首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 273 毫秒
1.
Previous work from our laboratory has shown that there is a much higher level of bFGF and GFAP immunoreactivity in area 2 of the cingulate cortex (Cg2) of rats on day 16 of lactation than in cycling or late pregnant females. To examine the time course of this change, in the first of the current studies, we compared bFGF and GFAP immunoreactivity in the brains of lactating females on postpartum day 4 (PP4), day 10 (PP10), day 16 (PP16), and day 24 (PP24) with that of cycling and ovariectomized (OVX) females. In the second study, we investigated whether the maintenance of these changes in bFGF and GFAP depended on suckling stimulation by removing litters on day 1 or day 16 postpartum and examining the brains of the dams on day 4 (Pr4) or day 24 (Pr24) postpartum, respectively. bFGF and GFAP immunoreactivity within Cg2 and the medial preoptic area (MPOA) were measured. In both experiments astrocytic bFGF and GFAP surface density in the Cg2 varied significantly across groups. All postpartum rats, regardless of stage of lactation or presence of the litter, had significantly higher levels of bFGF and GFAP immunoreactivity than cycling animals. Thus, the maintenance of this upregulation in bFGF and GFAP immunoreactivity does not depend on suckling stimulation. Consistent with our previous report, astrocytic bFGF was also elevated in the MPOA of PP16 animals. These data suggest a robust, long-lasting, postpartum change in bFGF and GFAP immunoreactivity in Cg2 and a role for this area of the cortex in the physiological and behavioral adaptations that accompany reproductive experience.  相似文献   

2.
A rapid upregulation of astrocytic protein expression within area 2 of the cingulate cortex (Cg2) of the maternal rat occurs within 3 h postpartum and persists throughout lactation. Previous studies have shown that similar changes in astrocytic proteins can signal changes in local synapses and dendritic spines. Thus, here we used the Golgi-Cox impregnation technique to compare spine density in layer 2 and 3 pyramidal cells of Cg2, the CA1 region of the hippocampus and the parietal cortex (ParCx) among metestrus, late pregnant (LP), 3-hour postpartum (3H PP) and 16-day postpartum rats (D16 PP). Rats in the 3H PP group had higher numbers of dendritic spines/10 μm on the apical dendrites of pyramidal neurons in both Cg2 and CA1 than the other groups, which did not differ. A similar pattern was observed in basilar dendrites but this failed to reach significance. In Cg2, Sholl analysis revealed that rats in the D16 PP group had a significantly greater extent of dendritic arborization in the basilar region than any other group. These data suggest that the changes in astrocytic proteins that occur in Cg2 in the postpartum period are associated with neuronal plasticity in pyramidal layers 2 and 3.  相似文献   

3.
Glutamine synthetase in brain: effect of ammonia   总被引:16,自引:0,他引:16  
Glutamine synthetase (GS) in brain is located mainly in astrocytes. One of the primary roles of astrocytes is to protect neurons against excitotoxicity by taking up excess ammonia and glutamate and converting it into glutamine via the enzyme GS. Changes in GS expression may reflect changes in astroglial function, which can affect neuronal functions.Hyperammonemia is an important factor responsible of hepatic encephalopathy (HE) and causes astroglial swelling. Hyperammonemia can be experimentally induced and an adaptive astroglial response to high levels of ammonia and glutamate seems to occur in long-term studies. In hyperammonemic states, astroglial cells can experience morphological changes that may alter different astrocyte functions, such as protein synthesis or neurotransmitters uptake. One of the observed changes is the increase in the GS expression in astrocytes located in glutamatergic areas. The induction of GS expression in these specific areas would balance the increased ammonia and glutamate uptake and protect against neuronal degeneration, whereas, decrease of GS expression in non-glutamatergic areas could disrupt the neuron-glial metabolic interactions as a consequence of hyperammonemia.Induction of GS has been described in astrocytes in response to the action of glutamate on active glutamate receptors. The over-stimulation of glutamate receptors may also favour nitric oxide (NO) formation by activation of NO synthase (NOS), and NO has been implicated in the pathogenesis of several CNS diseases. Hyperammonemia could induce the formation of inducible NOS in astroglial cells, with the consequent NO formation, deactivation of GS and dawn-regulation of glutamate uptake. However, in glutamatergic areas, the distribution of both glial glutamate receptors and glial glutamate transporters parallels the GS location, suggesting a functional coupling between glutamate uptake and degradation by glutamate transporters and GS to attenuate brain injury in these areas.In hyperammonemia, the astroglial cells located in proximity to blood-vessels in glutamatergic areas show increased GS protein content in their perivascular processes. Since ammonia freely crosses the blood-brain barrier (BBB) and astrocytes are responsible for maintaining the BBB, the presence of GS in the perivascular processes could produce a rapid glutamine synthesis to be released into blood. It could, therefore, prevent the entry of high amounts of ammonia from circulation to attenuate neurotoxicity. The changes in the distribution of this critical enzyme suggests that the glutamate-glutamine cycle may be differentially impaired in hyperammonemic states.  相似文献   

