首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The manganese content of sugar beet grown in pots of organic soils taken from fields where crops regularly show symptoms of manganese deficiency, and the effects on it of foliar sprays of manganous sulphate and of manganous oxide or manganese silicate frit applied to the soil, of changing the soil pH, air-drying the soil, and growing the plants either in the glasshouse or outside were determined. All the manganese treatments increased the concentration of manganese in the plants and decreased deficiency symptoms, but increased the dry matter yield only slightly. Increasing the pH by liming greatly increased symptoms and decreased the manganese concentration in the dry matter; air-drying the soil before cropping had the opposite effect. Plants grown in pots of the same soil in the glasshouse or outdoors showed similar symptoms and had similar manganese content.The concentration of manganese in the leaves was related to the percentage of plants with deficiency symptoms and to the concentration of active soil manganese. Leaves usually had symptoms when the concentration of manganese in the dried leaves was less than 30 ppm, and always had severe symptoms when they contained less than 15 ppm Mn. The soil analyses suggest that sugar beet grown in organic soil with pH greater than 7.0 and containing less than 40 ppm active soil manganese is likely to show deficiency symptoms.  相似文献   

2.

Background and aims

Winter cover crop cultivation during the fallow season has been strongly recommended in mono-rice paddy soil to improve soil quality, but its impact in increasing the greenhouse gases (GHGs) emissions during rice cultivation when applied as green manure has not been extensively studied. In order to recommend a preferable cover crop which can increase soil productivity and suppress GHG emission impact in paddy soil, the effect of winter cover crop addition on rice yield and total global warming potential (GWP) was studied during rice cultivation.

Methods

Two cover crops (Chinese milk vetch, Astragalus sinicus L., hereafter vetch, and rye, Secale cerealis) having different carbon/nitrogen (C/N) ratios were cultivated during the rice fallow season. The fresh above-ground biomasses of vetch [25 Mg fresh weight (FW) ha?1, moisture content (MC) 86.9 %, C/N ratio 14.8] and rye (29 Mg rye FW ha?1, MC 78.0 %, C/N ratio 64.3) were incorporated as green manure 1 week before rice transplanting (NPK + vetch, and NPK + rye). The NPK treatment was installed for comparison as the control. During the rice cultivation, methane (CH4) and nitrous oxide (N2O) gases were collected simultaneously once a week using the closed-chamber method, and carbon dioxide (CO2) flux was estimated using the soil C balance analysis. Total GWP impact was calculated as CO2 equivalents by multiplying the seasonal CH4, CO2, and N2O fluxes by 25, 1, and 298, respectively.

Results

Methane mainly covered 79–81 % of the total GWP, followed by CO2 (14–17 %), but the N2O contribution was very small (2–5 %) regardless of the treatment. Seasonal CH4 fluxes significantly increased to 61 and 122 % by vetch and rye additions, respectively, compared to that of the NPK treatment. Similarly, the estimated seasonal CO2 fluxes increased at about 197 and 266 % in the vetch and rye treatments, respectively, compared with the NPK control plots. Based on these results, the total GWP increased to 163 and 221 % with vetch and rye applications, respectively, over the control treatment. Rice productivity was significantly increased with the application of green manure due to nutrient supply; however, vetch was more effective. Total GWP per grain yield was similar with the vetch (low C/N ratio) and NPK treatments, but significantly increased with the rye (high C/N ratio) application, mainly due to its higher CH4 emission characteristic and lower rice productivity increase.

Conclusions

A low C/N ratio cover crop, such as vetch, may be a more desirable green manure to reduce total GWP per grain yield and to improve rice productivity.  相似文献   

3.
Summary The uptake of manganese by oats in a manganese-deficient soil was increased on raising the pH from 7.0 to 8.0 with Ca(OH)2. This effect occurred in the absence of added manganese as well as when manganese was added to the soil as -MnO2. When the soil was initially sterilized the uptake of manganese at pH 7.0 was greatly increased at both pH's, but the uptake at pH 8.0 was now a smaller than at pH 7.0.  相似文献   

4.
SO2 and NO2 effects on microbial activity in an acid forest soil   总被引:1,自引:0,他引:1  
The rate of glucose decomposition and the pH fell in a forest soil (initial pH 4.06) exposed to 1.0 ppm SO2. No such effect was noted if the soil was exposed to 1.0 ppm nitrogen dioxide (NO2). Nitrite but not bisulfite (5g N or S/g of soil) inhibited O2 consumption and CO2 evolution in the glucose-amended forest soil, and nitrite and bisulfite acted synergistically in inhibiting these processes. Iron and manganese were solubilized when the soil was exposed to 10 ppm SO2, but NO2 caused no such change.  相似文献   

