首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nitric oxide donors nitroprusside (NP) and S-nitroso-N-acetylpenicillamine (SNAP) were added repeatedly over a prolonged period into a protein fructation system of 0.05 M fructose and BSA. These additions inhibited Maillard reaction advanced-stage fluorescence generation in a dose-dependent manner without affecting initiation of glycation. NP caused 66% inhibition whereas SNAP caused only 30% inhibition at maximum dose. The lower inhibition by SNAP possibly reflects an interference caused by N-acetylpenicillamine and mediated by a metal-dependent enhanced free-radical generation. We propose that the inhibition of fluorescence results from mutual annihilation between nitric oxide and free radicals, such as OH*, produced during fructation. In vivo generated nitric oxide may play a protective role in cells against the deleterious effect of free radicals that are associated with the augmented fructose autoxidation and fructation that occurs in diabetes.  相似文献   

2.
3.
Glycation, a local covalent interaction, leads to alterations in secondary and tertiary structures of hemoglobin, the changes produced by fructose being more pronounced than those caused by glucose. The Stokes diameter of hemoglobin increases upon glycation from 7 to 14 nm and a concurrent inter-chain cross-linking and heme loss are also observed, particularly in the later stage of glycation. An initial increase of tryptophan (trp) fluorescence was observed in both glucation and fructation. In case of frucation however there was a decrease in tryptophan fluorescence that was accompanied by an increase in fluorescence of the advanced glycosylation end products (AGEs). This fluorescence behavior is indicative of energy transfer between tryptophan and the AGEs formed during the late stage of glycation. Emergence of an isosbestic point in the fluorescence spectra (taken at different time intervals) implies existence of two distinct glycation stages. The late glycation stage is also marked by an increase of beta structure and random coil at the expense of alpha helix. It is further observed that this compensatory loss of alpha helix (reported for the first time) and increase in beta sheet and random coil elements depend on the number of solvent-accessible glycation sites (rather than total number of such sites) and the subunit assembly of the protein.  相似文献   

4.
Advanced glycation end products (AGEs) play a critical pathogenic role in the development of diabetic complications. Recent studies have shown that diabetes is associated with not only abnormal glucose metabolism but also abnormal ribose and fructose metabolism, although glucose is present at the highest concentration in humans. The glycation ability and contribution of ribose and fructose to diabetic complications remain unclear. Here, the glycation ability of ribose, fructose and glucose under a mimic physiological condition, in which the concentration of ribose or fructose was one-fiftieth that of glucose, was compared. Bovine serum albumin (BSA) was used as the working protein in our experiments. Ribose generated more AGEs and was markedly more cytotoxic to SH-SY5Y cells than fructose. The first-order rate constant of ribose glycation was found to be significantly greater than that of fructose glycation. LC-MS/MS analysis revealed 41 ribose-glycated Lys residues and 12 fructose-glycated residues. Except for the shared Lys residues, ribose reacted selectively with 17 Lys, while no selective Lys was found in fructose-glycated BSA. Protein conformational changes suggested that ribose glycation may induce BSA into amyloid-like monomers compared with fructose glycation. The levels of serum ribose were correlated positively with glycated serum protein (GSP) and diabetic duration in type 2 diabetes mellitus (T2DM), respectively. These results indicate that ribose has a greater glycation ability than fructose, while ribose largely contributes to the production of AGEs and provides a new insight to understand in the occurrence and development of diabetes complications.  相似文献   

5.
The posttranslational modification of proteins by sugars has been demonstrated in diabetes and classical galactosemia. In diabetes, the glycation process occurs as a result of d-glucose nonenzymatically reacting with proteins such as albumin and hemoglobin, used today as important tools to monitor the efficiency of dietary control and therapy during treatment of diabetes. In classical galactosemia, d-galactose contributes to the formation of glycated proteins as well, suggesting that, akin to diabetes with glucated proteins, the monitoring of galactated proteins may facilitate management of patients with galactosemia. The objectives of this study were (i) to galactate human serum albumin (HSA) in vitro; (ii) to determine, by a sodium borohydride-dependent mass peptide mapping method, the galactation sites in HSA; and (iii) to compare HSA’s galactation sites with the protein’s reported glucation sites. Treatment of galactated HSA with sodium borohydride stabilized the condensed sugars on the protein and yielded discrete fragmentation patterns by tandem mass spectrometry, allowing reliable identification of HSA’s galactation sites. Liquid chromatography/electrospray ionization/mass spectrometry, in combination with tandem mass spectrometry, revealed that the principal sites of galactation in HSA were the ε-amino groups of lysine residues 12, 233, 281/276, 414, and 525. Lysyl residues 12, 233, 276, and 525 were previously reported as privileged sites for the nonenzymatic binding of d-glucose with HSA.  相似文献   