4.
Hypoxic preconditioning reprogrammes the brain''s response to subsequent H/I (hypoxia–ischaemia) injury by enhancing neuroprotective mechanisms. Given that astrocytes normally support neuronal survival and function, the purpose of the present study was to test the hypothesis that a hypoxic preconditioning stimulus would activate an adaptive astrocytic response. We analysed several functional parameters 24 h after exposing rat pups to 3 h of systemic hypoxia (8% O2). Hypoxia increased neocortical astrocyte maturation as evidenced by the loss of GFAP (glial fibrillary acidic protein)-positive cells with radial morphologies and the acquisition of multipolar GFAP-positive cells. Interestingly, many of these astrocytes had nuclear S100B. Accompanying their differentiation, there was increased expression of GFAP, GS (glutamine synthetase), EAAT-1 (excitatory amino acid transporter-1; also known as GLAST), MCT-1 (monocarboxylate transporter-1) and ceruloplasmin. A subsequent H/I insult did not result in any further astrocyte activation. Some responses were cell autonomous, as levels of GS and MCT-1 increased subsequent to hypoxia in cultured forebrain astrocytes. In contrast, the expression of GFAP, GLAST and ceruloplasmin remained unaltered. Additional experiments utilized astrocytes exposed to exogenous dbcAMP (dibutyryl-cAMP), which mimicked several aspects of the preconditioning response, to determine whether activated astrocytes could protect neurons from subsequent excitotoxic injury. dbcAMP treatment increased GS and glutamate transporter expression and function, and as hypothesized, protected neurons from glutamate excitotoxicity. Taken altogether, these results indicate that a preconditioning stimulus causes the precocious differentiation of astrocytes and increases the acquisition of multiple astrocytic functions that will contribute to the neuroprotection conferred by a sublethal preconditioning stress.  相似文献   

5.
Astrocytes are most abundant glial cell type in the brain and play a main defensive role in central nervous system against glutamate-induced toxicity by virtue of numerous transporters residing in their membranes and an astrocyte-specific enzyme glutamine synthetase (GS). In view of that, a dysregulation in the astrocytic activity following an insult may result in glutamate-mediated toxicity accompanied with astrocyte and microglial activation. The present study suggests that the lipopolysaccharide (LPS)-induced inflammation results in significant astrocytic apoptosis compared to other cell types in hippocampus and minocycline could not efficiently restrict the glutamate-mediated toxicity and apoptosis of astrocytes. Upon LPS exposure 76 % astrocytes undergo degeneration followed by 44 % oligodendrocytes, 26 % neurons and 10 % microglia. The pronounced astrocytic apoptosis resulted from the LPS-induced glutamate excitotoxicity leading to their hyperactivation as evident from their hypertrophied morphology, glutamate transporter 1 upregulation and downregulation of GS. Therapeutic minocycline treatment to LPS-infused rats efficiently restricted the inflammatory response and degeneration of other cell types but could not significantly combat with the apoptosis of astrocytes. Our study demonstrates a novel finding on cellular degeneration in the hippocampus revealing more of astrocytic death and suggests a more careful consideration on the protective efficacy of minocycline.  相似文献   

