首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein kinase C eta (PKCeta) is one of several PKC isoforms found in humans. It is a novel PKC isoform in that it is activated by diacylglycerol and anionic phospholipids but not calcium. The crystal structure of the PKCeta-C2 domain, which is thought to mediate anionic phospholipid sensing in the protein, was determined at 1.75 A resolution. The structure is similar to that of the PKC epsilon C2 domain but with significant variations at the putative lipid-binding site. Two serine residues within PKC eta were identified in vitro as potential autophosphorylation sites. In the unphosphorylated structure both serines line the putative lipid-binding site and may therefore play a role in the lipid-regulation of the kinase.  相似文献   

2.
Syndecan-4 is a transmembrane heparan sulfate proteoglycan that acts as a coreceptor with integrins in focal adhesion formation. The central region of syndecan-4 cytoplasmic domain (4V; LGKKPIYKK) binds phosphatidylinositol 4,5-bisphosphate, and together they regulate protein kinase C alpha (PKC alpha) activity. Syndecan 4V peptide directly potentiates PKC alpha activity, leading to "superactivation" of the enzyme, apparently through an interaction with its catalytic domain. We now have performed yeast two-hybrid and in vitro binding assays to determine the interaction sites between 4V and PKC alpha. Full-length PKC alpha weakly interacted with 4V by yeast two-hybrid assays, but PKC alpha constructs that lack the pseudosubstrate region or constructs of the whole catalytic domain interacted more strongly. A mutated 4V sequence (4V(YF): LGKKPIFKK) did not interact with PKC alpha, indicating that tyrosine 192 in the syndecan-4 cytoplasmic domain might be critical for this interaction. Further assays identified a novel interaction site in the C terminus of the catalytic domain of PKC alpha (amino acid sequence 513-672). This encompasses the autophosphorylation sites, which are implicated in activation and stability. Yeast two-hybrid data were confirmed by in vitro binding and coimmunoprecipitation assays. The interaction of syndecan-4 with PKC alpha appears unique since PKC delta and epsilon did not interact with 4V in yeast two-hybrid assays or coimmunoprecipitate with syndecan-4. Finally, overexpression of syndecan-4 in rat embryo fibroblast cells, but not expression of the YF mutant, increased PKC alpha localization to focal adhesions. The data support a mechanism where syndecan-4 binds PKC alpha and localizes it to focal adhesions, whose assembly may be regulated by the kinase.  相似文献   

3.
Abstract: One important aspect of synaptic plasticity is that transient stimulation of neuronal cell surface receptors can lead to long-lasting biochemical and physiological effects in neurons. In long-term potentiation (LTP), generation of autonomously active protein kinase C (PKC) is one biochemical effect persisting beyond the NMDA receptor activation that triggers plasticity. We previously observed that the expression of early LTP is associated with a phosphatase-reversible alteration in PKC immunoreactivity, suggesting that autophosphorylation of PKC might be elevated in LTP. In the present studies we tested the hypothesis that PKC phosphorylation is persistently increased in the early maintenance of LTP. We generated an antiserum that selectively recognizes the α and βII isoforms of PKC autophosphorylated in the C-terminal domain. Using western blotting with this antiserum we observed an NMDA receptor-mediated increase in phosphorylation of PKC 1 h after LTP was induced. How is the increased phosphorylation maintained in the cell in the face of ongoing phosphatase activity? We observed that dephosphorylation of PKC in vitro requires the presence of cofactors normally serving to activate PKC, i.e., Ca2+, phosphatidylserine, and diacylglycerol. Based on these observations and computer modeling of the three-dimensional structure of the PKC catalytic core, we propose a “protected site” model of PKC autophosphorylation, whereby the conformation of PKC regulates accessibility of the phosphates to phosphatase. Although we have proposed the protected site model based on our studies of PKC phosphorylation in LTP, phosphorylation of protected sites might be a general biochemical mechanism for the generation of stable, long-lasting physiologic changes.  相似文献   

