共查询到20条相似文献,搜索用时 0 毫秒
1.
Drosophila Nedd2-like caspase (DRONC), an initiator caspase in Drosophila melanogaster and ortholog of human caspase-9, is cleaved during its activation in vitro and in vivo. We show that, in contrast to conclusions from previous studies, cleavage is neither necessary nor sufficient for DRONC activation. Instead, our data suggest that DRONC is activated by dimerization, a mechanism used by its counterparts in humans. Subsequent cleavage at Glu352 stabilizes the active dimer. Since cleavage is at a Glu residue, it has been proposed that DRONC is a dual Asp- and Glu-specific caspase. We used positional-scanning peptide libraries to define the P1-P4 peptide sequence preferences of DRONC, and show that it is indeed equally active on optimized tetrapeptides containing either Asp or Glu in P1. Furthermore, mutagenesis reveals that Asp and Glu residues are equally tolerated at the primary autoprocessing site of DRONC itself. However, when its specificity is tested on a natural substrate, the Drosophila executioner caspase DRICE, a clear preference for Asp emerges. The formerly proposed Glu preference is thus incorrect. DRONC does not differentiate between Asp and Glu in poor substrates, but prefers Asp when tested on a good substrate. 相似文献
2.
The activation of caspases is the principal event in the execution of apoptosis. Initiator caspases are activated through an autocatalytic mechanism often involving dimerisation or oligomerisation. In Drosophila, the only initiator caspase DRONC, is tightly inhibited by DIAP1 and removal of DIAP1 permits activation of DRONC by the Drosophila Apaf-1-related killer, ARK. ARK is proposed to facilitate DRONC oligomerisation and autoprocessing at residue E352. This study examines whether autoprocessing of DRONC is required for its activation and for DRONC-mediated cell death. Using purified recombinant proteins, we show here that while DRONC autocleaves at residue E352, mutation of this site did not abolish enzyme activation, DRICE-induced cleavage of DRONC or DRONC-mediated activation of DRICE. We performed a detailed mutational analysis of DRONC cleavage sites and show that overexpression of DRONC cleavage mutants in Drosophila cells retain pro-apoptotic activity. Using an in vitro cell-free assay, we found ARK alone did not activate DRONC and demonstrate a requirement for an additional cytosolic factor in ARK-mediated DRONC activation. These results suggest that, similar to mammalian caspase-2 and caspase-9, the initial cleavage of DRONC is not essential for its activation and suggest a mechanism of ARK-mediated DRONC activation different from that proposed previously. 相似文献
3.
A role for Drosophila IAP1-mediated caspase inhibition in Rac-dependent cell migration 总被引:8,自引:0,他引:8
Border cell migration in the Drosophila ovary is a relatively simple and genetically tractable model for studying the conversion of epithelial cells to migratory cells. Like many cell migrations, border cell migration is inhibited by a dominant-negative form of the GTPase Rac. To identify new genes that function in Rac-dependent cell motility, we screened for genes that when overexpressed suppressed the migration defect caused by dominant-negative Rac. Overexpression of the Drosophila inhibitor of apoptosis 1 (DIAP1), which is encoded by the thread (th) gene, suppressed the migration defect. Moreover, loss-of-function mutations in th caused migration defects but, surprisingly, did not cause apoptosis. Mutations affecting the Dark protein, an activator of the upstream caspase Dronc, also rescued RacN17 migration defects. These results indicate an apoptosis-independent role for DIAP1-mediated Dronc inhibition in Rac-mediated cell motility. 相似文献
4.
