首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Endothelial cells (EC) of the vertebrate cardiovascular system (CVS) are bona fide, yet enigmatic mechanoreceptors. When cultured in vitro and exposed to fluid forces, EC modify their physiological behaviour at the structural, metabolical and gene expression levels in response to the mechanical stimulus. However, as a direct consequence of the hypoxic bias (and often the lethality) that results from blocking blood flow in most animal systems, the in vivo role of EC mechanosensation (ECMS) remains poorly understood. The zebrafish has recently emerged as an alternative genetic model for the study of vertebrate development. Its striking ability to survive until larval stages in the absence of blood circulation circumveys the usual caveats that are inherent to CVS research, and offers the exciting opportunity to dissect the function of ECMS in vivo. Two groups have already uncovered an essential role for ECMS in zebrafish organogenesis, particularly in heart morphogenesis. In embryos in which intracardiac blood flow is genetically or physically compromised, several features of the normally developing heart, including valve formation, are specifically disrupted. In addition, impressive imaging studies of zebrafish hemodynamics demonstrate that the shear stress exerted upon the cardiac endothelium is largely in the range of the stimulus that in vitro activates cytoskelettal remodeling and gene expression changes in EC. Hence the cardiac phenotypes observed in vivo may indeed directly result from a lack of ECMS-dependent EC activity. These data shed first light on the role of ECMS in vivo. Notably, they also suggest that a number of human congenital cardiomyopathies may arise through abnormal fetal hemodynamics and/or EC sensory activity. Finally, these discoveries reinforce the too often neglected role of epigenetic factors (in this case, fluid forces) in the regulation of animal development.  相似文献   

4.
5.
Ectodermal dysplasias are a large group of rare genetic disorders with developmental abnormalities in skin, teeth, hair and nails. Many of them are clinically serious and impair the life of patients. The cloning of the gene for the most common of them, X-linked anhidrotic ectodermal dysplasia, in 1996 opened the door to dissect novel developmental pathways at the molecular level. Since then, several new genes and proteins with novel functions have been identified.  相似文献   

6.
Mutations in the human Notch ligand jagged 1 (JAG1) result in a multi-system disorder called Alagille syndrome (AGS). AGS is chiefly characterized by a paucity of intrahepatic bile ducts (IHBD), but also includes cardiac, ocular, skeletal, craniofacial and renal defects. The disease penetration and severity of the affected organs can vary significantly and the molecular basis for this broad spectrum of pathology is unclear. Here, we report that Jag1 inactivation in the portal vein mesenchyme (PVM), but not in the endothelium of mice, leads to the hepatic defects associated with AGS. Loss of Jag1 expression in SM22α-positive cells of the PVM leads to defective bile duct development beyond the initial formation of the ductal plate. Cytokeratin 19-positive cells are detected surrounding the portal vein, yet they are unable to form biliary tubes, revealing an instructive role of the vasculature in liver development. These findings uncover the cellular basis for the defining feature of AGS, identify mesenchymal Jag1-dependent and -independent stages of duct development, and provide mechanistic information for the role of Jag1 in IHBD formation.  相似文献   

7.
Cadherins are crucial for tissue cohesion, separation of cell layers and cell migration during embryogenesis. To investigate the role of classical type II Xcadherin-6 (Xcad-6), we performed loss-of-function studies by morpholino oligonucleotide injections. This resulted in severe eye defects which could be rescued with murine cadherin-6. In the absence of Xcadherin-6, morphological alterations and a decrease in cell proliferation were observed with eye cup formation. Eye field transplantations of Xcadherin-6 depleted donors yielded grafts that failed to form a proper neuroepithelium in a wildtype environment. At later developmental stages Xcadherin-6 deficient eyes showed lamination defects in the outer neural retina, a reduced thickness of the ganglion cell layer (GCL) and a fragmented retina pigment epithelium (RPE). Thus, Xcadherin-6 is essential early in eye development for structural organization and growth of the neuroepithelium before it differentiates into neural retina and RPE.  相似文献   