6.
Non-enzymatic glycation of reactive amino groups in model proteins increased the rate of free radical production at physiologic pH by nearly fifty-fold over non-glycated protein. Superoxide generation was confirmed by electron paramagnetic resonance measurements with the spin-trap phenyl-t-butyl-nitrone. Both Schiff base and Amadori glycation products were found to generate free radicals in a ratio of 1:1.5. Free radicals generated by glycated protein increased peroxidation of membranes of linoleic/arachidonic acid vesicles nearly 2-fold over control, suggesting that the increased glycation of proteins in diabetes may accelerate vascular wall lipid oxidative modification.  相似文献   

7.
Hyperglycemia and advanced glycation end products (AGEs) have considerable effects in diabetic patients. So, the recognition of anti-glycation property of compounds has a substantial benefit. Here, desferal, an iron chelator which is one of the most effective drugs in ??-thalassemia patients, was chosen to explore its effects on the fructation process of hemoglobin (Hb). The results indicated that desferal had a retardation effect on the functional and structural changes of Hb during fructation. It can prevent the AGE and carbonyl formations and helix depletion during the Hb fructation process. Moreover, desferal can preserve peroxidase and esterase activities of fructated Hb similar as native Hb. Therefore, desferal can be introduced as an anti-glycation drug to prevent the AGE formation.  相似文献   

8.
Diabetic complication arises from the presence of advanced glycation end products in different sites of the body. Great attention should be paid to recognizing anti-glycation compounds. Here, deferiprone as an oral iron chelator drug administrated in treatment of β-thalassemic patients was selected to find its effect on the fructation of hemoglobin (Hb). Our results indicated that deferiprone could prevent the AGE and carbonyl formation via inhibition of structural changes in the structure of Hb during the fructation process. Moreover, deferiprone can preserve peroxidase and esterase activities of fructated Hb similar to native Hb. Therefore, deferiprone can be introduced as an anti-glycation drug to prevent the AGE formation.  相似文献   

9.
Non-enzymatic glycation, as the chain reaction between reducing sugars and the free amino groups of proteins, has been shown to correlate with severity of diabetes and its complications. Cyperus rotundus (Cyperaceae) is used both as a food to promote health and as a drug to treat certain diseases. In this study, considering the antioxidative effects of C. rotundus, we examined whether C. rotundus also protects against protein oxidation and glycoxidation. The protein glycation inhibitory activity of hydroalcoholic extract of C. rotundus was evaluated in vitro using a model of fructose-mediated protein glycoxidation. The C. rotundus extract with glycation inhibitory activity also demonstrated antioxidant activity when a ferric reducing antioxidant power (FRAP) and Trolox equivalent antioxidant capacity (TEAC) assays as well as metal chelating activity were applied. Fructose (100 mM) increased fluorescence intensity of glycated bovine serum albumin (BSA) in terms of total AGEs during 14 days of exposure. Moreover, fructose caused more protein carbonyl (PCO) formation and also oxidized thiol groups more in glycated than in native BSA. The extract of C. rotundus at different concentrations (25–250 μg/ml) has significantly decreased the formation of AGEs in term of the fluorescence intensity of glycated BSA. Furthermore, we demonstrated the significant effect of C. rotundus extract on preventing oxidative protein damages including effect on PCO formation and thiol oxidation which are believed to form under the glycoxidation process. Our results highlight the protein glycation inhibitory and antioxidant activity of C. rotundus. These results might lead to the possibility of using the plant extract or its purified active components for targeting diabetic complications.  相似文献   

