首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
Previous studies have implicated autophagy in osteoclast differentiation. The aim of this study was to investigate the potential role of p62, a characterized adaptor protein for autophagy, in RANKL-induced osteoclastogenesis. Real-time quantitative PCR and western blot analyses were used to evaluate the expression levels of autophagy-related markers during RANKL-induced osteoclastogenesis in mouse macrophage-like RAW264.7 cells. Meanwhile, the potential relationship between p62/LC3 localization and F-actin ring formation was tested using double-labeling immunofluorescence. Then, the expression of p62 in RAW264.7 cells was knocked down using small-interfering RNA (siRNA), followed by detecting its influence on RANKL-induced autophagy activation, osteoclast differentiation, and F-actin ring formation. The data showed that several key autophagy-related markers including p62 were significantly altered during RANKL-induced osteoclast differentiation. In addition, the expression and localization of p62 showed negative correlation with LC3 accumulation and F-actin ring formation, as demonstrated by western blot and immunofluorescence analyses, respectively. Importantly, the knockdown of p62 obviously attenuated RANKL-induced expression of autophagy- and osteoclastogenesis-related genes, formation of TRAP-positive multinuclear cells, accumulation of LC3, as well as formation of F-actin ring. Our study indicates that p62 may play essential roles in RANKL-induced autophagy and osteoclastogenesis, which may help to develop a novel therapeutic strategy against osteoclastogenesis-related diseases.  相似文献   

2.

The metabolic syndrome (MetS) and pathologies associated with metabolic dysregulations a worldwide growing problem. Our previous study demonstrated that pioglitazone (PGZ) has beneficial effects on metabolic syndrome associated disturbances in the heart. However, mechanism mediating the molecular alterations of Ubiquitin proteasome system (UPS) and autophagy has not been investigated in rat pancreas with metabolic syndrome. For this reason, we first aimed to detect whether MetS effects on the expression of UPS (p97/VCP, SVIP, Ubiquitin) and autophagic (p62, LC3) proteins in rat pancreas. The second aim of the study was to find impact of pioglitazone on the expression of UPS and autophagic proteins in MetS rat pancreas. To answer these questions, metabolic syndrome induced rats were used as a model and treated with pioglitazone for 2 weeks. Pancreatic tissue injuries, fibrosis and lipid accumulation were evaluated histopathologically in control, MetS and MetS-PGZ groups. Apoptosis and cell proliferation of pancreatic islet cells were assessed in all groups. UPS and autophagic protein expressions of pancreas in all groups were detected by using immunohistochemistry, double-immunfluorescence and Western blotting. Compared with the controls, the rat fed with high sucrose exhibited signs of metabolic syndrome, such as higher body weight, insulin resistance, higher triglyceride level and hyperglycaemia. MetS rats showed pancreatic tissue degeneration, fibrosis and lipid accumulation when their pancreas were examined with Hematoxilen-eozin and Mallory trichrome staining. Metabolic, histopathologic parameters and cell proliferation showed greater improvement in MetS-PGZ rats and pioglitazone decreased apoptosis of islet cells. Moreover, SVIP, ubiquitin, LC3 and p62 expressions were significantly increased while only p97/VCP expression was significantly decreased in MetS-rat pancreas compared to control. PGZ treatment significantly decreased the MetS-induced increases in autophagy markers. Additionally, UPS and autophagy markers were found to colocalizated with insulin and glucagon. Colocalization ratio of UPS markers with insulin showed significant decrease in MetS rats and PGZ increased this ratio, whereas LC3-insulin colocalization displayed significant increase in MetS rats and PGZ reversed this effect. In conclusion, PGZ improved the pancreatic tissue degeneration by increasing the level of p97/VCP and decreasing autophagic proteins, SVIP and ubiquitin expressions in MetS-rats. Moreover, PGZ has an effect on the colocalization ratio of UPS and autophagy markers with insulin.