8.
Nephrons, the basic functional units of the kidney, are generated repetitively during kidney organogenesis from a mesenchymal progenitor population. Which cells within this pool give rise to nephrons and how multiple nephron lineages form during this protracted developmental process are unclear. We demonstrate that the Six2-expressing cap mesenchyme represents a multipotent nephron progenitor population. Six2-expressing cells give rise to all cell types of the main body of the nephron during all stages of nephrogenesis. Pulse labeling of Six2-expressing nephron progenitors at the onset of kidney development suggests that the Six2-expressing population is maintained by self-renewal. Clonal analysis indicates that at least some Six2-expressing cells are multipotent, contributing to multiple domains of the nephron. Furthermore, Six2 functions cell autonomously to maintain a progenitor cell status, as cap mesenchyme cells lacking Six2 activity contribute to ectopic nephron tubules, a mechanism dependent on a Wnt9b inductive signal. Taken together, our observations suggest that Six2 activity cell-autonomously regulates a multipotent nephron progenitor population.  相似文献   

9.
10.
11.
Endodermal organogenesis requires a precise orchestration of cell fate specification and cell movements, collectively coordinating organ size and shape. In Caenorhabditis elegans, uncoordinated-53 (unc-53) encodes a neural guidance molecule that directs axonal growth. One of the vertebrate homologs of unc-53 is neuron navigator 3 (Nav3). Here, we identified a novel vertebrate neuron navigator 3 isoform in zebrafish, nav3a, and we provide genetic evidence in loss- and gain-of-function experiments showing its functional role in endodermal organogenesis during zebrafish embryogenesis. In zebrafish embryos, nav3a expression was initiated at 22 hpf in the gut endoderm and at 40 hpf expanded to the newly formed liver bud. Endodermal nav3a expression was controlled by Wnt2bb signaling and was independent of FGF and BMP signaling. Morpholino-mediated knockdown of nav3a resulted in a significantly reduced liver size, and impaired development of pancreas and swim bladder. In vivo time-lapse imaging of liver development in nav3a morphants revealed a failure of hepatoblast movement out from the gut endoderm during the liver budding stage, with hepatoblasts being retained in the intestinal endoderm. In hepatocytes in vitro, nav3a acts as a positive modulator of actin assembly in lamellipodia and filipodia extensions, allowing cellular movement. Knockdown of nav3a in vitro impeded hepatocyte movement. Endodermal-specific overexpression of nav3a in vivo resulted in additional ectopic endodermal budding beyond the normal liver and pancreatic budding sites. We conclude that nav3a is required for directing endodermal organogenesis involving coordination of endodermal cell behavior.  相似文献   

12.
13.
Although the ectoderm and mesoderm have been the focus of intensive work in the recent era of studies on the molecular control of vertebrate development, the endoderm has received less attention. Because signaling must occur between germ layers in order to achieve a properly organized body, our understanding of the coordinated development of all organs requires a more thorough consideration of the endoderm and its derivatives. This review focuses on present knowledge and perspectives concerning endoderm patterning and organogenesis. Some of the classical embryology of the endoderm is discussed and the progress and deficiencies in cellular and molecular studies are noted.  相似文献   

14.
Agr2 is a putative protein disulfide isomerase (PDI) initially identified as an estrogen-responsive gene in breast cancer cell lines. While Agr2 expression in breast cancer is positively correlated with estrogen receptor (ER) expression, it is upregulated in both hormone dependent and independent carcinomas. Several in vitro and xenograft studies have implicated Agr2 in different oncogenic features of breast cancer; however, the physiological role of Agr2 in normal mammary gland development remains to be defined. Agr2 expression is developmentally regulated in the mammary gland, with maximum expression during late pregnancy and lactation. Using a mammary gland specific knockout mouse model, we show that Agr2 facilitates normal lobuloalveolar development by regulating mammary epithelial cell proliferation; we found no effects on apoptosis in Agr2(-/-) mammary epithelial cells. Consequently, mammary glands of Agr2(-/-) females exhibit reduced expression of milk proteins, and by two weeks post-partum their pups are smaller in size. Utilizing a conditional mouse model, we show that Agr2 constitutive expression drives precocious lobuloalveolar development and increased milk protein expression in the virgin mammary gland. In vitro studies using knock down and overexpression strategies in estrogen receptor positive and negative mammary epithelial cell lines demonstrate a role for Agr2 in estradiol-induced cell proliferation. In conclusion, the estrogen-responsive Agr2, a candidate breast cancer oncogene, regulates epithelial cell proliferation and lobuloalveolar development in the mammary gland. The pro-proliferative effects of Agr2 may explain its actions in early tumorigenesis.  相似文献   