10.
Proteins modifications in diabetes may lead to early glycation products (EGPs) as well as advanced glycation end products (AGEs). Whereas no extensive studies have been carried out to assess the role of EGPs in secondary complications of diabetes, numerous investigators have demonstrated the role of AGEs. Early glycation involves attachment of glucose on ε-NH2 of lysine residues of proteins leading to generation of the Amadori product (an early glycation species). This study reports the structural and immunological characterization of EGPs of HSA because we believe that during persistent hyperglycemia the HSA, one of the major blood proteins, can undergo fast glycation. Glucose mediated generation of EGPs of HSA was quantitated as Amadori products by NBT assay and authenticated by boronate affinity chromatography and LC/MS. Compared to native HSA changes in glycated-HSA were characterized by hyperchromicity, loss in fluorescence intensity and a new peak in the FTIR profile. Immunogenicity of native- and glycated-HSA was evaluated by inducing antibodies in rabbits. Results suggest generation of neo-epitopes on glycated-HSA rendering it highly immunogenic compared to native HSA. Quantization of EGPs of HSA by authentic antibodies against HSA-EGPs can be used as marker for early detection of the initiation/progression of secondary complications of diabetes.  相似文献   

11.
It is well established that oxidative modification of low-density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. To examine the influence of different agents which may influence LDL-glycation and oxidation, experiments including glycation with glucose, glucose 6-phosphate, metal chelators (EDTA) and antioxidants (BHT) were performed. The influence of time dependence on the glycation process and the alteration of the electrophoretic mobility of LDL under diverse glycation and/or oxidation conditions was also investigated. The formation of conjugated dienes and levels of lipid peroxides in these different LDL-modifications were estimated. The copper-induced oxidation of LDL in vitro was determined by measurement of thiobarbituric acid reactive substances (TBARS) and expressed as nmol MDA/mg of LDL protein. We found that glycated LDL is more prone to oxidation than native LDL. Using native LDL, the maximal oxidation effect was found to reach a value of 49.72 nmol MDA/mg protein after 8 h. The maximum oxidation of the 31 days, glycated LDL with glucose was 71.76 nmol MDA/mg protein amounting to 144.33% of the value found for native LDL. In the case of glucose 6-phosphate glycation, the maximum oxidation under the same conditions amounted to 173.77% of the value found for native LDL. To measure the extent of glycation, fluorescence of advanced glycation end products (AGEs) was determined (370 nm excitation and 440 nm emission). The most potent glycation agent was glucose 6-phosphate leading to the formation of very high amounts of AGEs. This process was promoted in the absence of EDTA, which prevents the oxidative cleavage of modified Amadori products (ketoamines) to AGEs. We therefore conclude that both processes, glycation and oxidation, result in the modification of LDL. The lower the glycation-rate (+/- EDTA) as measured by relative fluorescence units RFU (generation of AGEs), the lower the additional oxidation rate after glycation as measured by TBARS (generation of MDA equivalents). Glycation and/or oxidation change the electrophoretic mobility of LDL.  相似文献   

12.
Nonenzymatic glycation, the reaction of glucose and other reducing sugars with protein, reversibly produces Amadori products and over a long period irreversible advanced glycation end products. In diabetes, these reactions are greatly accelerated and are important in the pathogenesis of diabetic complications.

In vitro glycation was studied with bovine albumin as the model protein. A mixture of 25 mM glucose/fructose was used as the glycating agent. The Amadori product was quantitated by thiobarbituric acid colorimetry after hydrolysis. Advanced glycation end products were measured by their intrinsic fluorescence. A number of vitamins and nutrients were found to be potent inhibitors of both the glycation reaction and the subsequent end products. The nutrients were effective at physiological concentrations and exhibited dose-response relationships. The inhibitors included ascorbic acid, tocopherol, pyridoxal, niacinamide, sodium selenite, selenium yeast, and carnosine. A significant correlation was found between the inhibition of glycation and the inhibition of AGE formation (P < 0.001). One of the nutrients, ascorbic acid, was used in a pilot study. Eighteen normal subjects, 7 college age and 10 middle age, were supplemented with 1,000 mg of ascorbic acid in the form of Re-Natured Vitamin C® for a period of 4 weeks. Serum protein glycation was decreased an average of 46.8% (P < 0.01). These results underline the importance of nutrition in diabetes and indicate the possibility of therapeutic use of these nutrients for the prevention of diabetic complications.  相似文献   