4.
The protein kinase C γ (PKCγ) undergoes multistep activation and participates in various cellular processes in Purkinje cells. Perturbations in its phosphorylation state, conformation or localization can disrupt kinase signalling, such as in spinocerebellar ataxia type 14 (SCA14) that is caused by missense mutations in PRKCG encoding for PKCγ. We previously showed that SCA14 mutations enhance PKCγ membrane translocation upon stimulation owing to an altered protein conformation. As the faster translocation did not result in an increased function, we examined how SCA14 mutations induce this altered conformation of PKCγ and what the consequences of this conformational change are on PKCγ life cycle. Here, we show that SCA14‐related PKCγ‐V138E exhibits an exposed C‐terminus as shown by fluorescence resonance energy transfer‐fluorescence lifetime imaging microscopy in living cells, indicative of its partial unfolding. This conformational change was associated with faster phorbol 12‐myristate 13‐acetate‐induced translocation and accumulation of fully phosphorylated PKCγ in the insoluble fraction, which could be rescued by coexpressing PDK1 kinase that normally triggers PKCγ autophosphorylation. We propose that the SCA14 mutation V138E causes unfolding of the C1B domain and exposure of the C‐terminus of the PKCγ‐V138E molecule, resulting in a decrease of functional kinase in the soluble fraction.

  相似文献   


5.
The zeta isoform of protein kinase C (PKC zeta) was purified to near homogeneity from the cytosolic fraction of bovine kidney by successive chromatography on DEAE-Sephacel, heparin-Sepharose, phenyl-5PW, hydroxyapatite, and Mono Q. The purified enzyme had a molecular mass of 78 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein was recognized by an antibody raised against a synthetic oligopeptide corresponding to the deduced amino acid sequence of rat PKC zeta. The enzymatic properties of PKC zeta were examined and compared with conventional protein kinase C purified from rat brain. The activity of PKC zeta was stimulated by phospholipid but was unaffected by phorbol ester, diacylglycerol, or Ca2+. PKC zeta did not bind phorbol ester, and autophosphorylation was not affected by phorbol ester. Unsaturated fatty acid activated PKC zeta, but this activation was neither additive nor synergistic with phospholipid. These results indicate that regulation of PKC zeta is distinct from that of other isoforms and suggest that hormone-stimulated increases in diacylglycerol and Ca2+ do not activate this isoform in cells. It is possible that PKC zeta belongs to another enzyme family, in which regulation is by a different mechanism from that for other isoforms of protein kinase C.  相似文献   

6.
The C-terminal V5 domain is one of the most variable domains in Protein Kinase C isoforms (PKCs). V5 confers isoform specificity on its parent enzyme through interactions with isoform-specific adaptor proteins and possibly through specific intra-molecular interactions with other PKC domains. The structural information about V5 domains in solution is sparse. The objective of this work was to determine the conformational preferences of the V5 domain from the α isoform of PKC (V5α) and evaluate its ability to associate with membrane mimetics. We show that V5α and its phosphorylation-mimicking variant, dmV5α, are intrinsically disordered protein domains. Phosphorylation-mimicking mutations do not alter the overall conformation of the polypeptide backbone, as evidenced by the local nature of chemical shift perturbations and the secondary structure propensity scores. However, the population of the “cis-trans” conformer of the Thr638-Pro639-Pro640 turn motif, which has been implicated in the down-regulation of PKCα via peptidyl-prolyl isomerase Pin1, increases in dmV5α, along with the conformational flexibility of the region between the turn and hydrophobic motifs. Both wild type and dmV5α associate with micelles made of a zwitterionic detergent, n-dodecylphosphocholine. Upon micelle binding, V5α acquires a higher propensity to form helical structures at the conserved “NFD” motif and the entire C-terminal third of the domain. The ability of V5α to partition into the hydrophobic micellar environment suggests that it may serve as a membrane anchor during the PKC maturation process.  相似文献   

7.
We have seen that protein kinase Calpha (PKCalpha) is transiently translocated to the plasma membrane by carbachol stimulation of neuroblastoma cells. This is induced by the Ca2+ increase, and PKCalpha does not respond to diacylglycerol (DAG). The unresponsiveness is dependent on structures in the catalytic domain of PKCalpha. This study was designed to investigate if and how the kinase activity and autophosphorylation are involved in regulating the translocation. PKCalpha enhanced green fluorescent protein translocation was studied in living neuroblastoma cells by confocal microscopy. Carbachol stimulation induced a transient translocation of PKCalpha to the plasma membrane and a sustained translocation of kinase-dead PKCalpha. In cells treated with the PKC inhibitor GF109203X, wild-type PKCalpha also showed a sustained translocation. The same effects were seen with PKCbetaI, PKCbetaII, and PKCdelta. Only kinase-dead and not wild-type PKCalpha translocated in response to 1,2-dioctanoylglycerol. To examine whether autophosphorylation regulates relocation to the cytosol, the autophosphorylation sites in PKCalpha were mutated to glutamate, to mimic phosphorylation, or alanine, to mimic the non-phosphorylated protein. After stimulation with carbachol, glutamate mutants behaved like wild-type PKCalpha, whereas alanine mutants behaved like kinase-dead PKCalpha. When the alanine mutants were treated with 1,2-dioctanoylglycerol, all cells showed a sustained translocation of the protein. However, neither carbachol nor GF109203X had any major effects on the level of autophosphorylation, and GF109203X potentiated the translocation of the glutamate mutants. We, therefore, hypothesize that 1) autophosphorylation of PKCalpha limits its sensitivity to DAG and 2) that kinase inhibitors augment the DAG sensitivity of PKCalpha, perhaps by destabilizing the closed conformation.  相似文献   

