首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K Matsushita  H R Kaback 《Biochemistry》1986,25(9):2321-2327
The respiratory chain in the cytochrome d deficient mutant Escherichia coli GR19N is a relatively simple, linear system consisting of primary dehydrogenases, ubiquinone 8, cytochrome b-556, and cytochrome o oxidase. By use of right-side-out and inside-out membrane vesicles from this strain, various oxidase activities and the generation of the H+ electrochemical gradient were studied. Oxidation of ubiquinol 1 or N,N,-N',N'-tetramethyl-p-phenylenediamine, which donate electrons directly to the terminal oxidase, generates a H+ electrochemical gradient comparable to that observed during D-lactate oxidation. In contrast, D-lactate/ubiquinone 1 or D-lactate/ferricyanide oxidoreductase activity does not appear to generate a membrane potential, suggesting that electron flow from D-lactate dehydrogenase to ubiquinone is not electrogenic. Moreover, proteoliposomes reconstituted with purified D-lactate dehydrogenase, ubiquinone 8, and purified cytochrome o catalyze D-lactate and ubiquinol 1 oxidation and generate a H+ electrochemical gradient similar to that observed in membrane vesicles. Strikingly, in inside-out vesicles, NADH oxidation generates a H+ electrochemical gradient that is very significantly greater than that produced by either D-lactate or ubiquinol 1; furthermore, NADH/ubiquinone 1 and NADH/ferricyanide oxidoreductase activities are electrogenic. It is suggested that the only component between D-lactate dehydrogenase or ubiquinol and oxygen in GR19N membranes that is directly involved in the generation of the H+ electrochemical gradient is cytochrome o, which functions as a "half-loop" (i.e., the oxidase catalyzes the scalar release of 2 H+ from ubiquinol on the outer surface of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The energy coupled NADH-ubiquinone (Q) oxidoreductase segment of the respiratory chain of Escherichia coli GR19N has been studied by EPR spectroscopy. Previously Matsushita et al. [(1987) Biochemistry 26, 7732-7737] have demonstrated the presence of two distinct NADH-Q oxidoreductases in E. coli membrane particles and designated them NADH dh I and NADH dh II. Although both enzymes oxidize NADH, only NADH dh I is coupled to the formation of the H+ electrochemical gradient. In addition to NADH, NADH dh I oxidizes nicotinamide hypoxanthine dinucleotide (deamino-NADH), while NADH dh II does not. In membrane particles we have detected EPR signals arising from four low-potential iron-sulfur clusters, one binuclear, one tetranuclear, and two fast spin relaxing g perpendicular = 1.94 type clusters (whose cluster structure has not yet been assigned). The binuclear cluster, temporarily designated [N-1]E, shows an EPR spectrum with gx,y,z = 1.92, 1.935, 2.03 and the Em7.4 value of -220 mV (n = 1). The tetranuclear cluster, [N-2]E, elicits a spectrum with gx,y,z = 1.90, 1.91, 2.05 and an Em7.4 of -240 mV (n = 1). These two clusters have been shown to be part of the NADH dh I complex by stability and inhibitor studies. When stored at 4 degrees C, both clusters are extremely labile as is the deamino-NADH-Q oxidoreductase activity. Addition of deamino-NADH in the presence of piericidin A results in nearly full reduction of [N-2]E within 17 s. In membrane particles pretreated with piericidin A, the cluster [N-1]E is only partly reducible by deamino-NADH and shows an altered line shape.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The NADH:ubiquinone oxidoreductase (complex I) couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Recently, it was demonstrated that complex I from Klebsiella pneumoniae translocates sodium ions instead of protons. Experimental evidence suggested that complex I from the close relative Escherichia coli works as a primary sodium pump as well. However, data obtained with whole cells showed the presence of an NADH-induced electrochemical proton gradient. In addition, Fourier transform IR spectroscopy demonstrated that the redox reaction of the E. coli complex I is coupled to a protonation of amino acids. To resolve this contradiction we measured the properties of isolated E. coli complex I reconstituted in phospholipids. We found that the NADH:ubiquinone oxidoreductase activity did not depend on the sodium concentration. The redox reaction of the complex in proteoliposomes caused a membrane potential due to an electrochemical proton gradient as measured with fluorescent probes. The signals were sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), the inhibitors piericidin A, dicyclohexylcarbodi-imide (DCCD), and amiloride derivatives, but were insensitive to the sodium ionophore ETH-157. Furthermore, monensin acting as a Na(+)/H(+) exchanger prevented the generation of a proton gradient. Thus, our data demonstrated that the E. coli complex I is a primary electrogenic proton pump. However, the magnitude of the pH gradient depended on the sodium concentration. The capability of complex I for secondary Na(+)/H(+) antiport is discussed.  相似文献   

