1 l of reaction mixture 33 g of benzohydroxamic acid was recovered with 24.6 g l?1 h?1 productivity. The acyl transfer activity of the amidase of Alcaligenes sp. MTCC 10674 and the process developed in the present study are of industrial significance for the enzyme-mediated production of benzohydroxamic acid.  相似文献   

19.
Catechol 2,3-dioxygenases were cloned from Alcaligenes sp. KF711, Pseudomonas putida KF715, and Achromobacter xylosoxidans KF701 which are biphenyl/polychlorinated biphenyls-degrading bacteria. All of the cloned enzymes were purified by preparative polyacrylamide gel electrophoresis (PAGE). The purified catechol 2,3-dioxygenases were significantly different from one another in ring-fission activities to catechol and its derivatives. The catechol 2,3-dioxygenase from Alcaligenes sp. KF711 exhibited higher ring-fission activity to 4-chlorocatechol than those from P. putida KF715 and A. xylosoxidans KF701. In electrophoretic mobilities, the three enzymes were different from one another on nondenaturing PAGE but the same on SDS-PAGE.  相似文献   

20.
An extracellular lipase was isolated from the cell-free broth of Bacillus sp. GK 8. The enzyme was purified to 53-fold with a specific activity of 75.7 U mg(-1) of protein and a yield of 31% activity. The apparent molecular mass of the monomeric protein was 108 kDa as estimated by molecular sieving and 112 kDa by SDS-PAGE. The proteolysis of the native molecule yields a low molecular weight component of 11.5 kDa that still retains the active site. It was stable at the pH range of 7.0-10.0 with optimum pH 8.0. The enzyme was stable at 50 degrees C for 1 h with a half life of 2 h, 40 min, and 18 min at 60, 65, and 70 degrees C, respectively. With p-nitrophenyl laurate as substrate the enzyme exhibited a K(m) and V(max) of 3.63 mM and 0.26 microM/min/ml, respectively. Activity was stimulated by Mg(2+) (10 mM), Ba(2+) (10 mM), and SDS (0.1 mM), but inhibited by EDTA (10 mM), phenylmethane sulfonyl fluoride (100 mM), diethylphenylcarbonate (10 mM), and eserine (10 mM). It hydrolyzes triolein at all positions. The fatty acid specificity of lipase is broad with little preference for C(4) and C(18:1). Thermostability of the proteolytic fragment at 60 degrees C was observed to be 37% of the native protein. The native enzyme was completely stable in ethylene glycol and glycerol (30% v/v each) for 60 min at 65 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号