We have isolated the recently identified Drosophila caspase DRONC through its interaction with the effector caspase drICE. Ectopic expression of DRONC induces cell death in Schizosaccharomyces pombe, mammalian fibroblasts and the developing Drosophila eye. The caspase inhibitor p35 fails to rescue DRONC-induced cell death in vivo and is not cleaved by DRONC in vitro, making DRONC the first identified p35-resistant caspase. The DRONC pro-domain interacts with Drosphila inhibitor of apoptosis protein 1 (DIAP1), and co-expression of DIAP1 in the developing Drosophila eye completely reverts the eye ablation phenotype induced by pro-DRONC expression. In contrast, DIAP1 fails to rescue eye ablation induced by DRONC lacking the pro-domain, indicating that interaction of DIAP1 with the pro-domain of DRONC is required for suppression of DRONC-mediated cell death. Heterozygosity at the diap1 locus enhances the pro-DRONC eye phenotype, consistent with a role for endogenous DIAP1 in suppression of DRONC activation. Both heterozygosity at the dronc locus and expression of dominant-negative DRONC mutants suppress the eye phenotype caused by reaper (RPR) and head involution defective (HID), consistent with the idea that DRONC functions in the RPR and HID pathway. 相似文献
5.
Yan N Huh JR Schirf V Demeler B Hay BA Shi Y 《The Journal of biological chemistry》2006,281(13):8667-8674
Activation of an initiator caspase is essential to the execution of apoptosis. The molecular mechanisms by which initiator caspases are activated remain poorly understood. Here we demonstrate that the autocatalytic cleavage of Dronc, an important initiator caspase in Drosophila, results in a drastic enhancement of its catalytic activity in vitro. The autocleaved Dronc forms a homodimer, whereas the uncleaved Dronc zymogen exists exclusively as a monomer. Thus the autocatalytic cleavage in Dronc induces its stable dimerization, which presumably allows the two adjacent monomers to mutually stabilize their active sites, leading to activation. Crystal structure of a prodomain-deleted Dronc zymogen, determined at 2.5 A resolution, reveals an unproductive conformation at the active site, which is consistent with the observation that the zymogen remains catalytically inactive. This study revealed insights into mechanism of Dronc activation, and in conjunction with other observations, suggests diverse mechanisms for the activation of initiator caspases. 相似文献
6.
Hou YC Chittaranjan S Barbosa SG McCall K Gorski SM 《The Journal of cell biology》2008,182(6):1127-1139
A complex relationship exists between autophagy and apoptosis, but the regulatory mechanisms underlying their interactions are largely unknown. We conducted a systematic study of Drosophila melanogaster cell death–related genes to determine their requirement in the regulation of starvation-induced autophagy. We discovered that six cell death genes—death caspase-1 (Dcp-1), hid, Bruce, Buffy, debcl, and p53—as well as Ras–Raf–mitogen activated protein kinase signaling pathway components had a role in autophagy regulation in D. melanogaster cultured cells. During D. melanogaster oogenesis, we found that autophagy is induced at two nutrient status checkpoints: germarium and mid-oogenesis. At these two stages, the effector caspase Dcp-1 and the inhibitor of apoptosis protein Bruce function to regulate both autophagy and starvation-induced cell death. Mutations in Atg1 and Atg7 resulted in reduced DNA fragmentation in degenerating midstage egg chambers but did not appear to affect nuclear condensation, which indicates that autophagy contributes in part to cell death in the ovary. Our study provides new insights into the molecular mechanisms that coordinately regulate autophagic and apoptotic events in vivo. 相似文献
7.
The Drosophila DIAP1 protein is required to prevent accumulation of a continuously generated,processed form of the apical caspase DRONC 总被引:3,自引:0,他引:3
Although loss of the inhibitor of apoptosis (IAP) protein DIAP1 has been shown to result in caspase activation and spontaneous cell death in Drosophila cells and embryos, the point at which DIAP1 normally functions to inhibit caspase activation is unknown. Depletion of the DIAP1 protein in Drosophila S2 cells or the Sf-IAP protein in Spodoptera frugiperda Sf21 cells by RNA interference (RNAi) or cycloheximide treatment resulted in rapid and widespread caspase-dependent apoptosis. Co-silencing of dronc or dark largely suppressed this apoptosis, indicating that DIAP1 is normally required to inhibit an activity dependent on these proteins. Silencing of dronc also inhibited DRICE processing following stimulation of apoptosis, demonstrating that DRONC functions as an apical caspase in S2 cells. Silencing of diap1 or treatment with UV light induced DRONC processing, which occurred in two steps. The first step appeared to occur continuously even in the absence of an apoptotic signal and to be dependent on DARK, because full-length DRONC accumulated when dark was silenced in non-apoptotic cells. In addition, treatment with the proteasome inhibitor MG132 resulted in accumulation of this initially processed form of DRONC, but not full-length DRONC, in non-apoptotic cells. The second step in DRONC processing was observed only in apoptotic cells. These results indicate that the initial step in DRONC processing occurs continuously via a DARK-dependent mechanism in Drosophila cells and that DIAP1 is required to prevent excess accumulation of this first form of processed DRONC, presumably through its ability to act as a ubiquitin-protein ligase. 相似文献
8.