  相似文献   

3.
Endoplasmic reticulum (ER) stress can initiate autophagy via unfolded protein response (UPR). As a key downstream gene of UPR, DDIT3/CHOP is expressed in chondrocytes. However, the regulation mechanism of DDIT3/CHOP on autophagy in chondrocytes remains unclear. In this study, the expression levels of autophagic markers Beclin1 and LC3B were found to decrease while p62 increase in the tibial growth plate and costal primary chondrocytes from DDIT3/CHOP KO mice. In vitro, overexpressing DDIT3/CHOP induced autophagy in ATDC5 chondrocytes, displaying an elevated immunofluorescence signal of LC3B and elevated numbers of autophagosomes and autolysosomes. Analysis of the gain- and loss-of-function indicated that the protein level of Beclin1 and the ratio of LC3BII/I increased in DDIT3/CHOP overexpression cells, whereas decreased in DDIT3/CHOP knockdown cells. The decreased level of p62 and additional accumulation of LC3BII caused by chloroquine (CQ) further indicated that DDIT3/CHOP enhanced autophagic flux. Mechanistically, we found that DDIT3/CHOP binds directly to the promoter of SIRT1 to promote its expression by CHIP, qRT-PCR, and Western blot analysis. In addition, SIRT1 enhanced autophagic activity in ATDC5 cells, and inhibition or activation of SIRT1 partially reversed the effect of overexpressing or downregulating DDIT3/CHOP on autophagy. Furthermore, AKT signaling was found to be responsible for DDIT3/CHOP-regulated autophagy in ATDC5 cells. SIRT1 knockdown reversed the effect of DDIT3/CHOP overexpression on AKT signaling. In conclusion, our data clarifies that DDIT3/CHOP promotes autophagy in ATDC5 chondrocytes through the SIRT1-AKT pathway. These results were also confirmed in the primary chondrocytes.  相似文献   

4.
2018年全球癌症统计调查显示,结直肠癌约占患癌新病例的12.1%。因此,寻找新的结肠癌发生有关的基因,发现新的治疗靶点显得尤为迫切。通过数据库分析发现,RTN4基因的表达水平与结肠癌患者生存率的相关性具有统计学意义。针对RTN4基因构建其干扰质粒,将慢病毒作为载体转染结肠癌HCT116细胞中构建敲低RTN4的结肠癌细胞系,最后检测了低表达后RTN4基因的细胞增殖。结果发现,敲低RTN4基因后显著促进了结肠癌细胞HCT116的增殖,研究通过Western blot观察敲低RTN4后HCT116细胞自噬通路相关蛋白p62和LC3的表达情况,发现与对照组相比较,敲低RTN4组LC3转化量(LC3-II/LC3-I)增多,而p62蛋白减少。研究分析了RTN4的潜在抑癌作用,发现敲低RTN4基因会显著增强结肠癌细胞的增殖能力,并且诱导自噬,说明RTN4可能与激活LC3/p62自噬途径有关。  相似文献   

5.
目的:探讨硫氧还蛋白相互作用蛋白(thioredoxin interacting protein,TXNIP)对高糖诱导的小鼠视网膜Müller细胞自噬的影响及其可能机制。方法:采用高糖诱导体外培养的小鼠视网膜Muller细胞,通过RNA干扰降低TXNIP的表达,免疫荧光、Western blot和Real-time PCR检测自噬相关蛋白及丝氨酸/苏氨酸激酶/雷帕霉素靶蛋白(serine/threonine kinase 1/mechanistic target of rapamycin kinase,AKT/m TOR)的表达。结果:高糖诱导的Muller细胞中TXNIP、微管相关蛋白1轻链3α(microtubule associated protein 1 light chain 3 alpha,LC3Ⅱ)、Sequestosome1(p62/SQSTMl)的表达均显著增加(P<0.05);而TXNIP敲降的Muller细胞中自噬相关特征性蛋白(LC3Ⅱ、P62)的表达则显著降低(P<0.05)。结论:TXNIP可能通过AKT/m TOR信号通路来抑制糖尿病性视网膜病变中Müller细胞自噬活性,并引起细胞发生凋亡。  相似文献   

6.
p62/sequestosome-1 is a multifunctional adapter protein implicated in selective autophagy, cell signaling pathways, and tumorigenesis, and plays an important role at the crossroad between autophagy and cancer. But, the connection between autophagy and cancer is complex and in some cases contradictory. Human colorectal cancer tissues from patients were analyzed for expression of p62 and Microtubule-associated protein light chain 3 (LC3, an autophagosome marker) using immunostaining, western blotting, real-time PCR, and confocal microscopy. To study the effects of p62 on autophagy and cell growth, shRNA for p62 was applied and cell growth curve was monitored in human colorectal cancer cell. In vivo experiments were done using the mouse xenograft model. We showed that up-regulated expression of p62 and LC3 in colorectal cancer tissues. We also demonstrated that specifically knockdown the expression of p62 showed significantly inhibitory effects not only on autophagy activation, but also on tumor growth both in vitro and xenograft tumors model. The ectopic overexpression of p62 and autophagy activation contributes to colorectal tumorigenesis. p62 and autophagy will be therapy targets for the treatment of colorectal cancer.  相似文献   

