首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: K m and V max values of monoamine oxidase (MAO) A and B towards 5-hydroxytryptamine were determined for rat brain homogenates after the in vitro inhibition of one of the two forms by the selective inhibitors clorgyline and l -deprenyl. K m values of 178 and 1170μ m , and V max values of 0.73 and 0.09 nmol·mg protein−1·min−1 towards 5-hydroxytryptamine were found for MAO-A and -B, respectively. The K 1 for 5-hydroxytryptamine as a competitive inhibitor of β-phenethylamine oxidation by MAO-B was found to be 1400 μm. The significance of these findings is discussed.  相似文献   

2.
Brain Carbohydrate Metabolism in Developing Rats During Hypercapnia   总被引:3,自引:2,他引:1  
Abstract: Brain glucose metabolism was studied in developing rats at ages 10 and 20 days postnatal under normal and hypercapnic conditions. Brains were removed and frozen within 1 s with a freeze-blowing apparatus. Glucose utilization was measured with [2-14C]glucose and [3H]deoxyglucose as tracers. Metabolites were determined by standard enzymatic techniques. Data from [3H]deoxyglucose phosphorylation indicated that normal brain glucose utilization increased almost threefold between the 10th and 20th postnatal days. From the relative rates of utilization of the two isotopes in the 20-day-old control group, it appeared that about 25% of 14C label derived from metabolism of [2-14C]glucose was lost from brain (probably as lactate) rather than entering the Krebs cycle. Under hypercapnic conditions (20% CO2-21% O2-59% N2), rates of glucose utilization by brain were decreased by one-half at both ages and there were progressive decreases in the concentrations of many intermediary metabolites. The bases for concluding that these metabolites were used to supplement glucose as a fuel for respiration, rather than being lost by leakage into blood, are discussed. Despite the differences in brain glucose metabolism between 10-day-old and 20-day-old rats, their responses to hypercapnia are remarkably similar: Rates of glucose utilization are reduced to approximately the same proportion of the original rate by 20% CO2, and endogenous metabolites (particularly glutamate and lactate) appear to be oxidized as replacement fuels.  相似文献   

3.
After intraperitoneal injection of rats with 6-fluorotryptophan (6-FT), brain 5-hydroxytryptamine (5-HT) levels decreased exponentially over 1 h. Depletion was dose-dependent and maximum depletion was observed at 200 mg/kg. 6-FT (200 mg/kg) did not significantly alter the content of 5-hydroxyindoleacetic acid. Turnover rates of 5-HT obtained by the 6-FT and other methods were fairly consistent. 6-FT had little effect on the content of noradrenaline and dopamine. These data suggest that 6-FT completely inhibits tryptophan hydroxylase, in vivo, without affecting the release of 5-HT from 5-HT neurons and with little effect on the activities of tyrosine hydroxylase. Therefore, 6-FT is a good pharmacological tool for studying the turnover rate of 5-HT in the brain.  相似文献   

4.
Monospecific anti-rat serum alpha-fetoprotein (AFP) IgG was coupled to cyanogen bromide-activated Sepharose-4B (4.5 mg/ml packed volume of gel) to yield an immunoaffinity matrix. The immunoaffinity column was used to isolate AFP from feto-neonatal rat brain. The purified AFP was immunologically and electrophoretically similar to serum AFP. It yielded a single band with a molecular weight of 70,000 on sodium dodecyl sulphate polyacrylamide gel electrophoresis. Polyacrylamide gel electrophoresis of the protein under nondenaturing conditions yielded two charge variants of AFP, reminiscent of AFP from feto-neonatal rat serum. The AFP was observed to bind estradiol with Ka = 5.8 X 10(8) M -1 and 1.3 X 10(8) M -1 by dextran-coated charcoal adsorption and Sephadex gel filtration techniques, respectively. Newborn rat brain cells linearly incorporated [14C]leucine into immunoprecipitable AFP during 6 h in culture. It is, therefore, concluded that feto-neonatal rat brain contains AFP similar to that present in fetal serum and that it may arise in brain as a result of its in situ synthesis.  相似文献   