6.
The first indication of 'metabolic compartmentation' in brain was the demonstration that glutamine after intracisternal [14C]glutamate administration is formed from a compartment of the glutamate pool that comprises at most one-fifth of the total glutamate content in the brain. This pool, which was designated 'the small compartment,' is now known to be made up predominantly or exclusively of astrocytes, which accumulate glutamate avidly and express glutamine synthetase activity, whereas this enzyme is absent from neurons, which eventually were established to constitute 'the large compartment.' During the following decades, the metabolic compartment concept was refined, aided by emerging studies of energy metabolism and glutamate uptake in cellularly homogenous preparations and by the histochemical observations that the two key enzymes glutamine synthetase and pyruvate carboxylase are active in astrocytes but absent in neurons. It is, however, only during the last few years that nuclear magnetic resonance (NMR) spectroscopy, assisted by previously obtained knowledge of metabolic pathways, has allowed accurate determination in the human brain in situ of actual metabolic fluxes through the neuronal tricarboxylic acid (TCA) cycle, the glial, presumably mainly astrocytic, TCA cycle, pyruvate carboxylation, and the 'glutamate-glutamine cycle,' connecting neuronal and astrocytic metabolism. Astrocytes account for 20% of oxidative metabolism of glucose in the human brain cortex and accumulate the bulk of neuronally released transmitter glutamate, part of which is rapidly converted to glutamine and returned to neurons in the glutamate-glutamine cycle. However, one-third of released transmitter glutamate is replaced by de novo synthesis of glutamate from glucose in astrocytes, suggesting that at steady state a corresponding amount of glutamate is oxidatively degraded. Net degradation of glutamate may not always equal its net production from glucose and enhanced glutamatergic activity, occurring during different types of cerebral stimulation, including the establishment of memory, may be associated with increased de novo synthesis of glutamate. This process may contribute to a larger increase in glucose utilization rate than in rate of oxygen consumption during brain activation. The energy yield in astrocytes from glutamate formation is strongly dependent upon the fate of the generated glutamate.  相似文献   

7.
It appears almost incredible that the first indications that glutamate excites brain tissue were obtained during the second half of the 20th century, that vesicles containing glutamate were demonstrated in glutamatergic neurons less than 25 years ago, and that glutamate was not accepted as the major excitatory transmitter until about the same time. During this span of time it has also become realized that glutamate is so much more than a conventional neurotransmitter: (1) astrocytes express vesicles accumulating glutamate by vesicular transporters akin to the vesicular glutamate transporters in glutamatergic neurons, and they release glutamate by exocytosis; (2) a series of metabolic processes in astrocytes (glutamate uptake, glutamine synthetase activity, glutamine release) are involved in neuronal reutilization of transmitter glutamate; (3) glutamine may also be utilized for synthesis of GABA, the major inhibitory transmitter; (4) de novo synthesis of glutamate accounts for 20% of cerebral glucose metabolism, all of which initially occurs in astrocytes, and at steady state a corresponding amount of glutamate is oxidatively degraded, mainly or exclusively in astrocytes; (5) tissue contents of glutamate/glutamine increase during enhanced glutamatergic activity, i.e., astrocytic de novo synthesis exceeds astrocytic metabolic degradation of glutamate.  相似文献   