5.
Rosecrance  R.C.  McCarty  G.W.  Shelton  D.R.  Teasdale  J.R. 《Plant and Soil》2000,227(1-2):283-290
N mineralization, N immobilization and denitrification were determined for vetch, rye and rye-vetch cover crops using large packed soil cores. Plants were grown to maturity from seed in cores. Cores were periodically leached, allowing for quantification of NO3 and NH4 + production, and denitrification incubations were conducted before and after cover crop kill. Gas permeable tubing was buried at two depths in cores allowing for quantification of N2O in the soil profile. Cover crops assimilated most soil N prior to kill. After kill, relative rates of N mineralization were vetch > rye-vetch mixture > fallow > rye. After correcting for N mineralization from fallow cores, net N mineralization was observed in vetch and rye-vetch cores, while net N immobilization was observed in rye cores. Denitrification incubations were conducted 5, 15 and 55 days after kill, with adjustment of cores to 75% water filled pore space (WFPS). The highest denitrification was observed in vetch cores 5 days after kill, when soil NO3 and respiration rates were high. Substantially lower denitrification was observed on subsequent measurement dates and in other treatments probably due to either limited NO3 or organic carbon in the soil. On day 5, 3%, 23%, 31% and 31% of the N2O was recovered in the headspace of fallow, vetch, rye and rye-vetch cores, respectively. The rest was stored in the soil profile. In a field study using intact soil cores, denitrification rates also peaked 1 week after cover crop kill and decreased significantly thereafter. Results suggest greater potential N losses from vetch than rye or rye-vetch cover crops due to rapid N-mineralization in conjunction with denitrification and potential leaching, prior to significant crop N-assimilation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Information on how management by mowing and herbicide alter residue quality and nitrogen (N) inputs would be valuable to improve prediction of N availability. Mowing and glyphosate application are widely used by growers to limit cover crop growth and facilitate incorporation. A mixture of cover crops, hairy vetch (Vicia villosa L.), oriental mustard (Brassica junceaL.) and cereal rye (Secale cerealeL.), was investigated as a means to improve soil quality and optimize N availability. There is limited information on how mowing or glyphosate application influence cover crop decomposition and N mineralization from these heterogeneous residues. A rye cover crop was grown in the field over the winter and transferred to containers as an intact soil profile to conduct a greenhouse study. Management treatments (mowing and glyphosate) were imposed eight days before incorporation. Plant and soil N dynamics were monitored. The experiment was repeated with the addition of a tri-mixture cover crop. Inorganic NO3 in bare soil ranged from 6 to 10 g N g soil–1 over 39 days. Similar or lower levels of soil NO3 were observed after rye residue incorporation, from 2 to 6 g N g–1; consistent with N-immobilization. Application of untreated, mixed cover crop residues generally was associated with higher levels of soil inorganic NO3, from 3 to 11 g N g–1. For both rye and mixed residues, management by mowing or glyphosate enhanced N mineralization by 10 to 100%, compared to untreated residues. At the same time, application of mowing or glyphosate 8 days before cover crop incorporation seemed to reduce the amount of residues by about half compared to untreated controls. Belowground biomass was reduced more than aboveground, although recovery of senescent roots may have been incomplete. Management by glyphosate or mowing enhanced soil inorganic N availability in the short-term while simultaneously reducing carbon and N inputs.  相似文献   

7.
Gherardi  M. J.  Rengel  Z. 《Plant and Soil》2001,234(2):143-151
Bauxite residue sand, even though a poor substrate for plant growth because of very high pH, salinity and sodicity, is required to be revegetated. Manganese deficiency is observed in residue-grown plants because broadcast applications of manganese fertiliser to the surface of residue deposits have a low residual value. In a laboratory experiment, manganese (as MnSO4) was added to fresh and 4-year-old residue sand and a sequential fractionation procedure performed at 0, 1, 4, 8 and 24 h and 6, 14, 21, 43, 73, 103 and 130 d. Extraction with DTPA estimated plant-available Mn, while sequential fractionation with various extractants yielded the following fractions: readily soluble [Ca(NO3)2]; weakly adsorbed [CaDTPA-B4O7]; carbonate-bound [HNO3]; and oxide-bound [NH2OHHCl]. Residual Mn was calculated as a difference between the sum of all these forms and total Mn in residue sand. Transformation of manganese from the initially dominant readily soluble form to the less-available forms was very rapid (< 24 h). A change to fertilisation strategies is required if better efficiency of manganese application and uptake is to be achieved for plants growing on bauxite residue.  相似文献   