7.
Alimogullari  Ebru  Akcan  Gülben  Ari  Oguz  Cayli  Sevil 《Molecular biology reports》2022,49(10):9159-9170
Background

In recent studies, it was shown that Endoplasmic reticulum-associated degradation (ERAD) is regulated by androgens and small VCP-interacting protein (SVIP) is an ERAD inhibitor. There is no data available about the interactions of ERAD proteins with proteins involved in steroidogenesis. The aim of the study was to investigate the expressions of SVIP, p97/VCP, StAR, CYP17A1 and 3β-HSD in human and mouse.

Methods and results

HLC, TM3 and MA-10 Leydig cell lines were used to determine roles of ERAD proteins in steroidogenesis based on immunofluorescence, Western blot, qRT-PCR, ELISA. Findings showed that StAR, CYP17A1 and 3β-HSD were colocalized with SVIP and p97/VCP in Leydig cells. A decrease in CYP17A1, 3β-HSD and StAR expressions was observed as a result of suppression of SVIP siRNAs and p97/VCP siRNAs expressions in MA10, TM3 and HLC. When siSVIP transfected cells were compared with siSVIP transfected with hCG-exposed cells, SVIP protein expression was significantly increased as compared to the SVIP transfected group in human Leydig cells.

Conclusion

We suggest that the suppression of protein expressions by p97/VCP and SVIP siRNAs in Leydig cells, the effects of proteins involved in steroidogenesis (StAR, CYP17A1 and 3β-HSD) have proven to be originating from p97/VCP and SVIP which were playing a role in the steroidogenesis process. Additionally, it was demonstrated that testosterone levels decreased after transfection with p97/VCP siRNA and SVIP siRNA, p97/VCP and SVIP created an effect on testosterone synthesis while taking place in the steps of testosterone synthesis. Further, it was determined in the study that the SVIP was affected by hCG stimulations.

  相似文献   

8.
AZD8055 is an ATP-competitive inhibitor of mammalian target of rapamycin (mTOR) that forms two multiprotein complexes, mTORC1 and mTORC2, and negatively regulates autophagy. We demonstrate that AZD8055 stimulates and potentiates chemotherapy-mediated autophagy, as shown by LC3I-II conversion and down-regulation of the ubiquitin-binding protein p62/sequestosome 1. AZD8055-induced autophagy was pro-survival as shown by its ability to attenuate cell death and DNA damage (p-H2AX), and to enhance clonogenic survival by cytotoxic chemotherapy. Autophagy inhibition by siRNA against Beclin 1 or LC3B, or by chloroquine, partially reversed the cytoprotective effect of AZD8055 that was independent of cell cycle inhibition. The pro-survival role of autophagy was confirmed using ectopic expression of Beclin 1 that conferred cytoprotection. To determine whether autophagy-mediated down-regulation of p62/sequestosome 1 contributes to its pro-survival role, we generated p62 knockdown cells using shRNA that showed protection from chemotherapy-induced cell death and DNA damage. We also overexpressed wild-type (wt) p62 that promoted chemotherapy-induced cell death, whereas mutated p62 at functional domains (PB1, UBA) failed to do so. The ability of ectopic wt p62 to promote cell death was blocked by AZD8055. AZD8055 was shown to inhibit phosphorylation of the autophagy-initiating kinase ULK1 at Ser(757) and inhibited known targets of mTORC1 (p-mTOR Ser(2448), p70S6K, p-S6, p4EBP1) and mTORC2 (p-mTOR Ser(2481), p-AKT Ser(473)). Knockdown of mTOR, but not Raptor or Rictor, reduced p-ULK1 at Ser(757) and enhanced chemotherapy-induced autophagy that resulted in a similar cytoprotective effect as shown for AZD8055. In conclusion, AZD8055 inhibits mTOR kinase and ULK1 phosphorylation to induce autophagy whose pro-survival effect is due, in part, to down-regulation of p62.  相似文献   