13.
Nonenzymatic protein glycation is caused by a Schiff's base reaction between the aldehyde groups of reducing sugars and the primary amines of proteins. These structures may undergo further Amadori rearrangement and free radical‐mediated oxidation to finally generate irreversible advanced glycation end products (AGEs). One of the factors known to modulate the glycation of proteins is glutathione, the most abundant nonprotein thiol tripeptide with the γ‐linkage, H‐Glu(Cys‐Gly‐OH)‐OH (GSH). Screening for products formed by GSH with D ‐glucose is an essential step in understanding the participation of GSH in glycation (the Maillard) reaction. Under the conditions used in these studies we observed N‐(1‐deoxy‐D ‐fructos‐1‐yl)‐pyroglutamic acid as the major glycation product formed in the mixtures of GSH and glucose in vitro. A RP HPLC/MS and tandem MS analyses of the GSH/glucose mixtures revealed that cleavage of the N‐terminal glutamic acid and the formation of pyroglutamic acid‐related Amadori product were accompanied by generation of Cys‐Gly‐derived Amadori and thiazolidine compounds. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Acetoacetate (AA) is a ketone body, which generates reactive oxygen species (ROS). ROS production is impacted by the formation of covalent bonds between amino groups of biomacromolecules and reducing sugars (glycation). Glycation can damage DNA by causing strand breaks, mutations, and changes in gene expression. DNA damage could contribute to the pathogenesis of various diseases, including neurological disorders, complications of diabetes, and aging. Here we studied the enhancement of glucose-mediated DNA glycation by AA for the first time. The effect of AA on the structural changes, Amadori and advanced glycation end products (AGEs) formation of DNA incubated with glucose for 4 weeks were investigated using various techniques. These included UV–Vis, circular dichroism (CD) and fluorescence spectroscopy, and agarose gel electrophoresis. The results of UV–Vis and fluorescence spectroscopy confirmed that AA increased the DNA-AGE formation. The NBT test showed that AA also increased Amadori product formation of glycated DNA. Based on the CD and agarose gel electrophoresis results, the structural changes of glycated DNA was increased in the presence of AA. The chemiluminescence results indicated that AA increased ROS formation. Thus AA has an activator role in DNA glycation, which could enhance the adverse effects of glycation under high glucose conditions.  相似文献   

15.
We studied structural modifications of metmyoglobin (Mb) after short-term (6 days) and long-term (30 days) glycation by fructose (fructation). Fructation caused gradual changes in the structure of the protein with respect to increased absorbance at 280 nm, enhanced fluorescence emission (with excitation at 285 nm), increased surface accessible tryptophan residues and reduced α-helix content and change in tertiary structure. However, long-term fructation changed Mb to oxymyoglobin (MbO2), as demonstrated by different spectroscopic (absorption, fluorescence, circular dichroic and electron paramagnetic resonance) studies and trifluoperazine-induced oxygen release experiment. Fructation appeared to modify Arg139 to arg-pyrimidine, which exhibited antioxidative activity and might be involved in the conversion of met (Fe3+) to oxy (Fe2+) form of myoglobin.  相似文献   

16.
Post-translational modifications in lens crystallins due to glycation and oxidation have been suggested to play a significant role in the development of cataracts associated with aging and diabetes. We have previously shown that alpha-keto acids, like pyruvate, can protect the lens against oxidation. We hypothesize that they can also prevent the glycation of proteins competitively by forming a Schiff base between their free keto groups and the free -NH(2) groups of protein as well as subsequently inhibit the oxidative conversion of the initial glycation product to advanced glycation end products (AGE). The purpose of this study was to investigate these possibilities using purified crystallins. The crystallins isolated from bovine lenses were incubated with fructose in the absence and presence of pyruvate. The post-incubation mixtures were analyzed for fructose binding to the crystallins, AGE formation, and the generation of high molecular weight (HMW) proteins. In parallel experiments, the keto acid was replaced by catalase, superoxide dismutase (SOD), or diethylene triaminepentaacetic acid (DTPA). This was done to ascertain oxidative mode of pyruvate effects. Interestingly, the glycation and consequent formation of AGE from alpha-crystallin was more pronounced than from beta-, and gamma-crystallins. The changes in the crystallins brought about by incubation with fructose were prevented by pyruvate. Catalase, SOD, and DTPA were also effective. The results suggest that pyruvate prevents against fructose-mediated changes by inhibiting the initial glycation reaction as well as the conversion of the initial glycated product to AGE. Hence it is effective in early as well as late phases of the reactions associated with the formation of HMW crystallin aggregates.  相似文献   