5.
Cytochrome Reductase Activities in Rat Brain Microsomes During Development   总被引:2,自引:1,他引:1  
Abstract: Postnatal developmental alterations of microsomal NADH-cyto-chrome b5 reductase and NADPH-cytochrome c reductase activities were determined in the brain of rats. The reductase activities increased from a low level in the immature brain to a maximum level at 23 to 30 days of age, and then decreased slightly to a plateau. The periods of the activity increments were in accord with those of the enhancement of microsomal fatty acid elongation. The specific activities of these reductases were high in cerebral hemispheres and medulla oblongata, intermediate in midbrain, and lowest in cerebellum of the four regions of 20-day-old rat brain.  相似文献   

6.
Glycogen Metabolism in Neonatal Rat Brain During Anoxia and Recovery   总被引:2,自引:1,他引:1  
Abstract: Metabolic alterations in glycogen and in glycogen-related metabo lites were studied in neonatal rat brain during controlled anoxia and recovery. One-day postnatal rats were exposed to 100% N, at 37°C for up to 20 min; some rats were allowed to recover in air. Animals were frozen in liquid N, and the brains were prepared for fluorometric analysis of compounds involved in glycogen turnover. During anoxia, glycogen decreased by 29% and 42% at 10 and 20 min, respectively; the free (soluble) and bound (insoluble) components of glycogen decreased in nearly equal proportions. Brain glucose decreased by 72% at 10 min with little further change there after; G-6-P, G-1-P, and UDPG also declined. During recovery from anoxia, glucose and G-6-P increased above control levels for up to 60 min. G-1-P paralleled G-6-P levels, but UDPG remained low. Glycogen returned to control values by 4 h. The findings suggest that although glycogen is mobilized slowly in newborn rat brain, the metabolite contributes at least one-third of the cerebral energy supply during anoxia. Presumably, readily available stores of glycogen combined with low cerebral metabolic requirements underscore the known tolerence of immature animals to hypoxic stress. Glycogen accumulation during recovery appears to be facilitated at the synthetase step, since equilibrium measurements of the phosphoglucomutase and pyrophosphorylase systems indicate that these reactions are not rate-limiting for glycogen synthesis.  相似文献   

7.
The effects of 5-hydroxytryptamine (5-HT) and 5-HT uptake inhibitors on the dissociation of [3H]paroxetine from rat brain membrane binding sites have been investigated. The dissociation induced by 5-HT (100 microM), paroxetine (0.15 microM), clomipramine (1 microM), citalopram (1 microM), imipramine (1 microM), or norzimeldine (1 microM) was consistent with first-order dissociation kinetics with half-life values of dissociation (t1/2) between 130 and 140 min. The dissociation induced by the combination of 5-HT (100 microM) with either citalopram (1 microM) or imipramine (1 microM) was not different from that initiated by either agent alone. These dissociation data, which are at variance with previous data on the 5-HT transporter labeled with [3H]imipramine, support a single-site model of the antidepressant binding/5-HT uptake site.  相似文献   

8.
The inhibition of the A and B forms of monoamine oxidase (MAO) inside and outside serotonergic, noradrenergic, and dopaminergic synaptosomes in homogenates of rat hypothalamus or striatum by clorgyline, a selective and irreversible MAO-A inhibitor, and selegiline, a selective and irreversible MAO-B inhibitor, was examined. Intrasynaptosomal deamination at low concentrations of the substrates [14C]5-hydroxytryptamine ([14C]5-HT; 0.1 microM), [14C]noradrenaline (0.25 microM), [14C]3,4-dihydroxyphenylethylamine ([14C]dopamine; 0.25 microM), and [14C]tyramine (0.25 microM) was hindered by selective uptake inhibitors (citalopram, maprotiline, and amfonelic acid) in the incubation media. Thus, the difference between the deamination of 14C-amine in the absence and presence of the appropriate selective uptake inhibitor provided a measure of deamination in the specific aminergic synaptosomes. This was verified by determining the loss of MAO activity within noradrenergic and serotonergic systems after degeneration of the nerve terminals by the neurotoxins N-chloroethyl-N-ethyl-2-bromobenzylamine and p-chloroamphetamine. Results with the two inhibitors revealed that the A and B forms were responsible for 80 and 20%, respectively, of the deamination of [14C]5-HT within serotonergic synaptosomes from the hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes from the hypothalamus and that of [14C]dopamine and [14C]tyramine within the striatal dopaminergic synaptosomes were due to MAO-A. About 10% of the deamination of [14C]noradrenaline, [14C]dopamine, and [14C]tyramine outside the noradrenergic or dopaminergic synaptosomes was brought about by the B form, with the remainder being deaminated by MAO-A.  相似文献   