4.
Y J Kim  K B Song    S K Rhee 《Journal of bacteriology》1995,177(17):5176-5178
Membrane vesicles prepared from Zymomonas mobilis oxidized NADH exclusively, whereas deamino-NADH was little oxidized. In addition, the respiratory chain-linked NADH oxidase system exhibited only a single apparent Km value of approximately 66 microM for NADH. The NADH oxidase was highly sensitive to the respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide. However, the NADH:quinone oxidoreductase was not sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide and was highly resistant to another respiratory chain inhibitor, rotenone. Electron transfer from NADH to oxygen generated a proton electrochemical gradient (inside positive) in inside-out membrane vesicles. In contrast, electron transfer from NADH to ubiquinone-1 generated no electrochemical gradient. These findings indicate that Z. mobilis possesses only NADH:quinone oxidoreductase lacking the energy coupling site.  相似文献   

5.
The nature of the Escherichia coli membrane-bound NADH dehydrogenases and their role in the generation of the proton motive force has been controversial. One E. coli NADH:ubiquinone oxidoreductase has previously been purified to homogeneity, and its corresponding gene (ndh) has been isolated. However, two biochemically distinct E. coli NADH:ubiquinone oxidoreductase activities have been identified by others (K. Matsushita, T. Ohnishi, and H. R. Kaback, Biochemistry 26:7732-7737, 1987). An insertional mutation in the ndh gene has been introduced into the E. coli chromosome, and the resulting strain maintains membrane-bound NADH dehydrogenase activity, demonstrating that a second genetically distinct NADH dehydrogenase must be present. By standard genetic mapping techniques, the map position of a second locus (nuo) involved in the oxidation of NADH has been determined. The enzyme encoded by this locus probably translocates protons across the inner membrane, contributing to the proton motive force.  相似文献   

6.
Enthalpy changes in the formation of a proton electrochemical potential (Delta mu H+) and its components, DeltapH (proton gradient) and Deltapsi (electrical potential), across two types of E. coli membrane vesicles were investigated. Flow dialysis experiments showed that in 0.1 M KPi, pH 6.6, E. coli GR19N membrane vesicles coupled with d-lactate exhibited 57 mV for DeltapH, 70 mV for Deltapsi, and 127 mV for Delta mu H+. Microcalorimetric measurements revealed that the corresponding enthalpy changes (DeltaH(pH), DeltaH(psi) and DeltaHm) were 3.5, 3.3 and 6.9 kcal/mole, respectively. Moreover, in E. coli ML 308-225 membrane vesicles across which 120mV of Delta mu H+ was generated, values of DeltaH(pH) and DeltaH(psi) were determined as 7.0 and 6.6 kcal/mole, as compared with the previously reported 14.1 kcal/mole for DeltaH(m). Comparisons of these enthalpy data revealed that component enthalpies (DeltaH(pH) and DeltaH(psi)) essentially added up to the total enthalpy (DeltaHm), providing a self-consistent test for the obtained data. In both membranes, the ratio ofDeltaH(psi) to Deltapsi was comparable to that of DeltaH(pH) to DeltapH in the formation of Delta mu H+. These observations indicated that the process of the movement of H+ across the membranes was the major contributor to the observed energetic changes. Moreover, the enthalpy change in the formation of Delta mu H+ was compared with the membranes derived from GR19N and ML 308-225 and coupled with NADH and d-lactate. The results were discussed in terms of trans-membrane phenomena.  相似文献   

7.