8.
In this study, the role of interdomain interactions involving the C1 and C2 domains in the mechanism of activation of PKC was investigated. Using an in vitro assay containing only purified recombinant proteins and the phorbol ester, 4 beta-12-O-tetradecanoylphorbol-13-acetate (TPA), but lacking lipids, it was found that PKC alpha bound specifically, and with high affinity, to a alpha C1A-C1B fusion protein of the same isozyme. The alpha C1A-C1B domain also potently activated the isozyme in a phorbol ester- and diacylglycerol-dependent manner. The level of this activity was comparable with that resulting from membrane association induced under maximally activating conditions. Furthermore, it was found that alpha C1A-C1B bound to a peptide containing the C2 domain of PKC alpha. The alpha C1A-C1B domain also activated conventional PKC beta I, -beta II, and -gamma isoforms, but not novel PKC delta or -epsilon. PKC delta and -epsilon were each activated by their own C1 domains, whereas PKC alpha, -beta I, -beta II, or -gamma activities were unaffected by the C1 domain of PKC delta and only slightly activated by that of PKC epsilon. PKC zeta activity was unaffected by its own C1 domain and those of the other PKC isozymes. Based on these findings, it is proposed that the activating conformational change in PKC alpha results from the dissociation of intra-molecular interactions between the alpha C1A-C1B domain and the C2 domain. Furthermore, it is shown that PKC alpha forms dimers via inter-molecular interactions between the C1 and C2 domains of two neighboring molecules. These mechanisms may also apply for the activation of the other conventional and novel PKC isozymes.  相似文献   

9.
Protein kinase C (PKC) is the only PKC isoform recruited to the immunological synapse after T cell receptor stimulation, suggesting that its activation mechanism differs from that of the other isoforms. Previous studies have suggested that this selective PKC recruitment may operate via a Vav-regulated, cytoskeletal-dependent mechanism, independent of the classical phospholipase C/diacylglycerol pathway. Here, we demonstrate that, together with tyrosine phosphorylation of PKC in the regulatory domain, binding of phospholipase C-dependent diacylglycerol is required for PKC recruitment to the T cell synapse. In addition, we demonstrate that diacylglycerol kinase alpha-dependent diacylglycerol phosphorylation provides the negative signal required for PKC inactivation, ensuring fine control of the T cell activation response.  相似文献   

10.
Hyperammonemia is responsible for most neurological alterations in patients with hepatic encephalopathy by mechanisms that remain unclear. Hyperammonemia alters phosphorylation of neuronal protein kinase C (PKC) substrates and impairs NMDA receptor-associated signal transduction. The aim of this work was to analyse the effects of hyperammonemia on the amount and intracellular distribution of PKC isoforms and on translocation of each isoform induced by NMDA receptor activation in cerebellar neurons. Chronic hyperammonemia alters differentially the intracellular distribution of PKC isoforms. The amount of all isoforms (except PKC zeta) was reduced (17-50%) in the particulate fraction. The contents of alpha, beta1, and epsilon isoforms decreased similarly in cytosol (65-78%) and membranes (66-83%), whereas gamma, delta, and theta; isoforms increased in cytosol but decreased in membranes, and zeta isoform increased in membranes and decreased in cytosol. Chronic hyperammonemia also affects differentially NMDA-induced translocation of PKC isoforms. NMDA-induced translocation of PKC alpha and beta is prevented by ammonia, whereas PKC gamma, delta, epsilon, or theta; translocation is not affected. Inhibition of phospholipase C did not affect PKC alpha translocation but reduced significantly PKC gamma translocation, indicating that NMDA-induced translocation of PKC alpha is mediated by Ca2+, whereas PKC gamma translocation is mediated by diacylglycerol. Chronic hyperammonemia reduces Ca+2-mediated but not diacylglycerol-mediated translocation of PKC isoforms induced by NMDA.  相似文献   