8.
Soil and crop management practices may influence biomass growth and yields of cotton (Gossypium hirsutum L.) and sorghum (Sorghum bicolorL.) and sequester significant amount of atmospheric CO2in plant biomass and underlying soil, thereby helping to mitigate the undesirable effects of global warming. This study examined the effects of three tillage practices [no-till (NT), strip till (ST), and chisel till (CT)], four cover crops [legume (hairy vetch) (Vicia villosa roth), nonlegume (rye) (Secale cerealeL), hairy vetch/rye mixture, and winter weeds orno covercrop], and three N fertilization rates (0, 60–65, and 120–130 kg N ha –1) on the amount of C sequestered in cotton lint (lint + seed), sorghum grain, their stalks (stems + leaves) and roots, and underlying soil from 2000 to 2002 in central Georgia, USA. A field experiment was conducted on a Dothan sandy loam (fine-loamy, kaolinitic, thermic, Plinthic Kandiudults). In 2000, C accumulation in cotton lint was greater in NT with rye or vetch/rye mixture but in stalks, it was greater in ST with vetch or vetch/rye mixture than in CT with or without cover crops. Similarly, C accumulation in lint was greater in NT with 60 kg N ha –1 but in stalks, it was greater in ST with 60 and 120 kg N ha –1 than in CT with 0 kg N ha –1. In 2001, C accumulation in sorghum grains and stalks was greater in vetch and vetch/rye mixture with or without N rate than in rye without N rate. In 2002, C accumulation in cotton lint was greater in CT with or without N rate but in stalks, it was greater in ST with 60 and 120 kg N ha –1 than in NT with or without N rate. Total C accumulation in the above- and belowground biomass in cotton ranged from 1.7 to 5.6 Mg ha –1 and in sorghum ranged from 3.4 to 7.2 Mg ha –1. Carbon accumulation in cotton and sorghum roots ranged from 1 to 14% of the total C accumulation in above- and belowground biomass. In NT, soil organic C at 0–10 cm depth was greater in vetch with 0 kg N ha –1 or in vetch/rye with 120–130 kg N ha –1 than in weeds with 0 and 60 kg N ha –1 but at 10–30 cm, it was greater in rye with 120–130 kg N ha –1 than in weeds with or without rate. In ST, soil organic C at 0–10 cm was greater in rye with 120–130 kg N ha –1 than in rye, vetch, vetch/rye and weeds with 0 and 60 kg N ha –1. Soil organic C at 0–10 and 10–30 cm was also greater in NT and ST than in CT. Since 5 to 24% of C accumulation in lint and grain were harvested, C sequestered in cotton and sorghum stalks and roots can be significant in the terrestrial ecosystem and can significantly increase C storage in the soil if these residues are left after lint or grain harvest, thereby helping to mitigate the effects of global warming. Conservation tillage, such as ST, with hairy vetch/rye mixture cover crops and 60–65 kg N ha –1 can sustain C accumulation in cotton lint and sorghum grain and increase C storage in the surface soil due to increased C input from crop residues and their reduced incorporation into the soil compared with conventional tillage, such as CT, with no cover crop and N fertilization, thereby maintaining crop yields, improving soil quality, and reducing erosion.  相似文献   

9.

Background and aims

Crop residues and soil types play an important role in soil C and N storage. The objectives of this study were to quantify the effects of crop residue quality and interactions with soil type on soil C and N, in the short- and medium-term, and to determine the responses related to the priming effect (PE).

Methods

Residues of vetch (Vicia sativa L.), pea (Pisum sativum L.) and wheat (Triticum aestivum L.) crops with different chemical compositions and labelled with 13C and 15N were left to decompose on the surface of either a sandy-loam soil or a clay soil incubated under laboratory conditions at 25 °C for 360 days. We measured the total CO2-C and CO2-13C emitted during decomposition, the soil mineral N content and the amounts of 13C and 15N remaining in both the surface residue particles and the bulk soil.