Background

The membrane arm of Complex I (NADH:ubiquinone oxidoreductase) contains three large, and closely related subunits, which are called L, M, and N in E. coli. These subunits are homologous to components of multi-subunit Na+/H+ antiporters, and so are implicated in proton translocation.

Methodology/Principal Findings

Nineteen site-specific mutations were constructed at two corresponding positions in each of the three subunits. Two positions were selected in each subunit: L_K169, M_K173, N_K158 and L_Q236, M_H241, N_H224. Membrane vesicles were prepared from all of the resulting mutant strains, and were assayed for deamino-NADH oxidase activity, proton translocation, ferricyanide reductase activity, and sensitivity to capsaicin. Corresponding mutations in the three subunits were found to have very similar effects on all activities measured. In addition, the effect of adding exogenous decylubiquinone on these activities was tested. 50 µM decylubiquinone stimulated both deamino-NADH oxidase activity and proton translocation by wild type membrane vesicles, but was inhibitory towards the same activities by membrane vesicles bearing the lysine substitution at the L236/M241/N224 positions.

Conclusions/Significance

The results show a close correlation with reduced activity among the corresponding mutations, and provide evidence that the L, M, and N subunits have a common role in Complex I.  相似文献   

8.
Following on from our previous discovery of Na+ pumping by the NADH:ubiquinone oxidoreductase (complex I) of Klebsiella pneumoniae, we show here that complex I from Escherichia coli is a Na+ pump as well. Our study object was the Escherichia coli mutant EP432, which lacks the Na+/H+ antiporter genes nhaA and nhaB and is therefore unable to grow on LB medium at elevated Na+ concentrations. During growth on mineral medium, the Na+ tolerance of E. coli EP432 was influenced by the organic substrate. NaCl up to 450 mM did not affect growth on glycerol and fumarate, but growth on glucose was inhibited. Correlated to the Na+ tolerance was an increased synthesis of complex I in the glycerol/fumarate medium. Inverted membrane vesicles catalysed respiratory Na+ uptake with NADH as electron donor. The sodium ion transport activity of vesicles from glycerol/fumarate-grown cells was 40 nmol mg-1 min-1 and was resistant to the uncoupler carbonyl-cyanide m-chlorophenylhydrazone (CCCP), but was inhibited by the complex I-specific inhibitor rotenone. With an E. coli mutant deficient in complex I, the Na+ transport activity was low (1-3 nmol mg-1 min-1), and rotenone was without effect.  相似文献   

9.
The yeast Candida parapsilosis possesses two routes of electron transfer from exogenous NAD(P)H to oxygen. Electrons are transferred either to the classical cytochrome pathway at the level of ubiquinone through an NAD(P)H dehydrogenase, or to an alternative pathway at the level of cytochrome c through another NAD(P)H dehydrogenase which is insensitive to antimycin A. Analyses of mitoplasts obtained by digitonin/osmotic shock treatment of mitochondria purified on a sucrose gradient indicated that the NADH and NADPH dehydrogenases serving the alternative route were located on the mitochondrial inner membrane. The dehydrogenases could be differentiated by their pH optima and their sensitivity to amytal, butanedione and mersalyl. No transhydrogenase activity occurred between the dehydrogenases, although NADH oxidation was inhibited by NADP+ and butanedione. Studies of the effect of NADP+ on NADH oxidation showed that the NADH:ubiquinone oxidoreductase had Michaelis-Menten kinetics and was inhibited by NADP+, whereas the alternative NADH dehydrogenase had allosteric properties (NADH is a negative effector and is displaced from its regulatory site by NAD+ or NADP+).  相似文献   

10.
The addition of ubiquinone-1 (UQ-1) induced Ca2+-independent oxidation of deamino-NADH and NADH by intact potato (Solanum tuberosum L. cv Bintje) tuber mitochondria. The induced oxidation was coupled to the generation of a membrane potential. Measurements of NAD+-malate dehydrogenase activity indicated that the permeability of the inner mitochondrial membrane to NADH and deamino-NADH was not altered by the addition of UQ-1. We conclude that UQ-1-induced external deamino-NADH oxidation is due to a change in specificity of the external rotenone-insensitive NADH dehydrogenase. The addition of UQ-1 also induced rotenone-insensitive oxidation of deamino-NADH by inside-out submitochondrial particles, but whether this was due to a change in the specificity of the internal rotenone-insensitive NAD(P)H dehydrogenase or to a bypass in complex I could not be determined.  相似文献   