9.
Abstract: Cimoxatone is a fully reversible inhibitor selective for the A form of monoamine oxidase. The inhibition is so potent against this enzyme form that it acts as a tight-binding inhibitor. Use of this inhibitor indicates that in rat brain homogenates the concentration of monoamine oxidase A is approximately 8–11 pmol-mg protein−1. Values similar to this were obtained by clor-gyline titration and both methods gave values similar to those found with a [3H]harmaline binding assay.  相似文献   

10.
Biosynthesis of Biopterin by Rat Brain   总被引:4,自引:3,他引:1  
Abstract: A method for the determination of [14C]biopterin biosynthesis from [14C]guanosine-5'-triphosphate by a desalted preparation from rat striatum, based on sequential reverse-phase and cation-exchange high performance liquid chromatography, is described. Synthesis of reduced forms of biopterin by this striatal extract was found to be dependent on enzymatic activity, guanosine-5'-triphosphate, magnesium ions, and a reduced pyridine nucleotide. As demonstrated by the technique of isotope dilution, isotope trapping, 6-lactyl-7,8-dihydropterin (sepiapterin) was found to be an intermediate in biopterin biosynthesis that is catalyzed by the striatal extract. Rat brain was also shown to synthesize biopterin in vivo from intraventricularly administered [14C]guanosine or sepiapterin. Intraventricular injection of sepiapterin increased dihydro- and 5,6,7,8-tetrahydrobiopterin levels in rat brain by more than eightfold. The temporal relationship between the appearance of dihydro- and 5,6,7,8-tetrahydrobiopterin following intraventricular injection of sepiapterin suggests that dihydrobiopterin is the immediate product of sepiapterin reduction which is then reduced further to the functional cofactor 5,6,7,8-tetra-hydrobiopterin. Therefore, in contrast to previous reports, the biosynthesis of biopterin by rat brain does not appear to differ from that occurring in other, nonneural tissues.  相似文献   

11.
12.
Abstract: The inhibition of type A and B MAO in rat forebrain crude membrane preparation by MD780515. (3-{4-[(3-cyanophenyl)methoxy]phenyl)-5-(methoxymethyl)-2-oxazolidinone Centre de Recherche Delalande, France) has been investigated in vitro with 5-hydroxytryptamine and β-phenylethyl-amine as substrates. The inhibition of the high-affinity binding of [3H]harmaline, a specific marker of type A MAO, was also studied. In the experimental conditions used, MD780515 appeared to be a pure mixed MAO inhibitor (MAOI) of 5-HT deamination, both Km , and Vmax being altered [K1 (Dixon) = Ki , (slope) = 2 nM; Ki (intercept) = 12 nM]. Phenylethylamine oxidation could be considered to be noncompetitively inhibited by MD780515 (Ki (slope) = 78 nM; Ki , (intercept) = 103 nM). Dixon and intercept replots were hyperbolic, suggesting that, at high concentrations, PEA could be deaminated by both forms of MAO. This hypothesis was confirmed by biphasic inhibition curves of 80 μM-PEA obtained when MD7805 15 , clorgyline, harmaline and deprenyl were used as MAOIs. MD780515 was a potent inhibitor (IC50= 1–2 nM) of [3H]harmaline binding. Comparatively, clorgyline, 'cold' harmaline and Lilly 51641 inhibited 3H ligand binding, with IC50 of 5, 7 and 40 nM respectively. In conclusion, MD780515 is a reversible, specific and potent type A MAOI.  相似文献   

