首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muslin AJ  Xing H 《Cellular signalling》2000,12(11-12):703-709
14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic, and nutrient-sensing pathways. 14-3-3 proteins act by binding to partner proteins, and this binding often leads to the altered subcellular localization of the partner. 14-3-3 proteins promote the cytoplasmic localization of many binding partners, including the pro-apoptotic protein BAD and the cell cycle regulatory phosphatase Cdc25C, but they can also promote the nuclear localization of other partners, such as the catalytic subunit of telomerase (TERT). In some cases, 14-3-3 binding has no effect on the subcellular localization of a partner. 14-3-3 may affect the localization of a protein by interfering with the function of a nearby targeting sequence, such as a nuclear localization sequence (NLS) or a nuclear export sequence (NES), on the binding partner.  相似文献   

2.
3.
BAD is a Bcl-2 homology domain 3 (BH3)-only proapoptotic member of the Bcl-2 protein family that is regulated by phosphorylation in response to survival factors. Binding of BAD to mitochondria is thought to be exclusively mediated by its BH3 domain. We show here that BAD binds to lipids with high affinities, predominantly to negatively charged phospholipids, such as phosphatidylserine, phosphatidic acid, and cardiolipin, as well as to cholesterol-rich liposomes. Two lipid binding domains (LBD1 and LBD2) with different binding preferences were identified, both located in the C-terminal part of the BAD protein. BAD facilitates membrane translocation of Bcl-XL in a process that requires LBD2. Integrity of LBD1 and LBD2 is also required for proapoptotic activity in vivo. Phosphorylation of BAD does not affect membrane binding but renders BAD susceptible to membrane extraction by 14-3-3 proteins. BAD can be removed efficiently by 14-3-3zeta, -eta, -tau and lesxs efficiently by other 14-3-3 isoforms. The assembled BAD.14-3-3 complex exhibited high affinity for cholesterol-rich liposomes but low affinity for mitochondrial membranes. We conclude that BAD is a membrane-associated protein that has the hallmarks of a receptor rather than a ligand. Lipid binding is essential for the proapoptotic function of BAD in vivo. The data support a model in which BAD shuttles in a phosphorylation-dependent manner between mitochondria and other membranes and where 14-3-3 is a key regulator of this relocation. The dynamic interaction of BAD with membranes is tied to activation and membrane translocation of Bcl-XL.  相似文献   

4.
5.
Persistent activation of protein kinase C (PKC) is required for the expression of synaptic plasticity in the brain. There are several mechanisms proposed that can lead to the prolonged activation of PKC. These include long lasting production of lipid activators (diacylglycerol and fatty acid) through mitogen-activated protein (MAP) kinase pathway, and a modification of PKC by reactive oxygen species. In nerve growth factor (NGF)-differentiated PC12 cells, we found that constitutive and autonomous Ca2+-independent PKC activity is associated with 14-3-3 zeta. Because PKC and 14-3-3 zeta are both involved in synaptic plasticity and learning and memory, we examined whether PKC interacts with 14-3-3 zeta in the brain and whether the PKC/14-3-3 zeta complex has autonomous activity. Here we show that three subclasses of PKC, Ca2+-dependent classical PKC, Ca2+-independent novel PKC, and Ca2+-independent and diacylglycerol-insensitive atypical PKC, all interact with 14-3-3 zeta in the rodent brain. The pool size of 14-3-3 zeta bound form of PKC is small (1-4% of each PKC isoform), but they show constitutive and autonomous activity. Our study indicates that the binding of PKC with 14-3-3 zeta is at least in part independent of phosphorylation of PKC and that the C1 domain of PKC is involved in the binding. As both molecules are enriched in synaptic locus, the constitutive PKC activity and its interaction with 14-3-3 zeta could be a mechanism for the persistent PKC activation in the brain.  相似文献   