In Drosophila S2 cells, the apical caspase DRONC undergoes a low level of spontaneous autoprocessing. Unintended apoptosis is prevented by the inhibitor of apoptosis DIAP1, which targets the processed form of DRONC for degradation through its E3 ubiquitin protein ligase activity. Recent reports have demonstrated that shortly after the initiation of apoptosis in S2 cells, DIAP1 is cleaved following aspartate residue Asp-20 by the effector caspase DrICE. Here we report a novel caspase-mediated cleavage of DIAP1 in S2 cells. In both living and dying S2 cells, DIAP1 is cleaved by DRONC after glutamate residue Glu-205, located between the first and second BIR domains. The mutation of Glu-205 prevented the interaction of DIAP1 and processed DRONC but had no effect on the interaction with full-length DRONC. The mutation of Glu-205 also had a negative effect on the ability of overexpressed DIAP1 to prevent apoptosis stimulated by the proapoptotic protein Reaper or by UV light. These results expand our knowledge of the events that occur in the Drosophila apoptosome prior to and after receiving an apoptotic signal. 相似文献
9.
FBXL5-mediated degradation of single-stranded DNA-binding protein hSSB1 controls DNA damage response
Zhi-Wei Chen Bin Liu Nai-Wang Tang Yun-Hua Xu Xiang-Yun Ye Zi-Ming Li Xiao-Min Niu Sheng-Ping Shen Shun Lu Ling Xu 《Nucleic acids research》2014,42(18):11560-11569
Human single-strand (ss) DNA binding proteins 1 (hSSB1) has been shown to participate in DNA damage response and maintenance of genome stability by regulating the initiation of ATM-dependent signaling. ATM phosphorylates hSSB1 and prevents hSSB1 from ubiquitin-proteasome-mediated degradation. However, the E3 ligase that targets hSSB1 for destruction is still unknown. Here, we report that hSSB1 is the bona fide substrate for an Fbxl5-containing SCF (Skp1-Cul1-F box) E3 ligase. Fbxl5 interacts with and targets hSSB1 for ubiquitination and degradation, which could be prevented by ATM-mediated hSSB1 T117 phosphorylation. Furthermore, cells overexpression of Fbxl5 abrogated the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets and exhibited increased radiosensitivity, chemosensitivity and defective checkpoint activation after genotoxic stress stimuli. Moreover, the protein levels of hSSB1 and Fbxl5 showed an inverse correlation in lung cancer cells lines and clinical lung cancer samples. Therefore, Fbxl5 may negatively modulate hSSB1 to regulate DNA damage response, implicating Fbxl5 as a novel, promising therapeutic target for lung cancers. 相似文献
10.