9.
Autophagic degradation of ubiquitinated protein aggregates is important for cell survival, but it is not known how the autophagic machinery recognizes such aggregates. In this study, we report that polymerization of the polyubiquitin-binding protein p62/SQSTM1 yields protein bodies that either reside free in the cytosol and nucleus or occur within autophagosomes and lysosomal structures. Inhibition of autophagy led to an increase in the size and number of p62 bodies and p62 protein levels. The autophagic marker light chain 3 (LC3) colocalized with p62 bodies and co-immunoprecipitated with p62, suggesting that these two proteins participate in the same complexes. The depletion of p62 inhibited recruitment of LC3 to autophagosomes under starvation conditions. Strikingly, p62 and LC3 formed a shell surrounding aggregates of mutant huntingtin. Reduction of p62 protein levels or interference with p62 function significantly increased cell death that was induced by the expression of mutant huntingtin. We suggest that p62 may, via LC3, be involved in linking polyubiquitinated protein aggregates to the autophagy machinery.  相似文献   

10.
VCP/p97 is involved in a variety of cellular processes, including membrane fusion and ubiquitin-dependent protein degradation. It has been suggested that adaptor proteins such as p47 and Ufd1p confer functional versatility to VCP/p97. To identify novel adaptors, we searched for proteins that interact specifically with VCP/p97 by using the yeast two-hybrid system, and discovered a novel VCP/p97-interacting protein named small VCP/p97-interacting protein (SVIP). Rat SVIP is a 76-amino acid protein that contains two putative coiled-coil regions, and potential myristoylation and palmitoylation sites at the N terminus. Binding experiments revealed that the N-terminal coiled-coil region of SVIP, and the N-terminal and subsequent ATP-binding regions (ND1 domain) of VCP/p97, interact with each other. SVIP and previously identified adaptors p47 and ufd1p interact with VCP/p97 in a mutually exclusive manner. Overexpression of full-length SVIP or a truncated mutant did not markedly affect the structure of the Golgi apparatus, but caused extensive cell vacuolation reminiscent of that seen upon the expression of VCP/p97 mutants or polyglutamine proteins in neuronal cells. The vacuoles seemed to be derived from endoplasmic reticulum membranes. These results together suggest that SVIP is a novel VCP/p97 adaptor whose function is related to the integrity of the endoplasmic reticulum.  相似文献   

11.
细胞自噬是一种重要且保守的细胞内降解过程,通过形成双层膜的自噬体包裹细胞内容物进行降解。内质网来源的COPII囊泡被认为是饥饿诱导的应激过程中自噬体的膜源。探究了COPII囊泡衣被蛋白SEC24A在巨自噬通路中的作用。利用siRNA干扰技术敲低SEC24A的表达,EBSS饥饿处理对照组和SEC24A敲低组HeLa细胞2 h诱导自噬发生,经Western blot和免疫荧光实验检测自噬底物蛋白p62和自噬标志蛋白LC3-II的蛋白水平变化,以确定SEC24A是否参与自噬。通过RFP-GFP-LC3串联荧光检测自噬体和自噬溶酶体的数目,利用蛋白酶K保护实验验证自噬缺陷发生在自噬体闭合之前或者之后,利用免疫荧光实验检测敲低SEC24A对自噬通路上ATG复合物的影响,以确定SEC24A调控自噬通路的位点。通过免疫共沉淀实验验证SEC24A与自噬相关蛋白ATG9A是否存在相互作用。蛋白检测实验发现,饥饿条件下与对照细胞相比,敲低SEC24A细胞内自噬底物蛋白p62积累,而标志蛋白LC3-II减少。RFP-GFP-LC3串联荧光实验显示,敲低SEC24A后自噬体及自噬溶酶体的数目均减少。蛋白酶K保护实验显示,SEC24A敲低细胞中受膜结构保护的p62和GFP-LC3均减少,提示SEC24A作用位点在自噬体闭合之前。免疫荧光实验显示,敲低SEC24A的表达后ATG14L、ATG16L1点状结构减少,而ATG9A点状结构的数量没有明显变化,提示SEC24A作用于ATG14L、ATG16L1上游。免疫共沉淀实验显示SEC24A与ATG9A存在相互作用。研究结果不仅有助于深化对自噬体形成过程和分子机制的了解,也为全面解读COPII囊泡及其衣被蛋白在自噬中的重要作用提供了信息。  相似文献   