17.
Ribonuclease A has been used as a model protein for studying the specificity of glycation of amino groups in protein under physiological conditions (phosphate buffer, pH 7.4, 37 degrees C). Incubation of RNase with glucose led to an enhanced rate of inactivation of the enzyme relative to the rate of modification of lysine residues, suggesting preferential modification of active site lysine residues. Sites of glycation of RNase were identified by amino acid analysis of tryptic peptides isolated by reverse-phase high pressure liquid chromatography and phenylboronate affinity chromatography. Schiff base adducts were trapped with Na-BH3CN and the alpha-amino group of Lys-1 was identified as the primary site (80-90%) of initial Schiff base formation on RNase. In contrast, Lys-41 and Lys-7 in the active site accounted for about 38 and 29%, respectively, of ketoamine adducts formed via the Amadori rearrangement. Other sites reactive in ketoamine formation included N alpha-Lys-1 (15%), N epsilon-Lys-1 (9%), and Lys-37 (9%) which are adjacent to acidic amino acids. The remaining six lysine residues in RNase, which are located on the surface of the protein, were relatively inactive in forming either the Schiff base or Amadori adduct. Both the equilibrium Schiff base concentration and the rate of the Amadori rearrangement at each site were found to be important in determining the specificity of glycation of RNase.  相似文献   

18.
In diabetes, protein glycation mostly occurs at intrachain lysine residues resulting in the formation of early stage Amadori products which are finally converted to advance glycation end products (AGEs). Several studies have reported autoantibodies against AGEs in diabetes but not much data are found in respect of Amadori products. In this study, poly-l-lysine (PLL) was glycated with 50 mM glucose and the resultant Amadori products were estimated by fructosamine or nitroblue tetrazolium assay. We report high content of Amadori products in PLL upon glycation. Glycated PLL showed marked hyperchromicity in the UV spectrum, ellipticity changes in CD spectroscopy, and variations in ε-methylene protons shift in NMR. It was better recognized by autoantibodies in type 2 diabetics compared to the native PLL. Induced antibodies against glycated PLL were successfully used to probe early glycation in the IgG isolated from diabetes type 2 patients. Role of Amadori products of glycated proteins in the induction of autoantibodies in type 2 diabetes as well as in associated secondary complications has been discussed.  相似文献   

19.
Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose concentrations. Additional information on the aggregation kinetics are obtained by light scattering measurements. The results show that glycation process affects the native structure of BSA. Then, the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA. In particular, the formation of aggregates is progressively inhibited with growing concentration of glucose incubated with BSA. These results bring new insights on how aggregation process is affected by modification of BSA induced by glycation.  相似文献   

20.
Hyperglycaemia triggers the formation of both ‘early’ and advanced glycation end products, which are considered the major factors responsible for the complications of diabetes. Poly(amido)amine (PAMAM) dendrimers are relatively new class of materials with unique molecular structure predisposing them for the use as anti-glycation agents. The ability of poly(amido)amine (PAMAM) dendrimers G2 (MW 3256, 120 μmol/l) and G4 (MW 14215, 30 μmol/l) to inhibit the modification of proteins by high glucose (30 mmol/l, 37 °C, 72 h) was investigated using radiometric and spectrofluorometric assays. We monitored (a) non-enzymatic modifications of primary amino groups in BSA and polyamine compounds, and (b) the impact of anti-glycation agents on BSA conformation. Both PAMAM dendrimers and poly(l-lysine) (MW 70 kDa) effectively reduced BSA glycation, while undergoing the time-dependent modification themselves. Such a modification was a function of a number of available free amino groups per molecule, however, both dendrimers and poly(l-lysine) were equally effective in glucose scavenging. PAMAMs neither affected BSA conformation nor formed stable complexes with a protein, while non-glycated poly(l-lysine) significantly quenched BSA fluorescence. Our results encourage raising the hypothesis that PAMAM dendrimers may be considered effective and safe chemical competitors for non-enzymatic modification by glucose, thus confirming the earlier in vivo study showing the inhibition of protein modification in experimental diabetes in the presence of PAMAM dendrimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号