11.
Three monoclonal antibodies (mAb) directed against the regulatory domain of the protein kinase C gamma (PKC gamma); 15G4, 5A2 and 36G9, were shown to display distinct properties with respect to PKC gamma kinase activity [Cazaubon, S., Marais, R., Parker, P. & Strosberg, A.D. (1989) Eur. J. Biochem. 182, 401-406]. The mAb 5A2 and 36G9, which act as potent inhibitors of the cofactor-dependent kinase activity, can no longer bind PKC gamma in the presence of phosphatidylserine and phosphatidylserine/phorbol ester, respectively; 15G4 binding is not influenced by effectors. Due to this functional relationship between the inhibitory mAb- and cofactor-binding sites, we sought to localize the mAb epitopes with respect to the functional sites of PKC gamma. For this purpose, several deletions were introduced at the 5' end of the PKC gamma cDNA and the mutant proteins were expressed in Escherichia coli. The determination of the immunoreactivity of the deleted PKC gamma proteins shows that the amino acid residues essential to the binding of 5A2 and 36G9 are directly adjacent to the second cysteine-rich motif: these are contained in the sequences at positions 151-163 and 164-197, respectively. In addition, various deletions around the C1 region of the regulatory domain allowed the identification of the second cysteine-rich motif as a functional binding site for phorbol dibutyrate. These deletion studies thus demonstrate that the epitopes recognized by the inhibitory mAbs 5A2 and 36G9 are distinct from the cofactor-binding sites. This suggests that the binding of phosphatidylserine and phorbol ester induce conformational changes in the regulatory domain of PKC, which are thus responsible for the loss of the 5A2 and 36G9 immunoreactivity of the native protein. In this conformational state, PKC gamma conserves its ability to interact with the non-inhibitory mAb 15G4. By using synthetic peptides, the 15G4 epitope was localized to the sequence 297-310 in the V3 variable region. This indicates that the flexibility of the V3 region, which delimits the C-terminus of the regulatory domain, may not be necessary for the allosteric activation of PKC. In view of these results, we propose that PKC activation by its cofactors results in intramolecular changes which allow the enzyme to bind exogenous substrates.  相似文献   

12.
C1 domains, cysteine-rich modules originally identified in protein kinase C (PKC) isozymes, are present in multiple signaling families, including PKDs, chimaerins, RasGRPs, diacylglycerol kinases (DGKs) and others. Typical C1 domains bind the lipid second messenger diacylglycerol (DAG) and DAG-mimetics such as phorbol esters, and are critical for governing association to membranes. On the contrary, atypical C1 domains possess structural determinants that impede phorbol ester/DAG binding. C1 domains are generally expressed as twin modules (C1A and C1B) or single domains. Biochemical and cellular studies in PKC and PKD isozymes revealed that C1A and C1B domains are non-equivalent as lipid-binding motifs or translocation modules. It has been recently determined that individual C1 domains have unique patterns of ligand recognition, driven in some cases by subtle structural differences. Insights from recent 3-D studies on beta2-chimaerin and Munc13-1 revealed that their single C1 domains are sterically blocked by intramolecular interactions, suggesting that major conformational changes would be required for exposing the site of DAG interaction. Thus, it is clear that the protein context plays a major role in determining whether binding of DAG to the C1 domain would lead to enzyme activation or merely serves as an anchoring mechanism.  相似文献   

13.
Protein kinase C (PKC) isozymes comprise a family of related enzymes that play a central role in many intracellular eukaryotic signaling events. Isozyme specificity is mediated by association of each PKC isozyme with specific anchoring proteins, termed RACKs. The C2 domain of betaPKC contains at least part of the RACK-binding sites. Because the C2 domain contains also a RACK-like sequence (termed pseudo-RACK), it was proposed that this pseudo-RACK site mediates intramolecular interaction with one of the RACK-binding sites in the C2 domain itself, stabilizing the inactive conformation of betaPKC. BetaPKC depends on calcium for its activation, and the C2 domain contains the calcium-binding sites. The x-ray structure of the C2 domain of betaPKC shows that three Ca(2+) ions can be coordinated by two opposing loops at one end of the domain. Starting from this x-ray structure, we have performed molecular dynamics (MD) calculations on the C2 domain of betaPKC bound to three Ca(2+) ions, to two Ca(2+) ions, and in the Ca(2+)-free state, in order to analyze the effect of calcium on the RACK-binding sites and the pseudo-RACK sites, as well as on the loops that constitute the binding site for the Ca(2+) ions. The results show that calcium stabilizes the beta-sandwich structure of the C2 domain and thus affects two of the three RACK-binding sites within the C2 domain. Also, the interactions between the third RACK-binding site and the pseudo-RACK site are not notably modified by the removal of Ca(2+) ions. On that basis, we predict that the pseudo-RACK site within the C2 domain masks a RACK-binding site in another domain of betaPKC, possibly the V5 domain. Finally, the MD modeling shows that two Ca(2+) ions are able to interact with two molecules of O-phospho-l-serine. These data suggest that Ca(2+) ions may be directly involved in PKC binding to phosphatidylserine, an acidic lipid located exclusively on the cytoplasmic face of membranes, that is required for PKC activation.  相似文献   