12.
《Autophagy》2013,9(4):550-567
Osmotic homeostasis is fundamental for most cells, which face recurrent alterations of environmental osmolality that challenge cell viability. Protein damage is a consequence of hypertonic stress, but whether autophagy contributes to the osmoprotective response is unknown. Here, we investigated the possible implications of autophagy and microtubule organization on the response to hypertonic stress. We show that hypertonicity rapidly induced long-lived protein degradation, LC3-II generation and Ptdlns3K-dependent formation of LC3- and ATG12-positive puncta. Lysosomotropic agents chloroquine and bafilomycin A1, but not nutrient deprivation or rapamycin treatment, further increased LC3-II generation, as well as ATG12-positive puncta, indicating that hypertonic stress increases autophagic flux. Autophagy induction upon hypertonic stress enhanced cell survival since cell death was increased by ATG12 siRNA-mediated knockdown and reduced by rapamycin. We additionally showed that hypertonicity induces fast reorganization of microtubule networks, which is associated with strong reorganization of microtubules at centrosomes and fragmentation of Golgi ribbons. Microtubule remodeling was associated with pericentrosomal clustering of ATG12-positive autolysosomes that colocalized with SQSTM1/p62 and ubiquitin, indicating that autophagy induced by hypertonic stress is at least partly selective. Efficient autophagy by hypertonic stress required microtubule remodeling and was DYNC/dynein-dependent as autophagosome clustering was enhanced by paclitaxel-induced microtubule stabilization and was reduced by nocodazole-induced tubulin depolymerization as well as chemical (EHNA) or genetic [DCTN2/dynactin 2 (p50) overexpression] interference of DYNC activity. The data document a general and hitherto overlooked mechanism, where autophagy and microtubule remodeling play prominent roles in the osmoprotective response.  相似文献   

13.
Nogo-B在血管损伤、组织修复和炎症反应中发挥重要作用。然而,Nogo-B在动脉粥样硬化中的作用仍不明确。本研究拟在巨噬细胞中探讨Nogo-B对巨噬细胞泡沫化的影响。在RAW264.7细胞中沉默Nogo-B后,采用氧化低密度脂蛋白(Ox-LDL)或DiI修饰的Ox-LDL诱导巨噬细胞泡沫化;通过激光共聚焦显微镜观察巨噬细胞中荧光脂质,并在透射电镜下观察各组细胞中自噬泡;采用Western 印迹分析Plin2、p62和LC3-II的蛋白质水平;采用实时荧光定量PCR检测p62 mRNA水平;采用氯喹处理以及mRFP-GFP-LC3双荧光体系分析自噬流功能;进一步过表达Nogo-B后,比较巨噬细胞中脂质负荷程度以及Plin2、p62和LC3-II的蛋白质水平。结果显示,DiI-Ox-LDL处理后,Nogo-B沉默组细胞中脂质负荷程度高于对照组(2.34±0.67 vs. 0.69±0.14,P<0.05);Ox-LDL处理后,Nogo-B沉默组细胞中自噬泡数量(8.67±0.58 vs. 4.33±0.58,P<0.01)、Plin2(4.65±0.50 vs. 3.24±0.71,P<0.05)、p62(10.13±1.79 vs. 5.76±1.84,P<0.05)和LC3-II(4.38±0.20 vs. 2-33±1.56,P<0.01)的蛋白质水平均显著高于对照组,而p62 mRNA水平无差异(P>0.05);进一步研究发现,Nogo-B沉默组的自噬流被抑制了;过表达Nogo-B后,虽然p62蛋白质水平无明显变化,但是细胞中脂质负荷程度显著低于对照组(1.68±1.06 vs. 4.94±0.70,P<0.05),Plin2和LC3-II的蛋白质水平也明显降低。上述结果表明,Nogo-B通过促进自噬流抑制了Ox-LDL诱导的巨噬细胞泡沫化,Nogo-B可能具有抗动脉粥样硬化的作用。  相似文献   