15.
Heparan sulfate proteoglycans (HSPGs) are central modulators of developmental processes likely through their interaction with growth factors, such as GDNF, members of the FGF and TGFβ superfamilies, EGF receptor ligands and HGF. Absence of the biosynthetic enzyme, heparan sulfate 2-O-sulfotransferase (Hs2st) leads to kidney agenesis. Using a novel combination of in vivo and in vitro approaches, we have reanalyzed the defect in morphogenesis of the Hs2st/ kidney. Utilizing assays that separately model distinct stages of kidney branching morphogenesis, we found that the Hs2st/ UB is able to undergo branching and induce mesenchymal-to-epithelial transformation when recombined with control MM, and the isolated Hs2st null UB is able to undergo branching morphogenesis in the presence of exogenous soluble pro-branching growth factors when embedded in an extracellular matrix, indicating that the UB is intrinsically competent. This is in contrast to the prevailing view that the defect underlying the renal agenesis phenotype is due to a primary role for 2-O sulfated HS in UB branching. Unexpectedly, the mutant MM was also fully capable of being induced in recombination experiments with wild-type tissue. Thus, both the mutant UB and mutant MM tissue appear competent in and of themselves, but the combination of mutant tissues fails in vivo and, as we show, in organ culture. We hypothesized a 2OS-dependent defect in the mutual inductive process, which could be on either the UB or MM side, since both progenitor tissues express Hs2st. In light of these observations, we specifically examined the role of the HS 2-O sulfation modification on the morphogenetic capacity of the UB and MM individually. We demonstrate that early UB branching morphogenesis is not primarily modulated by factors that depend on the HS 2-O sulfate modification; however, factors that contribute to MM induction are markedly sensitive to the 2-O sulfation modification. These data suggest that key defect in Hs2st null kidneys is the inability of MM to undergo induction either through a failure of mutual induction or a primary failure of MM morphogenesis. This results in normal UB formation but affects either T-shaped UB formation or iterative branching of the T-shaped UB (possibly two separate stages in collecting system development dependent upon HS). We discuss the possibility that a disruption in the interaction between HS and Wnts (e.g. Wnt 9b) may be an important aspect of the observed phenotype. This appears to be the first example of a defect in the MM preventing advancement of early UB branching past the first bifurcation stage, one of the limiting steps in early kidney development.  相似文献   

16.
17.
18.
DNA methylation increases throughout Arabidopsis development   总被引:9,自引:0,他引:9  
We used amplified fragment length polymorphisms (AFLP) to analyze the stability of DNA methylation throughout Arabidopsis development. AFLP can detect genome-wide changes in cytosine methylation produced by DNA demethylation agents, such as 5-azacytidine, or specific mutations at the DDM1 locus. In both cases, cytosine demethylation is associated with a general increase in the presence of amplified fragments. Using this approach, we followed DNA methylation at methylation sensitive restriction sites throughout Arabidopsis development. The results show a progressive DNA methylation trend from cotyledons to vegetative organs to reproductive organs.  相似文献   

19.
The initiation of bone formation in the avian mandible requires that neural crest-derived cells undergo an inductive interaction with mandibular epithelium. To examine the role of the epithelial basal lamina in that interaction, mandibles were separated into their epithelial and mesenchymal components following exposure to the chelating agent, EDTA. Transmission and scanning electron microscopy was used to show that the basal lamina was retained as a continuous layer over the mesenchyme. Osteogenesis was initiated when such EDTA-isolated mesenchyme was grafted to the chorioallantoic membranes of host embryos. In contrast, mesenchyme isolated using trypsin and pancreatin failed to form bone. It is concluded that the property of mandibular epithelium which permits osteogenesis resides within the basal lamina.  相似文献   

20.
MicroRNAs are potent modulators of cellular differentiation. miR-145 is expressed in, and promotes the differentiation of vascular and visceral smooth muscle cells (SMCs). Interestingly, we have observed that miR-145 also promotes differentiation of the gut epithelium in the developing zebrafish, a cell type where it is not expressed. Here we identify that a paracrine pathway involving the morphogens Sonic hedgehog (Shh) in epithelium and bone morphogenic protein 4 (Bmp4) in SMCs is modulated by miR-145. We show that expression of miR-145 in visceral SMCs normally represses the expression of the morphogen bmp4, as loss of miR-145 leads to upregulation of bmp4 in SMCs. We show that bmp4 in turn controls expression of Shh in the visceral epithelium. Conversely, in miR-145 morphants where bmp4 expression is increased, expression of sonic hedgehog a (shha) is strongly increased in gut epithelium. We show that expression of bmp4 is modulated by the miR-145 direct target gata6 but not a second potential direct target, klf5a. Thus although miR-145 is a tissue-restricted microRNA, it plays an essential role in promoting the patterning of both gut layers during gut development via a paracrine mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号