14.
Focal adhesion kinase (FAK) is activated following integrin engagement or stimulation of transmembrane receptors. Autophosphorylation of FAK on Tyr-397 is a critical event, allowing binding of Src family kinases and activation of signal transduction pathways. Tissue-specific alternative splicing generates several isoforms of FAK with different autophosphorylation rates. Despite its importance, the mechanisms of FAK autophosphorylation and the basis for differences between isoforms are not known. We addressed these questions using isoforms of FAK expressed in brain. Autophosphorylation of FAK(+), which is identical to that of "standard" FAK, was intermolecular in transfected cells, although it did not involve the formation of stable multimeric complexes. Coumermycin-induced dimerization of gyrase B-FAK(+) chimeras triggered autophosphorylation of Tyr-397. This was independent of cell adhesion but required the C terminus of the protein. In contrast, the elevated autophosphorylation of FAK(+6,7), the major neuronal splice isoform, was not accounted for by transphosphorylation. Specifically designed immune precipitate kinase assays confirmed that autophosphorylation of FAK(+) was intermolecular, whereas autophosphorylation of FAK(+6,7) or FAK(+7) was predominantly intramolecular and insensitive to the inhibitory effects of the N-terminal domain. Our results clarify the mechanisms of FAK activation and show how alternative splicing can dramatically alter the mechanism of autophosphorylation of a protein kinase.  相似文献   

15.
Whereas retinoic acids control nuclear events, a second class of retinol metabolites, that is, the hydroxylated forms exemplified by 14-hydroxy-retro-retinol (HRR), operate primarily in the cytoplasm. They function as regulatory cofactors for cell survival/cell death decisions. In accordance with these biological aspects, we demonstrate that these retinoids bound protein kinase C (PKC) alpha with nanomolar affinity and markedly enhance the activation of PKC alpha and the entire downstream MAP kinase pathway by reactive oxygen species. HRR was 10 times more efficient than retinol, and the optimum doses are 10-7 and 10-6 M, respectively. PKC alpha activation was reversed rapidly by imposition of reducing conditions. The retinoid binding site was mapped to the first cysteine-rich region in the regulatory domain, C1A, yet was distinct from the binding sites of diacylglycerol and phorbol esters. The C1B domain bound retinoids poorly. The emerging theme is that retinoids serve as redox regulators of protein kinase C.  相似文献   

16.
The C1 domain mediates the diacylglycerol (DAG)-dependent translocation of conventional and novel protein kinase C (PKC) isoforms. In novel PKC isoforms (nPKCs), this domain binds membranes with sufficiently high affinity to recruit nPKCs to membranes in the absence of any other targeting mechanism. In conventional PKC (cPKC) isoforms, however, the affinity of the C1 domain for DAG is two orders of magnitude lower, necessitating the coordinated binding of the C1 domain and a Ca2+-regulated C2 domain for translocation and activation. Here we identify a single residue that tunes the affinity of the C1b domain for DAG- (but not phorbol ester-) containing membranes. This residue is invariant as Tyr in the C1b domain of cPKCs and invariant as Trp in all other PKC C1 domains. Binding studies using model membranes, as well as live cell imaging studies of yellow fluorescent protein-tagged C1 domains, reveal that Trp versus Tyr toggles the C1 domain between a species with sufficiently high affinity to respond to agonist-produced DAG to one that is unable to respond to physiological levels of DAG. In addition, we show that while Tyr at this switch position causes cytosolic localization of the C1 domain under unstimulated conditions, Trp targets these domains to the Golgi, likely due to basal levels of DAG at this region. Thus, Trp versus Tyr at this key position in the C1 domain controls both the membrane affinity and localization of PKC. The finding that a single residue controls the affinity of the C1 domain for DAG-containing membranes provides a molecular explanation for why 1) DAG alone is sufficient to activate nPKCs but not cPKCs and 2) nPKCs target to the Golgi.  相似文献   