14.
Nogo-B在血管损伤、组织修复和炎症反应中发挥重要作用。然而,Nogo-B在动脉粥样硬化中的作用仍不明确。本研究拟在巨噬细胞中探讨Nogo-B对巨噬细胞泡沫化的影响。在RAW264.7细胞中沉默Nogo-B后,采用氧化低密度脂蛋白(Ox-LDL)或DiI修饰的Ox-LDL诱导巨噬细胞泡沫化;通过激光共聚焦显微镜观察巨噬细胞中荧光脂质,并在透射电镜下观察各组细胞中自噬泡;采用Western 印迹分析Plin2、p62和LC3-II的蛋白质水平;采用实时荧光定量PCR检测p62 mRNA水平;采用氯喹处理以及mRFP-GFP-LC3双荧光体系分析自噬流功能;进一步过表达Nogo-B后,比较巨噬细胞中脂质负荷程度以及Plin2、p62和LC3-II的蛋白质水平。结果显示,DiI-Ox-LDL处理后,Nogo-B沉默组细胞中脂质负荷程度高于对照组(2.34±0.67 vs. 0.69±0.14,P<0.05);Ox-LDL处理后,Nogo-B沉默组细胞中自噬泡数量(8.67±0.58 vs. 4.33±0.58,P<0.01)、Plin2(4.65±0.50 vs. 3.24±0.71,P<0.05)、p62(10.13±1.79 vs. 5.76±1.84,P<0.05)和LC3-II(4.38±0.20 vs. 2-33±1.56,P<0.01)的蛋白质水平均显著高于对照组,而p62 mRNA水平无差异(P>0.05);进一步研究发现,Nogo-B沉默组的自噬流被抑制了;过表达Nogo-B后,虽然p62蛋白质水平无明显变化,但是细胞中脂质负荷程度显著低于对照组(1.68±1.06 vs. 4.94±0.70,P<0.05),Plin2和LC3-II的蛋白质水平也明显降低。上述结果表明,Nogo-B通过促进自噬流抑制了Ox-LDL诱导的巨噬细胞泡沫化,Nogo-B可能具有抗动脉粥样硬化的作用。  相似文献   

15.
该文旨在研究氧化低密度脂蛋白(ox-LDL)对大鼠肝星状细胞(HSC-T6)自噬的影响及机制,探讨非酒精性脂肪肝炎的发病机理.体外培养的HSC-T6细胞以不同质量浓度(0、10、20、40、60μg/mL)的ox-LDL分别处理不同时间(0、3、6、12、24 h)后,用 Western blot检测LC3 Ⅱ、Be-...  相似文献   

16.
The local anaesthetics (LAs) are widely used for peripheral nerve blocks, epidural anaesthesia, spinal anaesthesia and pain management. However, exposure to LAs for long duration or at high dosage can provoke potential neuronal damages. Autophagy is an intracellular bulk degradation process for proteins and organelles. However, both the effects of LAs on autophagy in neuronal cells and the effects of autophagy on LAs neurotoxicity are not clear. To answer these questions, both lipid LAs (procaine and tetracaine) and amide LAs (bupivacaine, lidocaine and ropivacaine) were administrated to human neuroblastoma SH‐SY5Y cells. Neurotoxicity was evaluated by MTT assay, morphological alterations and median death dosage. Autophagic flux was estimated by autolysosome formation (dual fluorescence LC3 assay), LC3‐II generation and p62 protein degradation (immunoblotting). Signalling alterations were examined by immunoblotting analysis. Inhibition of autophagy was achieved by transfection with beclin‐1 siRNA. We observed that LAs decreased cell viability in a dose‐dependent manner. The neurotoxicity of LAs was tetracaine > bupivacaine > ropivacaine > procaine > lidocaine. LAs increased autophagic flux, as reflected by increases in autolysosome formation and LC3‐II generation, and decrease in p62 levels. Moreover, LAs inhibited tuberin/mTOR/p70S6K signalling, a negative regulator of autophagy activation. Most importantly, autophagy inhibition by beclin‐1 knockdown exacerbated the LAs‐provoked cell damage. Our data suggest that autophagic flux was up‐regulated by LAs through inhibition of tuberin/mTOR/p70S6K signalling, and autophagy activation served as a protective mechanism against LAs neurotoxicity. Therefore, autophagy manipulation could be an alternative therapeutic intervention to prevent LAs‐induced neuronal damage.  相似文献   