8.
Astrocytes undergo reactive transformation in response to physical injury (reactive gliosis) that may impede neural repair. Glutamine synthetase (GS) is highly expressed by astrocytes, and serves a neuroprotective function by converting cytotoxic glutamate and ammonia into glutamine. Glutamine synthetase was down-regulated in reactive astrocytes at the site of mechanical spinal cord injury (SCI) and in cultured astrocytes at the margins of a scratch wound, suggesting that GS may modulate reactive transformation and glial scar development. We evaluated this potential function of GS using siRNA-mediated GS knock-down. Suppression of astrocytic GS by GS siRNA increased cell migration into the scratch wound zone and decreased substrate adhesion as indicated by the number of focal adhesions expressing the adaptor protein paxillin. Migration was enhanced by glutamine and suppressed by glutamate, in contrast to the result expected if enhanced migration was due solely to changes in glutamine and glutamate concomitant with reduced GS activity. The membrane type 1-matrix metalloproteinase (MT1-MMP) was up-regulated in GS siRNA-treated astrocytes, while a broad-spectrum MMP antagonist inhibited migration in both wild type and GS knock-down astrocytes. In addition, GS siRNA inhibited expression of integrin β1, while antibody-mediated inhibition of integrin β1 impaired direction-specific protrusion and motility. Thus, GS may modulate motility and substrate adhesion through transmembrane integrin β1 signaling to the cytoskeleton and by MMT-mediated proteolysis of the extracellular matrix.  相似文献   

9.
While the astrocytic control of extracellular glutamate concentration at synaptic contacts is well characterized, little is known regarding the clearance of glutamate along axon tracts, even though local excitotoxic damage has been reported. Therefore, we have compared glutamate handling in astrocyte cultures derived from white matter (corpus callosum) and grey matter tissues (cortical structures). These populations of astrocytes showed clearly distinct phenotypes, adopting stellate or protoplasmic morphologies respectively. In addition, white matter astrocytes showed high densities of the intermediate filament proteins glial fibrillary acidic protein, vimentin and nestin. The glutamate–aspartate transporter and glutamate transporter‐1, as well as glutamine synthetase, were found to be expressed at higher levels in white matter compared with grey matter astrocytes. Consistent with this aspartate uptake capacity was three to fourfold higher in white matter cells, and the use of specific inhibitors revealed a substantial activity of glutamate transporter‐1, contrasting with grey matter cells where this transporter appeared poorly functional. In addition, expression of type 5 metabotropic glutamate receptors was considerably higher in white matter astrocytes where the agonist (S)‐3,5‐dihydroxyphenylglycine triggered a large release of intracellular calcium. Differences in these astrocyte cultures were also observed when exposed to experimental conditions that trigger glial activation. This study highlights typical features of cultured astrocytes derived from white matter tissues, which appear constitutively adapted to handle excitotoxic insults. Moreover, the expression and activity of the astroglial components involved in the control of glutamatergic transmission are reinforced when these cells are maintained under conditions mimicking a gliotic environment.  相似文献   

10.
Astrocytes are important in regulating the microencironment of neurons both by catabolic and synthetic pathways. The glutamine synthetase (GS) activity observed in astrocytes affects neurons by removing toxic substances, NH3 and glutamate; and by providing an important neuronal substrate, glutamine. This glutamate cycle might play a critical role during periods of hypoxia and ischemia, when an increase in extracellular excitatory amino acids is observed. It was previously shown in our laboratory that fructose-1,6-bisphosphate (FBP) protected cortical astrocyte cultures from hypoxic insult and reduced ATP loss following a prolonged (18–30 hrs) hypoxia. In the present study we established the effects of FBP on the level of glutamate uptake and GS activity under normoxic and hypoxic conditions. Under normoxic conditions, [U-14C]glutamate uptake and glutamine production were independent of FBP treatment; whereas under hypoxic conditions, the initial increase in glutamate uptake and an overall increase in glutamine production in astrocytes were FBP-dependent. Glutamine synthetase activity was dependent on FBP added during the 22 hours of either normoxic- or hypoxic-treatment, hence significant increases in activity were observed due to FBP regardless of the oxygen/ATP levels in situ. These studies suggest that activation of GS by FBP may provide astrocytic protection against hypoxic injury.  相似文献   