11.
The NADH:ubiquinone reductase (NDH-2) of Escherichia coli was expressed as a His-tagged protein, extracted from the membrane fraction using detergent and purified by chromatography. The His-tagged NDH-2 was highly active and catalyzed NADH oxidation by ubiquinone-1 at rates over two orders of magnitude higher than previously reported. The purified, His-tagged NDH-2, like native NDH-2, did not oxidize deamino-NADH. Steady-state kinetics were used to analyze the enzyme's activity in the presence of different electron acceptors. High V(max) and low K(m) values were only found for hydrophobic ubiquinone analogues, particularly ubiquinone-2. These findings strongly support the notion that NDH-2 is a membrane bound enzyme, despite the absence of predicted transmembrane segments in its primary structure. The latter observation is in agreement with possible evolutionary relation between NDH-2 and water-soluble enzymes such as dihydrolipoamide dehydrogenase. There is currently no clear indication of how NDH-2 binds to biological membranes.  相似文献   

12.
Maki Hayashi  Tsutomu Unemoto   《BBA》1984,767(3):470-478
The Na+-dependent respiratory chain NADH: quinone oxidoreductase of the marine bacterium, Vibrio alginolyticus, was extracted from membrane by a detergent, Liponox DCH, and was purified by chromatography on QAE-Sephadex and Bio-Gel HTP. The activity of NADH oxidation was separated into two fractions. The one fraction could react with several artificial electron acceptors including Q-1, but could not reduce ubiquinone and menaquinone such as Q-5 and menaquinone-4, which was called NADH dehydrogenase. The other fraction could reduce Q-5 and menaquinone-4 in addition to the NADH dehydrogenase activity, which was called quinone reductase. The purified NADH dehydrogenase consumed NADH in excess of the amount of Q-1 and the reduced Q-1 (quinol) was not produced at all due to an oxidation-reduction cycle of semiquinone radicals. The quinone reductase, however, consumed NADH with the quantitative formation of quinol on account of a dismutation reaction of semiquinone radicals. Identical to the membrane-bound NADH: quinone oxidoreductase, the quinone reductase specifically required Na+ for the activity and was inhibited by 2-heptyl-4-hydroxyquinoline N-oxide. The electron transfer in the quinone reductase was formulated in a form of quinone cycle and the dismutation reaction of semiquinone radicals was assigned to be coupled to the Na+ pump in the respiratory chain of this organism.  相似文献   

13.
Scheide D  Huber R  Friedrich T 《FEBS letters》2002,512(1-3):80-84
The proton-pumping NADH:ubiquinone oxidoreductase, also called complex I, is the first energy-transducing complex of many respiratory chains. Homologues of complex I are present in the three domains of life. Here, we report the properties of complex I in membranes of the hyperthermophilic bacterium Aquifex aeolicus. The complex reacted with NADH but not with NADPH and F(420)H(2) as electron donors. Short-chain analogues of ubiquinone like decyl-ubiquinone and ubiquinone-2 were suitable electron acceptors. The affinities towards NADH and ubiquinone-2 were comparable to the ones obtained with the Escherichia coli complex I. The reaction was inhibited by piericidin A at the same concentration as in E. coli. The complex showed an unusual pH optimum at pH 9 and a maximal rate at 80 degrees C. We found no evidence for the presence of an alternative, single subunit NADH dehydrogenase in A. aeolicus membranes. The NADH:ferricyanide reductase activity of detergent extracts of A. aeolicus membranes sedimented as a protein with a molecular mass of approximately 550 kDa. From the data we concluded that A. aeolicus contains a NADH:ubiquinone oxidoreductase resembling complex I of mesophilic bacteria.  相似文献   