13.
Phosphoinositide turnover stimulated by 5-hydroxytryptamine (5-HT) receptors in the intact rat brain was studied using an in vivo method. Phosphoinositides in the rat brain were prelabeled with [3H]inositol injected into the lateral cerebral ventricles. The rats were killed by microwave irradiation after 48 h and the contents in the frontal cortex of 3H-inositol phosphates, [3H]inositol-1-monophosphate [( 3H]IP1), [3H]inositol-1,4-bisphosphate [( 3H]IP2), and a mixture of [3H]inositol-1,4,5-trisphosphate and [3H]inositol-1,3,4-trisphosphate [( 3H]IP3) were assayed by HPLC. Lithium treatment (10 mEq/kg, i.p., 2 h before) increased the content of [3H]IP1 and [3H]IP2. 5-Methoxy-N,N-dimethyltryptamine (5-MeODMT) and quipazine, 5-HT agonists, significantly increased the amount of 3H-inositol phosphates under lithium pretreatment. The response to 5-MeODMT was inhibited by ritanserin, a 5-HT2 antagonist, but not by (-)-propranolol, a 5-HT1 antagonist. These results suggest that phosphoinositide turnover in the rat frontal cortex in vivo is stimulated by 5-HT2 receptor activation. It is considered that this method will be useful for measurement of 5-HT2 receptor-stimulated phosphoinositide turnover in vivo to examine the in vivo effects of various psychotropic drugs such as antidepressants.  相似文献   

14.
Substrate Selectivity of Type A and Type B Monoamine Oxidase in Rat Brain   总被引:5,自引:5,他引:0  
Abstract: Use of the irreversible inhibitors clorgyline and deprenyl showed that rat brain mitochondria contain type A and type B monoamine oxidase (MAO). Tyramine is a substrate for both types of MAO, whereas serotonin is a preferential substrate for type A MAO. In contrast to MAO in other tissues, type A MAO in brain tissue oxidizes β-phenylethylamine (PEA) at high concentrations (0.5 and 1.0 mM). The proportions of type A and type B MAO activities in the mitochondria estimated from the double-sigmoidal inhibition curves of tyramine oxidation were about 70:30 irrespective of the concentration of tyramine. With PEA as substrate, the ratios of type A to type B activities were found to increase from low values at low concentrations to about 1 at 0.5-1.0 mM-PEA, and even higher at further increased concentrations of PEA. At very low (0.01 mM) and high (10.0 mM) concentrations of PEA, single-sigmoidal curves were obtained; with the high PEA concentration the activity was highly sensitive to clorgyline, whereas with the low concentration it was highly sensitive to deprenyl. In deprenyl-pretreated mitochondrial preparations, all the remaining activity towards 0.5-1.0 mM-PEA was shown to be highly sensitive to clorgyline, demonstrating that this activity was indeed due to oxidation by type A MAO. The opposite result was obtained with deprenyl as inhibitor of clorgyline-pretreated preparations, demonstrating that PEA at this concentration was also oxidized by type B MAO in rat brain mitochondria. The K3 values of type A and type B MAO for PEA were significantly different. On Lineweaver-Burk analysis, plots with PEA as substrate for type A MAO in a deprenyl-treated preparation were linear over a wide concentration range, whereas those for type B MAO in a clorgyline-treated preparation were not linear, but showed substrate inhibition at higher concentrations of the substrate. It is concluded from the present findings that the effect of the substrate concentration must be considered in studies on the characteristics of multiple forms of MAO in various organs and species.  相似文献   

15.
In the rat brain, dopamine is metabolised by both A and B forms of monoamine oxidase (MAO), although the A form of the enzyme is the major component. The Km of MAO-A toward dopamine (120 microM) is lower than the Km of MAO-B toward this substrate (340 microM). The activity of MAO-A was lower in old rats than in young rats, and the same degree of decrease was found for 5-hydroxytryptamine as for dopamine as substrates for this enzyme form. The activity of MAO-B was higher in the old rats, the degree of increase being the same for dopamine as for beta-phenethylamine as substrates for this enzyme form. The Ki values of the inhibition of MAO-A by cimoxatone and MD770222 (the principal plasma metabolite of cimoxatone) were independent of the substrate used to assay for activity, but were lower than the Ki values for the inhibition of MAO-B by these compounds.  相似文献   