11.
Clearance of synaptic glutamate by glial cells is required for the normal function of excitatory synapses and for prevention of neurotoxicity. Although the regulatory role of glial glutamate transporters in glutamate clearance is well established, little is known about the influence of glial glutamate metabolism on this process. This study examines whether glutamine synthetase (GS), a glial-specific enzyme that amidates glutamate to glutamine, affects the uptake of glutamate. Retinal explants were incubated in the presence of [(14)C]glutamate and glutamate uptake was assessed by measurement of the amount of radioactively labeled molecules within the cells and the amount of [(14)C]glutamine released to the medium. An increase in GS expression in Müller glial cells, caused by induction of the endogenous gene, did not affect the amount of glutamate accumulated within the cells, but led to a dramatic increase in the amount of glutamine released. This increase, which was directly correlated with the level of GS expression, was dependent on the presence of external sodium ions, and could be completely abolished by methionine sulfoximine, a specific inhibitor of GS activity. Our results demonstrate that GS activity significantly influences the uptake of glutamate by the neural retina and suggest that this enzyme may represent an important target for neuroprotective strategies.  相似文献   

12.
13.
Adenoviral-mediated transfer of ciliary neurotrophic factor (CNTF) to the retina rescued retinal ganglion cells (RGCs) from axotomy-induced apoptosis, presumably via activation of the high affinity CNTF receptor alpha (CNTFRalpha) expressed on RGCs. CNTF can also activate astrocytes, via its low affinity leukemia inhibitory receptor beta expressed on mature astrocytes, suggesting that CNTF may also protect injured neurons indirectly by modulating glia. Adenoviral-mediated overexpression of CNTF in normal and axotomized rat retinas was examined to determine if it could increase the expression of several glial markers previously demonstrated to have a neuroprotective function in the injured brain and retina. Using Western blotting, the expression of glial fibrillary acid protein (GFAP), glutamate/aspartate transporter-1 (GLAST-1), glutamine synthetase (GS), and connexin 43 (Cx43) was examined 7 days after intravitreal injections of Ad.CNTF or control Ad.LacZ. Compared to controls, intravitreal injection of Ad.CNTF led to significant changes in the expression of CNTFRalpha, pSTAT(3), GFAP, GLAST, GS, and Cx43 in normal and axotomized retinas. Taken together, these results suggest that the neuroprotective effects of CNTF may result from a shift of retinal glia cells to a more neuroprotective phenotype. Moreover, the modulation of astrocytes may buffer high concentrations of glutamate that have been shown to contribute to the death of RGCs after optic nerve transection.  相似文献   

14.
We investigated the effects of 3h of anoxia on metabolism of neurons and astrocytes, using a robust cell-based model system that mimics closely the living tissue milieu, i.e., in 3D neural aggregates cultured in bioreactors. Cells were incubated simultaneously with [1-(13)C]glucose and [1,2-(13)C]acetate; and, the gliotoxin fluorocitrate (FC) was used for glial tricarboxylic acid (TCA) cycle inhibition to assess the role of astrocytes for neuronal metabolism after oxygen deprivation. Results show that culture viability was not compromised by exposure to anoxia with and without FC. Interaction between astrocytes and glutamatergic neurons was altered due to anoxia: labeling in glutamine from [1-(13)C]glucose was decreased, whereas that in glutamate from [1,2-(13)C]acetate was increased. In contrast, GABA labeling was not affected by anoxia. It was shown that anoxia did not affect astrocytic capacity to synthesize glutamine in the reoxygenation period. The selective action of FC on astrocytes was confirmed. However, the presence of small amounts of glutamate and GABA labeled from acetate indicated residual activity of the glial TCA cycle. Although major metabolic changes were found due to FC-treatment, the intracellular pool of GABA was kept unchanged. Overall, our data clearly confirm that the glutamate-glutamine cycle depends on astrocytic TCA cycle activity and that mitochondrial impairment of astrocytes will ultimately stop metabolic trafficking between astrocytes and glutamatergic neurons. Additionally, our data suggest a metabolic independence of GABAergic neurons from astrocytes even after situations of complete oxygen depletion.  相似文献   