Results

Over the short-term, the vetch residues decomposed faster than those of wheat and pea on the soil surface due to their more favourable chemical composition for biodegradation; after one year, however, this difference disappeared. We observed extra soil C mineralization in all cases, i.e., the PE was positive for all treatments and was directly related to the water-soluble (vetch > pea > wheat) and soil C contents (clay soil > sandy-loam soil). Conversely, the fate of the added 15N and net N mineralization differed considerably between the three residues and was strongly related to the initial N content of the residue.

Conclusions

Crop residue quality and soil type affected the soil PE and soil C balance but not the fate of crop residue-C after one year. Net soil N mineralization was observed in all crop residues, with large early differences (vetch > pea > wheat), which were maintained on a medium-term basis. Our results emphasize the need to jointly consider C and N dynamics as well as short- and medium-term effects to manage agricultural and environmental services provided by the recycling of crop residues to agricultural soils.
  相似文献   

10.
Summary Experiments on sitka-spruce seedlings grown in acidic peaty gley soils under green-house conditions, where the soils where doped with increasing amounts of Cd, Cu and Pb up to maximum levels of metal added of 16 ppm, 32 ppm and 400 ppm respectively, showed that the levels of Cd and Pb in shoots and roots increased with increasing levels in the soil, whereas levels of copper appeared to be independent. The addition of these three metals to the soils did not influence the uptake of other heavy metals, or of the nutrients potassium or calcium. Increases in the shoot cadmium levels significantly reduced the yields of the plant shoots. However, the plant yields were only affected by the highest level of lead that was added to the soil (400 ppm Pb) and unaffected by all the copper treatments (0–32 ppm Cu in the soil). The lengths of the sitka-spruce roots were reduced when cadmium and lead levels in the soil exceeded certain threshold concentrations (2.5 ppm total Cd, where 0.3 ppm was extractable with 0.5 M acetic acid; and 48 ppm total Pb, where 1.7 ppm was extractable). However, root lengths were not reduced by copper. This was probably related to the fact that copper appears to be relatively unavailable in the type of soil used, as only 1.1. ppm Cu was extractable from a total of 32 ppm Cu added. Root branching was apparently reduced by increases in the soil levels of cadmium, copper and lead. The roots of some control plants had symbiotic mycorrhizal associations (4 out of 19 plants), whereas the roots of all the plants grown in the soils with added heavy metals did not develop these.  相似文献   

11.
Root proliferation into nutrient rich zones is an important mechanism in the exploitation of soil nutrients by plants. No studies have examined atmospheric CO2 effects on cotton (Gossypium hirsutum L.) root distribution as affected by localized phosphorus (P). Cotton plants were grown in a Troup sand (loamy, thermic Grossarenic Kandiudults) using 17.2-l containers placed in open top field chambers (OTC) under ambient (360 mol mol–1) or enriched (720 mol mol–1) atmospheric CO2 concentrations for 40 days. Equivalent amounts of P were added (150 mg P per kg of soil) to 100, 50, 25, 12.5, and 6.25% of the total soil volume; control containers with no added P were also included. Under extremely low P (controls), cotton was unresponsive to CO2 enrichment. In treatments with both fertilized and unfertilized soil volumes, root proliferation was greater in the unfertilized soil under elevated CO2 conditions. Stimulation of root growth occurred in the P-fertilized soil fraction; the pattern of stimulation was similar under both CO2 levels. Under ambient CO2, cotton plant response was positive (shoot mass, and total root mass and length) when soil P was confined to relatively small proportions of the total soil volume (6.25 and 12.5%). However, elevated CO2 grown plants tended to respond to P regardless of its distribution.  相似文献   

12.
Summary Non-mycorrhizal plants grown 5 weeks in a low-phosphate soil with different amounts of soluble P were transplanted to soil also with different levels of phosphate and inoculated with VA mycorrhiza. The intensity of mycorrhizal infection as affected by the interaction of differents levels of phosphate in soil and in the host was examined after a further 8 weeks. In the soil with no added phosphate mycorrhizal infection was not affected by the initial P content of the plants. When 0.8 or 1.5 g K2PO4 was given per kg soil both the external and the internal P negatively influenced the infection. In some conditions a P content that was supraoptimal for infection was not for plant growth. The critical P concentration in plants depends on the age of the host. An interaction between P and N as a factor contributing to phosphate toxicity is discussed.  相似文献   