17.
C1 domains mediate the recognition and subsequent signaling response to diacylglycerol and phorbol esters by protein kinase C (PKC) and by several other families of signal-transducing proteins such as the chimerins or RasGRP. MRCK (myotonic dystrophy kinase-related Cdc42 binding kinase), a member of the dystrophia myotonica protein kinase family that functions downstream of Cdc42, contains a C1 domain with substantial homology to that of the diacylglycerol/phorbol ester-responsive C1 domains and has been reported to bind phorbol ester. We have characterized here the interaction of the C1 domains of the two MRCK isoforms alpha and beta with phorbol ester. The MRCK C1 domains bind [20-(3)H]phorbol 12,13-dibutyrate with K(d) values of 10 and 17 nm, respectively, reflecting 60-90-fold weaker affinity compared with the protein kinase C delta C1b domain. In contrast to binding by the C1b domain of PKCdelta, the binding by the C1 domains of MRCK alpha and beta was fully dependent on the presence of phosphatidylserine. Comparison of ligand binding selectivity showed resemblance to that by the C1b domain of PKCalpha and marked contrast to that of the C1b domain of PKCdelta. In intact cells, as in the binding assays, the MRCK C1 domains required 50-100-fold higher concentrations of phorbol ester for induction of membrane translocation. We conclude that additional structural elements within the MRCK structure are necessary if the C1 domains of MRCK are to respond to phorbol ester at concentrations comparable with those that modulate PKC.  相似文献   

18.
The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation.  相似文献   

19.
Ca(2+)-independent or novel protein kinase Cs (nPKCs) contain an N-terminal C2 domain of unknown function. Removal of the C2 domain of the Aplysia nPKC Apl II allows activation of the enzyme at lower concentrations of phosphatidylserine, suggesting an inhibitory role for the C2 domain in enzyme activation. However, the mechanism for C2 domain-mediated inhibition is not known. Mapping of the autophosphorylation sites for protein kinase C (PKC) Apl II reveals four phosphopeptides in the regulatory domain of PKC Apl II, two of which are in the C2 domain at serine 2 and serine 36. Unlike most PKC autophosphorylation sites, these serines could be phosphorylated in trans. Interestingly, phosphorylation of serine 36 increased binding of the C2 domain to phosphatidylserine membranes in vitro. In cells, PKC Apl II phosphorylation at serine 36 was increased by PKC activators, and PKC phosphorylated at this position translocated more efficiently to membranes. Moreover, mutation of serine 36 to alanine significantly reduced membrane translocation of PKC Apl II. We suggest that translocation of nPKCs is regulated by phosphorylation of the C2 domain.  相似文献   

20.
The precise regulation of epidermal growth factor receptor (EGFR) signaling is crucial to its function in cellular growth control. Various studies have suggested that the C-terminal phosphorylation domain, itself a substrate for the EGFR kinase activity, exerts a regulatory influence upon it, although the molecular mechanism for this regulation is unknown. The fluorescence resonance energy transfer (FRET) technique was employed to examine how C-terminal domain conformational changes in the context of receptor activation and autophosphorylation might regulate EGFR enzymatic activity. A novel FRET reporter system was devised in which recombinant purified EGFR intracellular domain (ICD) proteins of varying C-terminal lengths were site-specifically labeled at their extreme C termini with blue fluorescent protein (BFP) and a fluorescent nucleotide analog, 2'(3')-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP), binding at their active sites. This novel BFP/TNP-ATP FRET pair demonstrated efficient energy transfer as evidenced by appreciable BFP-donor quenching by bound TNP-ATP. In particular, a marked reduction in energy transfer was observed for the full-length BFP-labeled EGFR-ICD protein upon phosphorylation, likely reflecting its movement away from the active site. The estimated distances from the BFP module to the TNP-ATP-occupied active site for the full-length and C-terminally truncated proteins also reveal the possible folding geometry of this domain with respect to the kinase core. The present studies demonstrate the first use of BFP/TNP-ATP as a FRET reporter system. Furthermore, the results described here provide biophysical evidence for phosphorylation-dependent conformational changes in the C-terminal phosphorylation domain and its likely interaction with the kinase core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号