15.
Here we report and validate a simple method for measuring intracellular activities of glial glutamine synthetase (GS) and glutaminase (GLNase) in intact glial cells. These enzymes are responsible for glutamate and glutamine recycling in the brain, where glutamate and glutamine transport from the blood stream is strongly limited by the blood-brain barrier. The intracellular levels of glutamate and glutamine are dependent on activities of numerous enzymatic processes, including 1) cytosolic production of glutamine from glutamate by GS, 2) production of glutamate from glutamine by GLNase that is primarily localized between mitochondrial membranes, and 3) mitochondrial conversion of glutamate to the tricarboxylic cycle intermediate α-ketoglutarate in the reactions of oxidative deamination and transamination. We measured intracellular activities of GS and GLNase by quantifying enzymatic interconversions of L-[(3)H]glutamate and L-[(3)H]glutamine in cultured rat astrocytes. The intracellular substrate and the products of enzymatic reactions were separated in one step using commercially available anion exchange columns and quantified using a scintillation counter. The involvement of GS and GLNase in the conversion of (3)H-labeled substrates was verified using irreversible pharmacological inhibitors for each of the enzymes and additionally validated by measuring intracellular amino acid levels using an HPLC. Overall, this paper describes optimized conditions and pharmacological controls for measuring GS and GLNase activities in intact glial cells.  相似文献   

16.
Adenoviral‐mediated transfer of ciliary neurotrophic factor (CNTF) to the retina rescued retinal ganglion cells (RGCs) from axotomy‐induced apoptosis, presumably via activation of the high affinity CNTF receptor alpha (CNTFRα) expressed on RGCs. CNTF can also activate astrocytes, via its low affinity leukemia inhibitory receptor beta expressed on mature astrocytes, suggesting that CNTF may also protect injured neurons indirectly by modulating glia. Adenoviral‐mediated overexpression of CNTF in normal and axotomized rat retinas was examined to determine if it could increase the expression of several glial markers previously demonstrated to have a neuroprotective function in the injured brain and retina. Using Western blotting, the expression of glial fibrillary acid protein (GFAP), glutamate/aspartate transporter‐1 (GLAST‐1), glutamine synthetase (GS), and connexin 43 (Cx43) was examined 7 days after intravitreal injections of Ad.CNTF or control Ad.LacZ. Compared to controls, intravitreal injection of Ad.CNTF led to significant changes in the expression of CNTFRα, pSTAT3, GFAP, GLAST, GS, and Cx43 in normal and axotomized retinas. Taken together, these results suggest that the neuroprotective effects of CNTF may result from a shift of retinal glia cells to a more neuroprotective phenotype. Moreover, the modulation of astrocytes may buffer high concentrations of glutamate that have been shown to contribute to the death of RGCs after optic nerve transection. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

17.
Guanosine, a guanine-based purine, is recognized as an extracellular signaling molecule that is released from astrocytes and confers neuroprotective effects in several in vivo and in vitro studies. Astrocytes regulate glucose metabolism, glutamate transport, and defense mechanism against oxidative stress. C6 astroglial cells are widely used as an astrocyte-like cell line to study the astrocytic function and signaling pathways. Our previous studies showed that guanosine modulates the glutamate uptake activity, thus avoiding glutamatergic excitotoxicity and protecting neural cells. The goal of this study was to determine the gliopreventive effects of guanosine against glucose deprivation in vitro in cultured C6 cells. Glucose deprivation induced cytotoxicity, an increase in reactive oxygen and nitrogen species (ROS/RNS) levels and lipid peroxidation as well as affected the metabolism of glutamate, which may impair important astrocytic functions. Guanosine prevented glucose deprivation-induced toxicity in C6 cells by modulating oxidative and nitrosative stress and glial responses, such as the glutamate uptake, the glutamine synthetase activity, and the glutathione levels. Glucose deprivation decreased the level of EAAC1, the main glutamate transporter present in C6 cells. Guanosine also prevented this effect, most likely through PKC, PI3K, p38 MAPK, and ERK signaling pathways. Taken together, these results show that guanosine may represent an important mechanism for protection of glial cells against glucose deprivation. Additionally, this study contributes to a more thorough understanding of the glial- and redox-related protective properties of guanosine in astroglial cells.  相似文献   