13.
Summary Mesembryanthemum crystallinum L., an inducible crassulacean acid metabolism (CAM) plant, was grown for approximately 5 weeks following germination in well-watered, non-saline soil in a controlled-environment chamber. During this time, plants were characterized by C3 photosynthetic carbon metabolism. After the initial 5 weeks, CAM was induced by a combination of high soil salinity and reduced soil water content. One group of plants was allowed to engage in CAM by being continuously exposed to normal CO2-containing air (about 350–400 ppm). A second group of plants was deprived of ambient CO2 each night (12 h dark period) until completion of their life cycle, thereby minimizing potential carbon gain via dark CO2 fixation. The capacity to express CAM under conditions of drought and salinity stress markedly improved reproductive success: plants kept in normal CO2-containing air produced about 10 times more seeds than plants kept in CO2-free air during dark periods. Seeds from plants deprived of ambient CO2 overnight had more negative 13C values than seeds from plants kept in normal air.  相似文献   

14.
Goh  K.M.  Pamidi  J. 《Plant and Soil》2003,250(1):1-13
Although considerable progress has been made in relating extractable soil S to plant S availability, most of these studies determined the extractable soil S at the beginning of the experiment to use as an index of soil S status. This bears little or no relationship to the S taken up by plants during the entire growing season. The present study investigates the changes in extractable soil S with time and relates these to changes in plant S uptake. Six soils with different long-term fertiliser histories (0, 21, 42 kg of S as superphosphate ha–1 applied since 1952) and animal camping treatments (camp and non-camp) were used in two pot systems (with and without plants). Carrier-free 35SO4–S was added to the soils, to provide the information on the transformations of recently added S between the different extractable S forms in soils and whether these transformations could predict plant-available S. The soils were pre-conditioned and then transferred to the glasshouse, where one set of pots were planted with perennial ryegrass (Lolium perenne L.) while the other set was left uncropped. Periodic plant harvests and soil samplings at four weekly intervals were conducted over a period of 20 weeks to determine plant S uptake and amounts of extractable soil S and 35S forms using five extractants. Same extractions of soil S and 35S were conducted for the initial soils. Results showed that HI-reducible and total soil S extracted by CaCl2, KH2PO4 and by KCl at 40°C were utilised significantly by plants but not those extracted by NaHCO3 and NaOH extractants. However, after the 8th week, plants continued to take up S even though levels of S extracted from the soil by CaCl2, KH2PO4 and by KCl at 40°C remained low and unchanged. These results suggest that soil S taken up by plants after the 8th week period originated directly from the mineralisation of soil organic S from S pools other than those present in the extractable soil S forms. Similar results were shown by 35S data, thereby confirming the complexity of determining plant S availability based on soil S extraction methods.  相似文献   

15.
Summary Soybean (Glycine max (L) Merr. cv. Bragg) seedlings were grown in nutrient solutions to evaluate the response to manganese nutrition as affected by potassium supply. In solutions containing 275 M manganese, increasing the solution concentration of potassium from 1 mM to 10 mM alleviated symptoms of manganese toxicity, decreased manganese concentrations in the leaves and increased dry matter yields of the plants. The reduction in manganese toxicity was brought about by a reduced rate of root absorption of manganese at high potassium supply levels.Increasing the supply of either potassium or manganese decreased the leaf concentration of magnesium although there were no apparent symptoms of magnesium deficiency in any treatment. The reduced concentration of magnesium in the leaves was due to effects of potassium and manganese on the rate of root absorption of magnesium.Under manganese deficiency conditions, growth was reduced and manganese concentrations in plant parts were very low; there was no effect of potassium supply when manganese was absent from the nutrient solution.  相似文献   

16.
The size of the Photosystem II light harvesting antenna and the absorption cross-sections of PS I (PSI) and PS II (PSII) were examined in relation to photosynthetic performance fluorescence. Wild-type (WT) rye (Secale cereale) and barley (Hordeurn vulgare) as well as the barley chlorophyllb-less chlorina F2 mutant were grown under control and intermittent light (IML) conditions. (PSII) in control barley F2 was similar to IML grown WT rye and barley, which, in turn was 2.5 to 3.5 times smaller than for control WT plants. In contrast, PSI was similar for all control plants. This was 2.5 to 4 times larger than for IML-grown WT plants. IML-grown barley mutant plants had the smallest absorption cross-sections. Photosynthetic light response curves revealed that the barley chlorina F2-mutant had rates of oxygen evolution on a per leaf area basis that were only slightly lower than control WT rye and barley while IML-grown plants had strongly reduced photosynthetic performance. Convexity () for control barley chlorina F2-mutants was equal to the WT controls (0.6–0.7), while all IML-grown plants had a of 0. This indicates that, in contrast to control barley mutants, IML-plants were limited by PS II turn-over rates at all irradiances. However, on a per leaf Chl-basis the IML-grown plants exhibited the highest photosynthetic rates. Thus, the comparatively poor photosynthetic rates for IML-grown plants on a per leaf area basis were not due to less efficient photosynthetic reaction centers, but may rather be due to an increased limitation from PS II turn-over and a reduction in the number of reaction centers per leaf area.  相似文献   