14.
D-Glucose dehydrogenase is a pyrroloquinoline quinone-dependent primary dehydrogenase linked to the respiratory chain of a wide variety of bacteria. The enzyme exists in the membranes of Escherichia coli, mainly as an apoenzyme which can be activated by the addition of pyrroloquinoline quinone and magnesium. Thus, membrane vesicles of E. coli can oxidize D-glucose to gluconate and generate an electrochemical proton gradient in the presence of pyrroloquinoline quinone. The D-glucose oxidase-respiratory chain was reconstituted into proteoliposomes, which consisted of two proteins purified from E. coli membranes, D-glucose dehydrogenase and cytochrome o oxidase, and E. coli phospholipids containing ubiquinone 8. The electron transfer rate during D-glucose oxidation and the membrane potential generation in the reconstituted proteoliposomes were almost the same as those observed in the membrane vesicles when pyrroloquinoline quinone was added. The results demonstrate that the quinoprotein, D-glucose dehydrogenase, can reduce ubiquinone 8 directly within phospholipid bilayer and that the D-glucose oxidase system of E. coli has a relatively simple respiratory chain consisting of primary dehydrogenase, ubiquinone 8, and a terminal oxidase.  相似文献   

15.
During aerobic growth of Escherichia coli, nicotinamide adenine dinucleotide (NADH) can initiate electron transport at either of two sites: Complex I (NDH-1 or NADH: ubiquinone oxidoreductase) or a single-subunit NADH dehydrogenase (NDH-2). We report evidence for the specific coupling of malate dehydrogenase to Complex I. Membrane vesicles prepared from wild type cultures retain malate dehydrogenase and are capable of proton translocation driven by the addition of malate+NAD. This activity was inhibited by capsaicin, an inhibitor specific to Complex I, and it proceeded with deamino-NAD, a substrate utilized by Complex I, but not by NDH-2. The concentration of free NADH produced by membrane vesicles supplemented with malate+NAD was estimated to be 1 μM, while the rate of proton translocation due to Complex I was consistent with a some what higher concentration, suggesting a direct transfer mechanism. This interpretation was supported by competition assays in which inactive mutant forms of malate dehydrogenase were able to inhibit Complex I activity. These two lines of evidence indicate that the direct transfer of NADH from malate dehydrogenase to Complex I can occur in the E. coli system.  相似文献   

16.
Esterházy D  King MS  Yakovlev G  Hirst J 《Biochemistry》2008,47(12):3964-3971
The generation of reactive oxygen species by mitochondrial complex I (NADH:ubiquinone oxidoreductase) is considered a significant cause of cellular oxidative stress, linked to neuromuscular diseases and aging. Defining its mechanism is important for the formulation of causative connections between complex I defects and pathological effects. Oxygen is probably reduced at two sites in complex I, one associated with NADH oxidation in the mitochondrial matrix and the other associated with ubiquinone reduction in the membrane. Here, we study complex I from Escherichia coli, exploiting similarities and differences in the bacterial and mitochondrial enzymes to extend our knowledge of O2 reduction at the active site for NADH oxidation. E. coli and bovine complex I reduce O2 at essentially the same rate, with the same potential dependence (set by the NAD (+)/NADH ratio), showing that the rate-determining step is conserved. The potential dependent rate of H2O2 production does not correlate to the potential of the distal [2Fe-2S] cluster N1a in E. coli complex I, excluding it as the point of O2 reduction. Therefore, our results confirm previous proposals that O2 reacts with the fully reduced flavin mononucleotide. Assays for superoxide production by E. coli complex I were prone to artifacts, but dihydroethidium reduction showed that, upon reducing O2, it produces approximately 20% superoxide and 80% H2O2. In contrast, bovine complex I produces 95% superoxide. The results are consistent with (but do not prove) a specific role for cluster N1a in determining the outcome of O2 reduction; possible reaction mechanisms are discussed.  相似文献   

17.
Pohl T  Uhlmann M  Kaufenstein M  Friedrich T 《Biochemistry》2007,46(37):10694-10702
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.  相似文献   