Spontaneous neutrophil apoptosis involves caspase 3-mediated activation of protein kinase C-delta 总被引:7,自引:0,他引:7
Pongracz J Webb P Wang K Deacon E Lunn OJ Lord JM 《The Journal of biological chemistry》1999,274(52):37329-37334
Neutrophils are short-lived leukocytes that die by apoptosis. Whereas stress-induced apoptosis is mediated by the p38 mitogen-activated protein (MAP) kinase pathway (Frasch, S. C., Nick, J. A., Fadok, V. A., Bratton, D. L., Worthen, G. S., and Henson, P. M. (1998) J. Biol. Chem. 273, 8389-8397), signals regulating spontaneous neutrophil apoptosis have not been fully determined. In this study we found increased activation of protein kinase C (PKC)-beta and -delta in neutrophils undergoing spontaneous apoptosis, but we show that only activation of PKC-delta was directly involved in the induction of apoptosis. PKC-delta can be proteolytically activated by caspase 3. We detected the 40-kDa caspase-generated fragment of PKC-delta in apoptotic neutrophils and showed that the caspase 3 inhibitor Asp-Glu-Val-Asp-fluoromethylketone prevented generation of the 40-kDa PKC-delta fragment and delayed neutrophil apoptosis. In a cell-free system, removal of PKC-delta by immunoprecipitation reduced DNA fragmentation, whereas loss of PKC-alpha, -beta, or -zeta had no significant effect. Rottlerin and LY379196 inhibit PKC-delta and PKC-beta, respectively. Only Rottlerin was able to delay neutrophil apoptosis. Inhibitors of MAP-ERK kinase 1 (PD98059) or p38 MAP kinase (SB202190) had no effect on neutrophil apoptosis, and activation of p42/44 and p38 MAP kinase did not increase in apoptotic neutrophils. We conclude that spontaneous neutrophil apoptosis involves activation of PKC-delta but is MAP kinase-independent. 相似文献
11.
Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition 总被引:1,自引:0,他引:1
We report here the identification of a novel protein, Smac, which promotes caspase activation in the cytochrome c/Apaf-1/caspase-9 pathway. Smac promotes caspase-9 activation by binding to inhibitor of apoptosis proteins, IAPs, and removing their inhibitory activity. Smac is normally a mitochondrial protein but is released into the cytosol when cells undergo apoptosis. Mitochondrial import and cleavage of its signal peptide are required for Smac to gain its apoptotic activity. Overexpression of Smac increases cells' sensitivity to apoptotic stimuli. Smac is the second mitochondrial protein, along with cytochrome c, that promotes apoptosis by activating caspases. 相似文献
12.
Hawkins CJ Yoo SJ Peterson EP Wang SL Vernooy SY Hay BA 《The Journal of biological chemistry》2000,275(35):27084-27093
The caspase family of cysteine proteases plays important roles in bringing about apoptotic cell death. All caspases studied to date cleave substrates COOH-terminal to an aspartate. Here we show that the Drosophila caspase DRONC cleaves COOH-terminal to glutamate as well as aspartate. DRONC autoprocesses itself following a glutamate residue, but processes a second caspase, drICE, following an aspartate. DRONC prefers tetrapeptide substrates in which aliphatic amino acids are present at the P2 position, and the P1 residue can be either aspartate or glutamate. Expression of a dominant negative form of DRONC blocks cell death induced by the Drosophila cell death activators reaper, hid, and grim, and DRONC overexpression in flies promotes cell death. Furthermore, the Drosophila cell death inhibitor DIAP1 inhibits DRONC activity in yeast, and DIAP1's ability to inhibit DRONC-dependent yeast cell death is suppressed by HID and GRIM. These observations suggest that DRONC acts to promote cell death. However, DRONC activity is not suppressed by the caspase inhibitor and cell death suppressor baculovirus p35. We discuss possible models for DRONC function as a cell death inhibitor. 相似文献
13.
《Cell cycle (Georgetown, Tex.)》2013,12(23):4128-4137
Previous studies have demonstrated that curcumin induces mitochondria-mediated apoptosis. However, understanding of the molecular mechanisms underlying curcumin-induced cell death remains limited. In this study, we demonstrate that curcumin treatment of cancer cells caused dose- and time-dependent caspase-3 activation, which is required for apoptosis as confirmed using the pan caspase inhibitor, z-VAD. Knockdown experiments and knockout cells excluded a role of caspase-8 in curcumin-induced caspase-3 activation. In contrast, Apaf-1 deficiency or silencing inhibited the activity of caspase-3, pointing to a requisite role of Apaf-1 in curcumin-induced apoptotic cell death. Curcumin treatment led to Apaf-1 upregulation both at the protein and mRNA levels. Cytochrome c release from mitochondria to the cytosol in curcumin-treated cells was associated with upregulation of proapoptotic proteins such as Bax, Bak, Bid, and Bim. Crosslinking experiments demonstrated Bax oligomerization during curcumin-induced apoptosis, suggesting that induced expression of Bax, Bid, and Bim causes Bax-channel formation on the mitochondrial membrane. The release of cytochrome c was unaltered in p53-deficient cells, whereas absence of p21 blocked cytochrome c release, caspase activation, and apoptosis. Importantly, p21-deficiency resulted in reduced expression of Apaf-1 during curcumin treatment, indicating a requirement of p21 in Apaf-1 dependent caspase activation and apoptosis. Together, our findings demonstrate that Apaf-1, Bax, and p21 as novel potential targets for curcumin or curcumin-based anticancer agents. 相似文献
14.