16.
The irreversible inhibition of the monoamine oxidase (MAO) activity within monoaminergic neurons in the rat brain 24 h after single or repeated administration of (E)-beta-fluoromethylene-m-tyrosine (FMMT, MDL 72394) was examined. The enzyme activity was determined by incubating synaptosome-rich homogenates of hypothalamus or striatum with low concentrations of 5-[14C]hydroxytryptamine (5-HT), [14C]noradrenaline (NA), or [14C]dopamine (DA) in the absence and presence of the selective amine uptake inhibitors citalopram (5-HT), maprotiline (NA), and GBR 12909 (DA). After a single subcutaneous injection of FMMT, the inhibition of MAO within the noradrenergic and dopaminergic neurons was significant but only slightly greater than that outside these neurons. The opposite relationship was observed for the serotonergic neurons. After 7 days' treatment of rats with carbidopa, 20 mg/kg p.o., + FMMT once daily, the preference for the inhibition of MAO within the noradrenergic and dopaminergic neurons was accentuated further. The inhibition outside the serotonergic neurons was still greater than within these neurons. The NA uptake inhibitor CPP 199 antagonized the selective inhibition of MAO within the noradrenergic neurons, which indicates that this preference is due to the accumulation of the active metabolite (E)-beta-fluoromethylene-m-tyramine by the NA transporter.  相似文献   

17.
The effects of hypoxia on metabolism of 5-hydroxytryptamine (5-HT or serotonin) and 3,4-dihydroxyphenylethylamine (DA or dopamine) were compared with those on open-field activity in male CD-1 mice. Chemical hypoxia was induced with NaNO2. Hypoxia did not alter striatal concentrations of DA, 5HT, Trp, Tyr, 5-hydroxyindoleacetic acid, or homovanillic acid. However, NaNO2 (75 mg/kg) reduced the rates of conversion of [3H]Tyr to [3H]DA (-41%) and [3H]Trp to [3H]5-HT (-39%). Hypoxia also reduced dihydroxyphenylacetic acid (DOPAC) levels (-27%) and DOPAC/DA ratios (-20%). Open-field behavior, as measured in an automated activity monitor, decreased in a dose-dependent fashion with 75-150 mg/kg of NaNO2 (-35 to -90%). Comparison with previous studies suggests that the syntheses of dopamine, serotonin, and the amino acids are equally vulnerable to hypoxic insults but may be less sensitive than the synthesis of acetylcholine.  相似文献   

18.
Intracerebroventricular injections of angiotensin II caused 108, 62, and 54% increases in monoamine oxidase A activities in rat hippocampus, hypothalamus, and striatum, respectively. These activatory effects were abolished by simultaneous injections of eledoisin. No significant changes of monoamine oxidase B activities were found under the same experimental conditions. Neither angiotensin II nor elodoisin changed substrate/inhibitor affinities of both isoenzymes. These data indicate that angiotensin II and tachykinin transmitter systems may exert opposite, long-term regulatory effects on monoaminergic neurons in rat brain.  相似文献   

19.
Studies on Polyphosphoinositides in Developing Rat Brain   总被引:5,自引:5,他引:0  
Polyphosphoinositides in rat brain exist in two forms: the metabolically active form that is readily attacked by the polyphosphoinositide phosphohydrolases, and the inert form that is attacked by the enzymes at a slower rate. The two pools continue to increase even during the postweaning period, suggesting a role in glial as well as myelin development apart from their role in neurons.  相似文献   

20.
Calmodulin contents of cortex, cerebellum, striatum, diencephalon, and medulla + pons and of subcellular fractions of each region were determined by radioimmunoassay. The diencephalon had the highest level of calmodulin (48.87 +/- 4.56 micrograms/mg protein), whereas medulla + pons had the lowest level (8.01 +/- 0.84 micrograms/mg protein). In all brain regions, the mitochondrial fraction was richest in calmodulin (from 71 to 227 micrograms/mg protein) whereas other areas contained from 6 to 66 micrograms/mg protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号