6.
Apoptosis signal-regulating kinase 1 (ASK1) is a critical mediator of apoptotic signaling pathways initiated by a variety of death stimuli. Its activity is tightly controlled by various mechanisms such as covalent modification and protein-protein interaction. One of the proteins that control ASK1 function is 14-3-3zeta, a member of the 14-3-3 protein family. Here, we report that ASK1 is capable of binding to other isoforms of 14-3-3, suggesting that binding ASK1 is a general property of the 14-3-3 family. In support of this notion, mutational analysis revealed that the ASK1/14-3-3 interaction was mediated by the conserved amphipathic groove of 14-3-3 with some residue selectivity. Functionally, expression of various isoforms of 14-3-3 suppressed ASK1-induced apoptosis. To understand how 14-3-3 controls the ASK1 activity, we examined intracellular localization of ASK1 upon 14-3-3 co-expression. We found that 14-3-3 co-expression is correlated with the translocation of ASK1 from the cytoplasm to a perinuclear localization, likely the ER compartment. Consistent with this notion, ASK1(S967A), a 14-3-3 binding defective mutant of ASK, showed no change in intracellular distribution upon 14-3-3 co-expression. These data support a model that 14-3-3 proteins regulate the proapoptotic function of ASK1 in part by controlling its subcellular distribution.  相似文献   

7.
14-3-3 proteins are ubiquitously expressed proteins which serve as central adaptors in different signal transduction cascades. In this study, yeast two-hybrid screening of a rat brain cDNA library identified a novel gene product termed zetin 1/rBSPRY that interacts with 14-3-3 zeta. The zetin 1/rBSPRY gene is ubiquitously expressed in a variety of rat tissues, with highest expression being found in testis. In adult brain, high levels of zetin 1/rBSPRY mRNA were observed in the hippocampus, cerebral cortex, and piriform cortex. Biochemical studies confirmed zetin 1/rBSPRY to interact with 14-3-3 zeta. Transient co-transfection in COS 7 cells caused a partial redistribution of zetin 1/rBSPRY into 14-3-3 zeta enriched submembranous foci at leading edges. Our results suggest a role for zetin 1/rBSPRY-14-3-3 interactions at specialized submembrane domains.  相似文献   

8.
Gao Y  Jiang M  Yang T  Ni J  Chen J 《Cell research》2006,16(6):539-547
hPFTAIRE1 (PFTK1), a Cdc2-related protein kinase, is highly expressed in human brain. It exhibits cytoplasmic distribution in Hela cells, although it contains two nuclear localization signals (NLSs) in its N-terminus. To search for its substrates and regulatory components, we screened a two-hybrid library by using the full-length hPFTAIRE1 as a bait. Four 14-3-3 isoforms (β,ε,η,τ) were identified interacting with the hPFTAIRE1. We found a putative 14-3-3 binding consensus motif(RHSSPSS) in the hPFTAIRE 1, which overlapped with its second NLS. Deletion of the RHSSPSS motif or substitution of Ser^119 gwithAla in the conserved binding motif abolished the specific interaction between the hPFTAIRE 1 and the 14-3 -3 proteins. The mutant S 120A hPFTAIRE1 also showed a weak interaction to the 14-3-3 proteins. The results suggested that the Ser^119 is crucial for the interaction between hPFTAIREI and the 14-3-3 proteins. All the hPFTAIRE1 mutants distributed in cytoplasm of Hela cells and human neuroblastoma cells (SH-SY5Y) when fused to the C-terminus of a green fluorescent protein (GFP), indicating that binding with the 14-3-3 proteins does not contribute to the subcellular localization of the hPFTAIRE1, although the binding may be involved in its signaling regulation.  相似文献   