17.
Previously, using primary hepatocytes residing in early G(1) phase, we demonstrated that expression of the cyclin-dependent kinase (CDK) inhibitor protein p21(Cip-1/WAF1/mda6) (p21) enhanced the toxicity of deoxycholic acid (DCA) + MEK1/2 inhibitor. This study examined the mechanisms regulating this apoptotic process. Overexpression of p21 or p27(Kip-1) (p27) enhanced DCA + MEK1/2 inhibitor toxicity in primary hepatocytes that was dependent on expression of acidic sphingomyelinase and CD95. Overexpression of p21 suppressed MDM2, elevated p53 levels, and enhanced CD95, BAX, NOXA, and PUMA expression; knockdown of BAX/NOXA/PUMA reduced CDK inhibitor-stimulated cell killing. Parallel to cell death processes, overexpression of p21 or p27 profoundly enhanced DCA + MEK1/2 inhibitor-induced expression of ATG5 and GRP78/BiP and phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) and eIF2alpha, and it increased the numbers of vesicles containing a transfected LC3-GFP construct. Incubation of cells with 3-methyladenine or knockdown of ATG5 suppressed DCA + MEK1/2 inhibitor-induced LC3-GFP vesicularization and enhanced DCA + MEK1/2 inhibitor-induced toxicity. Expression of dominant negative PERK blocked DCA + MEK1/2 inhibitor-induced expression of ATG5, GRP78/BiP, and eIF2alpha phosphorylation and prevented LC3-GFP vesicularization. Knock-out or knockdown of p53 or CD95 abolished DCA + MEK1/2 inhibitor-induced PERK phosphorylation and prevented LC3-GFP vesicularization. Thus, CDK inhibitors suppress MDM2 levels and enhance p53 expression that facilitates bile acid-induced, ceramide-dependent CD95 activation to induce both apoptosis and autophagy in primary hepatocytes.  相似文献   

18.
Misfolded proteins in the endoplasmic reticulum (ER) are eliminated by a process known as ER-associated degradation (ERAD), which starts with misfolded protein recognition, followed by ubiquitination, retrotranslocation to the cytosol, deglycosylation, and targeting to the proteasome for degradation. Actions of multisubunit protein machineries in the ER membrane integrate these steps. We hypothesized that regulation of the multisubunit machinery assembly is a mechanism by which ERAD activity is regulated. To test this hypothesis, we investigated the potential regulatory role of the small p97/VCP-interacting protein (SVIP) on the formation of the ERAD machinery that includes ubiquitin ligase gp78, AAA ATPase p97/VCP, and the putative channel Derlin1. We found that SVIP is anchored to microsomal membrane via myristoylation and co-fractionated with gp78, Derlin1, p97/VCP, and calnexin to the ER. Like gp78, SVIP also physically interacts with p97/VCP and Derlin1. Overexpression of SVIP blocks unassembled CD3delta from association with gp78 and p97/VCP, which is accompanied by decreases in CD3delta ubiquitination and degradation. Silencing SVIP expression markedly enhances the formation of gp78-p97/VCP-Derlin1 complex, which correlates with increased degradation of CD3delta and misfolded Z variant of alpha-1-antitrypsin, established substrates of gp78. These results suggest that SVIP is an endogenous inhibitor of ERAD that acts through regulating the assembly of the gp78-p97/VCP-Derlin1 complex.  相似文献   

19.
20.
Autophagy is a conserved mechanism for controlling the degradation of misfolded proteins and damaged organelles in eukaryotes and can be induced by nutrient withdrawal, including serum starvation. Although differential acetylation of autophagy-related proteins has been reported to be involved in autophagic flux, the regulation of acetylated microtubule-associated protein 1 light chain 3 (LC3) is incompletely understood. In this study, we found that the acetylation levels of phosphotidylethanolamine (PE)-conjugated LC3B (LC3B-II), which is a critical component of double-membrane autophagosome, were profoundly decreased in HeLa cells upon autophagy induction by serum starvation. Pretreatment with lysosomal inhibitor chloroquine did not attenuate such deacetylation. Under normal culture medium, we observed increased levels of acetylated LC3B-II in cells treated with tubacin, a specific inhibitor of histone deacetylase 6 (HDAC6). However, tubacin only partially suppressed serum-starvation-induced LC3B-II deacetylation, suggesting that HDAC6 is not the only deacetylase acting on LC3B-II during serum-starvation-induced autophagy. Interestingly, tubacin-induced increase in LC3B-II acetylation was associated with p62/SQSTM1 accumulation upon serum starvation. HDAC6 knockdown did not influence autophagosome formation but resulted in impaired degradation of p62/SQSTM1 during serum starvation. Collectively, our data indicated that LC3B-II deacetylation, which was partly mediated by HDAC6, is involved in autophagic degradation during serum starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号