18.
The reduction of duroquinone (DQ) and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone (DB) by NADH and ethanol was investigated in intact yeast mitochondria with good respiratory control ratios. In these mitochondria, exogenous NADH is oxidized by the NADH dehydrogenase localized on the outer surface of the inner membrane, whereas the NADH produced by ethanol oxidation in the mitochondrial matrix is oxidized by the NADH dehydrogenase localized on the inner surface of the inner membrane. The reduction of DQ by ethanol was inhibited 86% by myxothiazol; however, the reduction of DQ by NADH was inhibited 18% by myxothiazol, suggesting that protein-protein interactions between the internal (but not the external) NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase (the cytochrome bc1 complex) are involved in the reduction of DQ by NADH. The reduction of DQ and DB by NADH and ethanol was also investigated in mutants of yeast lacking cytochrome b, the iron-sulfur protein, and ubiquinone. The reduction of both quinone analogues by exogenous NADH was reduced to levels that were 10 to 20% of those observed in wild-type mitochondria; however, the rate of their reduction by ethanol in the mutants was equal to or greater than that observed in the wild-type mitochondria. Furthermore, the reduction of DQ in the cytochrome b and iron-sulfur protein lacking mitochondria was myxothiazol sensitive, suggesting that neither of these proteins is an essential binding site for myxothiazol. The mitochondria from the three mutants also contained significant amounts of antimycin- and myxothiazol-insensitive NADH:cytochrome c reductase activity, but had no detectable succinate:cytochrome c reductase activity. These results suggest that the mutants lacking a functional cytochrome bc1 complex have adapted to oxidize NADH.  相似文献   

19.
Seven of the 45 subunits of mitochondrial NADH:ubiquinone oxidoreductase (complex I) are mitochondrially encoded and have been shown to harbor pathogenic mutations. We modeled the human disease-associated mutations A4136G/ND1-Y277C, T4160C/ND1-L285P and C4171A/ND1-L289M in a highly conserved region of the fourth matrix-side loop of the ND1 subunit by mutating homologous amino acids and surrounding conserved residues of the NuoH subunit of Escherichia coli NDH-1. Deamino-NADH dehydrogenase activity, decylubiquinone reduction kinetics, hexammineruthenium (HAR) reductase activity, and the proton pumping efficiency of the enzyme were assayed in cytoplasmic membrane preparations.Among the human disease-associated mutations, a statistically significant 22% decrease in enzyme activity was observed in the NuoH-L289C mutant and a 29% decrease in the double mutant NuoH-L289C/V297P compared with controls. The adjacent mutations NuoH-D295A and NuoH-R293M caused 49% and 39% decreases in enzyme activity, respectively. None of the mutations studied significantly affected the Km value of the enzyme for decylubiquinone or the amount of membrane-associated NDH-1 as estimated from the HAR reductase activity. In spite of the decrease in enzyme activity, all the mutant strains were able to grow on malate, which necessitates sufficient NDH-1 activity. The results show that in ND1/NuoH its fourth matrix-side loop is probably not directly involved in ubiquinone binding or proton pumping but has a role in modifying enzyme activity.  相似文献   

20.
The proton-pumping NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of protons across the membrane. In Escherichia coli the complex is made up of 13 different subunits encoded by the so-called nuo-genes. Mutants, in which each of the nuo-genes was individually disrupted by the insertion of a resistance cartridge were unable to assemble a functional complex I. Each disruption resulted in the loss of complex I-mediated activity and the failure to extract a structurally intact complex. Thus, all nuo-genes are required either for the assembly or the stability of a functional E. coli complex I. The three subunits comprising the soluble NADH dehydrogenase fragment of the complex were detected in the cytoplasm of several nuo-mutants as one distinct band after BN-PAGE. It is discussed that the fully assembled NADH dehydrogenase fragment represents an assembly intermediate of the E. coli complex I. A partially assembled complex I bound to the membrane was detected in the nuoK and nuoL mutants, respectively. Overproduction of the ΔNuoL variant resulted in the accumulation of two populations of a partially assembled complex in the cytoplasmic membranes. Both populations are devoid of NuoL. One population is enzymatically active, while the other is not. The inactive population is missing cluster N2 and is tightly associated with the inducible lysine decarboxylase. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号