9.
14-3-3 proteins function as a dimer and have been identified to involve in diverse signaling pathways. Here we reported the identification of a novel splicing variant of human 14-3-3 epsilon (14-3-3 epsilon sv), which is derived from a novel exon 1′ insertion. The insertion contains a stop codon and leads to a truncated splicing variant of 14-3-3 epsilon. The splicing variant is translated from the exon 2 and results in the deletion of an N-terminal α-helix which is crucial for the dimerization. Therefore, the 14-3-3 epsilon sv could not form a dimer with 14-3-3 zeta. However, after UV irradiation 14-3-3 epsilon sv could also support cell survival, suggesting monomer of 14-3-3 epsilon is sufficient to protect cell from apoptosis.  相似文献   

10.
The 14-3-3 protein family associates with many proteins involved in intracellular signalling. In many cases, there is a distinct preference for a particular isoform(s) of 14-3-3. A specific repertoire of 14-3-3 dimer formation may therefore influence which of the interacting proteins could be brought together. We have analysed the pattern of dimer formation for two of the most abundant isoforms of 14-3-3, epsilon ( epsilon ) and gamma (gamma), following their stable expression. This revealed a distinct preference for particular dimer combinations that is largely independent of cellular conditions. gamma 14-3-3 occurred as homodimers and also formed heterodimers, mainly with epsilon 14-3-3 (In PC12 and Cos cells). The epsilon isoform formed heterodimers with 14-3-3 beta, gamma, zeta, and eta, but no homodimers were detected. The two 14-3-3 homologues, BMH1 and BMH2 from Saccharomyces cerevisiae, were mainly heterodimers.  相似文献   

11.
Tyrosine hydroxylase (TH) has been reported to require binding of 14-3-3 proteins for optimal activation by phosphorylation. We examined the effects of phosphorylation at Ser19, Ser31 and Ser40 of bovine TH and human TH isoforms on their binding to the 14-3-3 proteins BMH1/BMH2, as well as 14-3-3 zeta and a mixture of sheep brain 14-3-3 proteins. Phosphorylation of Ser31 did not result in 14-3-3 binding, however, phosphorylation of TH on Ser40 increased its affinity towards the yeast 14-3-3 isoforms BMH1/BMH2 and sheep brain 14-3-3, but not for 14-3-3 zeta. On phosphorylation of both Ser19 and Ser40, binding to the 14-3-3 zeta isoform also occurred, and the binding affinity to BMH1 and sheep brain 14-3-3 increased. Both phosphoserine-specific antibodies directed against the 10 amino acids surrounding Ser19 or Ser40 of TH, and the phosphorylated peptides themselves, inhibited the association between phosphorylated TH and 14-3-3 proteins. This was also found when heparin was added, or after proteolytic removal of the N-terminal 37 amino acids of Ser40-phosphorylated TH. Binding of BMH1 to phosphorylated TH decreased the rate of dephosphorylation by protein phosphatase 2A, but no significant change in enzymatic activity was observed in the presence of BMH1. These findings further support a role for 14-3-3 proteins in the regulation of catecholamine biosynthesis and demonstrate isoform specificity for both TH and 14-3-3 proteins.  相似文献   

12.
Tumor associated monocytes/macrophages (MO/MA) are known contributors to the immune-inflammatory cell environment of advanced epithelial ovarian carcinoma (EOC). The secreted proteome of ascitic MO/MA was examined as an aid to the discovery of novel proteins in EOC that are likely to have biological relevance in the inflammatory pathways of EOC. Ascitic fluid MO/MA were isolated from EOC patients, grown short-term in serum-free media. MO/MA supernatants were analyzed for secreted proteins by HPLC fractionation followed by LC-tandem mass spectrometric analysis. The 14-3-3 zeta adaptor protein was identified in supernatants of three of three EOC patients but not in supernatants of buffy coat monocytes isolated from normal donors or the established monocyte cell line THP1. Moreover, 14-3-3 zeta was identified in ascitic fluids in eight of eight chemotherapy-naïve patients by both immunoblot and mass spectrometric analysis. Immunofluorescent staining for 14-3-3 zeta demonstrated expression of the protein on ascitic and peritumoral macrophages in EOC patients. 14-3-3 zeta was also expressed on endothelial cells in the peritumoral stroma and partially on tumor cells. Uptake of 14-3-3 zeta was observed in EOC cell lines co-cultured with the recombinant protein expressed in E. coli. It is demonstrated for the first time that the important adaptor protein 14-3-3 zeta is common to the secretome of ascitic MO/MA and the ascites of advanced EOC patients.  相似文献   