18.
Astrocytes and radial glia coexist in the adult mesencephalon of the lizard Gallotia galloti. Radial glia and star-shaped astrocytes express glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). The same cell markers are also expressed by round or pear-shaped cells that are therefore astrocytes with unusual morphology. Other round or pear-shaped cells, also scattered in the tegmentum and the tectum, display only GS. Electron microscopy reveals that these cells may be oligodendrocytes. In this lizard, the GS is expressed in some oligodendrocytes while this does not occur in the central nervous system of mammals in situ. These results confirm that the cellular specificity of GS is different in various species and suggest that ependymal cells are also immunoreactive for GS but they do not contain GFAP. J. Morphol. 235:109–119, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Summary The subcommissural organ (SCO), classified as one of the circumventricular organs, is composed mainly of modified ependymal cells, attributable to a glial lineage. Nevertheless, in the rat, these cells do not possess glial markers such as glial fibrillary acidic protein (GFAP), protein S100, or the enzyme glutamine synthetase (GS). They receive a synaptic 5-HT input and show pharmacological properties for uptake of GABA resembling the uptake mechanism of neurons. In this study, we examine the phenotype of several mammalian SCO (cat, mouse, rabbit) and compare them with the corresponding features of the rat SCO. In all these species, the SCO ependymocytes possess vimentin as an intermediate filament, but never express GFAP or neurofilament proteins. They do not contain GS as do glial cells involved in GABA metabolism, and when they contain protein S100 (rabbit, mouse), its rate is low in comparison to classical glial or ependymal cells. Thus, these ependymocytes display characteristics that differentiate them from other types of glial cells (astrocytes, epithelial ependymocytes and tanycytes). Striking interspecies differences in the capacity of SCO-ependymocytes for uptake of GABA might be related to their innervation and suggest a species-dependent plasticity in their function.  相似文献   

20.
Cerebral hyperammonemia is a hallmark of hepatic encephalopathy, a debilitating condition arising secondary to liver disease. Pyruvate oxidation including tricarboxylic acid (TCA) cycle metabolism has been suggested to be inhibited by hyperammonemia at the pyruvate and -ketoglutarate dehydrogenase steps. Catabolism of the branched-chain amino acid isoleucine provides both acetyl-CoA and succinyl-CoA, thus by-passing both the pyruvate dehydrogenase and the -ketoglutarate dehydrogenase steps. Potentially, this will enable the TCA cycle to work in the face of ammonium-induced inhibition. In addition, this will provide the -ketoglutarate carbon skeleton for glutamate and glutamine synthesis by glutamate dehydrogenase and glutamine synthetase (astrocytes only), respectively, both reactions fixing ammonium. Cultured cerebellar neurons (primarily glutamatergic) or astrocytes were incubated in the presence of either [U-13C]glucose (2.5 mM) and isoleucine (1 mM) or [U-13C]isoleucine and glucose. Cell cultures were treated with an acute ammonium chloride load of 2 (astrocytes) or 5 mM (neurons and astrocytes) and incorporation of 13C-label into glutamate, aspartate, glutamine and alanine was determined employing mass spectrometry. Labeling from [U-13C]glucose in glutamate and aspartate increased as a result of ammonium-treatment in both neurons and astrocytes, suggesting that the TCA cycle was not inhibited. Labeling in alanine increased in neurons but not in astrocytes, indicating elevated glycolysis in neurons. For both neurons and astrocytes, labeling from [U-13C]isoleucine entered glutamate and aspartate albeit to a lower extent than from [U-13C]glucose. Labeling in glutamate and aspartate from [U-13C]isoleucine was decreased by ammonium treatment in neurons but not in astrocytes, the former probably reflecting increased metabolism of unlabeled glucose. In astrocytes, ammonia treatment resulted in glutamine production and release to the medium, partially supported by catabolism of [U-13C]isoleucine. In conclusion, i) neuronal and astrocytic TCA cycle metabolism was not inhibited by ammonium and ii) isoleucine may provide the carbon skeleton for synthesis of glutamate/glutamine in the detoxification of ammonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号