17.
Summary Phosphate sorption isotherms were developed for five Philippine wetland rice soils using the conventional technique and a modified one. In the conventional method, P requirements of soils varied between 280 and 810 g P/g soil. In the modified method, they varied from 160 to 540 g P/g soil at 0.2 ppm P in solution. Soils with high P-sorption capacities had vermiculite and halloysite as the dominant clay minerals. Soil reduction by flooding decreased P-sorption by 28–70 percent at 0.2 ppm P in solution. The decrease in P-sorption due to soil reduction was greatest in a crystalline soil with vermiculite and halloysite as the dominant clay minerals and least in a soil with dominant X-ray amorphous silicates in the clay fraction.Desorption of freshly adsorbed P under reduction was greater in HCO 3 solution than in CaCl2 and it increased with level of applied P. Desorption patterns of freshly adsorbed P were similar to adsorption patterns but values of P in solution were lower at desorption. Soils varied with respect to desorption of freshly sorbed P. Desorption studies indicate that soils vary in intensity factor with respect to P and thus influence P availability to plants. Use of P-sorption and P-desorption data obtained under reduced soil condition was proposed for detecting P needs of submerged rice soils.Results of a pot study with IR36 at different levels of solution P (reduced) in one soil indicated a high degree of correlation between adjusted P levels and the measured growth parameters. About 0.12 ppm P in the soil solution or 0.46 ppm P desorbed in HCO 3 solution (equivalent to 100 mg P/kg soil) was adequate for near-maximum plant height, tiller production, total dry matter yield, plant P content, and total P uptake.  相似文献   

18.
Zaroug  M. G.  Munns  D. N. 《Plant and Soil》1979,53(3):319-328
Summary In order to explore interrelations between S nutrition, soluble sugars, leaf area, nodulation and N2 fixation, greenhouse experiments were done with several levels of S added to perlite-sand cultures or to a moderately S-deficient soil. Sulfur had indirect effects on nodulation and N2 fixation, possibly by improving sugars supply and N metabolism.In perlite-sand culture, leaf area increased with concentrations of supplied S up to 50 and 200 M for symbiotic and N-treated plants respectively, then decreased at higher concentrations. Plant yield and total sugars content (mg per plant) for the N-treated plants behaved similar to leaf area in response to added S but in the symbiotic plants maximum values were obtained at 100 M S. In soil, Mo had no effect on growth but interacted significantly with S in affecting total sugars content. High levels of S depressed sugars content at low Mo but raised it at high Mo.Sulfur increased the N content of soil-grown plants. It increased the N content of plants grown in perlite-sand culture except at very high levels of S. There was little effect on concentration of N in the shoots. Nitrogen content correlated significantly with leaf area and sugar content, and highly significantly with S concentration in the shoots.  相似文献   

19.
Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during the high N leaching period for vetch cover crop treatment and for the control without the cover crops. The correlation, however, failed for other cover crops largely because of variable effectiveness of the cover crops in reducing NO3 leaching during the 5 years of this study. Further research is needed to determine if relay cover crops planted into standing summer crops is a more appropriate approach than fall seeding in this region to gain sufficient growth of the cover crop by fall. Testing with other main crops that have earlier harvest dates than corn is also needed to further validate the effectiveness of the bicultures to increase soil N availability while protecting the water quality.  相似文献   

20.
The mode of inheritance of chloroplast and mitochondrial DNA (mtDNA) in rye × triticale intergeneric hybrids has been studied with the use of specific PCR markers for loci 18S/5S and 3rbcL in organelle DNA. In rye × triticale BC1, mtDNA copies of two types, paternal and maternal, have been found; in BC2 plants, only paternal mtDNA and chloroplast DNA (cpDNA) have been detected. Mechanisms determining the inheritance and/or differential amplification of organelles of a specific type are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号