13.
BAD, a member of the Bcl-2 protein family, promotes mitochondria-dependent apoptosis. Here, we report that BAD dissociates from 14-3-3zeta at each G2/M phase of proliferating lymphoid cells. The cell cycle-dependent dissociation of BAD was associated with phosphorylation at Ser-128, whereas mutant S128A-BAD, in which Ser-128 was converted to alanine, remained associated with 14-3-3zeta throughout the cell cycle. Although the cell cycle-dependent dissociation of BAD per se did not induce apoptosis, growth factor deprivation induced prompt apoptosis at the G2/M phase but not at the G1 phase. In cells expressing S128A-BAD, growth factor deprivation-induced apoptosis was markedly delayed and was accompanied by a delayed dephosphorylation of growth factor-dependent regulatory serine residues. These results indicate that BAD induces apoptosis upon detecting the coincidence of G2/M phase and growth factor deprivation.  相似文献   

14.
15.
16.
Transglutaminase 2 (TG2) is a multifunctional ubiquitous enzyme which is present in various cellular compartments and is subject to phosphorylation by PKA. To better understand the relevance of PKA induced phosphorylation of TG2, we performed pull-down assays using phosphorylated biotinylated-TG2(209-223) peptides spanning PKA induced phosphorylation sites as a bait. Subsequent analysis of pull-down protein by SDS-PAGE and LC/MS identified 14-3-3epsilon as the binding partner for TG2 which was further confirmed by immunoblotting with 14-3-3 specific antiserum. In contrast, non-phosphorylated and/or phosphorylation site substituted peptides fail to pull-down 14-3-3. Furthermore, we demonstrate that 14-3-3 co-immunoprecipitated with TG2 antiserum after activation of PKA from mouse embryonic fibroblasts (MEF)(TG2+/+) cells but not from MEF(TG2-/-) cells. In summary, we provide convincing evidence that phosphorylation of TG2 by PKA creates binding site(s) for 14-3-3 both in vitro and in vivo.  相似文献   

17.
PRAS40是近几年新发现的Akt作用底物,14-3-3结合蛋白。为确定PRAS40与14-3-3蛋白7种亚基间相互作用关系,利用gateway方法构建用于酵母双杂交系统的诱饵质粒pEG-PRAS40及转录激活质粒pJG-PRAS40,将PRAS40和14-3-3各亚型质粒分别作为诱饵蛋白质粒及转录激活质粒共转化酵母细胞EGY48,通过氨基酸营养缺陷生长实验及β-半乳糖苷酶显色反应分析两种蛋白相互作用程度。酶切鉴定证实成功地构建了pEG-PRAS40和pJG-PRAS40质粒,酵母双杂交实验结果显示PRAS40可以和14-3-3亚型tau,beta,zeta及epsilon相结合,epsilon较强,beta和zeta次之,tau较弱。此结果将为深入研究PRAS40与14-3-3蛋白生物学功能及发现药物靶标奠定基础。  相似文献   

18.
19.
Using a set of specific kinase inhibitors we demonstrate that Raf kinases phosphorylate BAD at serines 112, 136 and 155 in vivo and in vitro. Exploring unexpected lipid binding properties of BAD we identified two lipid-binding domains located in its C-terminal part. Furthermore, we believe to have uncovered how phosphorylation-driven interaction with 14-3-3 regulates intracellular membrane localization of BAD. Observed activity of lipid-bound BAD as a membrane receptor for Bcl-XL opens new horizons in apoptosis research.  相似文献   

20.
The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH2-terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号