Raghu Gogada Michael Amadori Honghao Zhang Anthony Jones Alissa Verone Jason Pitarresi Sirisha Jandhyam Varun Prabhu Jennifer D Black Dhyan Chandra 《Cell cycle (Georgetown, Tex.)》2011,10(23):4128-4137
Previous studies have demonstrated that curcumin induces mitochondria-mediated apoptosis. However, understanding of the molecular mechanisms underlying curcumin-induced cell death remains limited. In this study, we demonstrate that curcumin treatment of cancer cells caused dose- and time-dependent caspase 3 activation, which is required for apoptosis as confirmed using the pan-caspase inhibitor, z-VAD. Knockdown experiments and knockout cells excluded a role for caspase 8 in curcumin-induced caspase 3 activation. In contrast, Apaf-1 deficiency or silencing inhibited the activity of caspase 3, pointing to a requisite role of Apaf-1 in curcumin-induced apoptotic cell death. Curcumin treatment led to Apaf-1 upregulation, both at the protein and mRNA levels. Cytochrome c release from mitochondria to the cytosol in curcumin-treated cells was associated with upregulation of pro-apoptotic proteins, such as Bax, Bak, Bid and Bim. Cross-linking experiments demonstrated Bax oligomerization during curcumin-induced apoptosis, suggesting that induced expression of Bax, Bid and Bim causes Bax channel formation on the mitochondrial membrane. The release of cytochrome c was unaltered in p53-deficient cells, whereas absence of p21 blocked cytochrome c release, caspase activation and apoptosis. Importantly, p21 deficiency resulted in reduced expression of Apaf-1 during curcumin treatment, indicating a requirement for p21 in Apaf-1-dependent caspase activation and apoptosis. Together, our findings identify Apaf-1, Bax and p21 as novel potential targets for curcumin or curcumin-based anticancer agents.Key words: curcumin, mitochondria, cytochrome c, Apaf-1, caspase, p21 相似文献
15.
Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway 总被引:9,自引:0,他引:9
Genini D Budihardjo I Plunkett W Wang X Carrera CJ Cottam HB Carson DA Leoni LM 《The Journal of biological chemistry》2000,275(1):29-34
Adenine deoxynucleosides, such as 2-chlorodeoxyadenosine (2CdA) and fludarabine, induce apoptosis in quiescent lymphocytes, and are thus useful drugs for the treatment of indolent lymphoproliferative diseases. We previously demonstrated that that the 5'-triphosphate metabolite of 2CdA (2CdATP), similar to dATP, can cooperate with cytochrome c and apoptosis protein-activating factor-1 (APAF-1) to trigger a caspase pathway in a HeLa cell-free system. We used a fluorometry-based assay of caspase activation to extend the analysis to several other clinically relevant adenine deoxynucleotides in B-chronic lymphocytic leukemia extracts. The nucleotide-induced caspase activation displayed typical Michaelis-Menten kinetics. As estimated by the V(max)/K(m) ratios, the relative efficiencies of different nucleotides were Ara-ATP > 9-fluoro-9-beta-D-arabinofuranosyladenine 5'-triphosphate > dATP > 2CdATP > 9-beta-D-arabinofuranosylguanine 5'-triphosphate > dADP > ATP. In contrast to dADP, both ADP and its nonhydrolyzable alpha, beta-methylphosphonate analog were strong inhibitors of APAF-1-dependent caspase activation. The hierarchy of nucleotide activation was confirmed in a fully reconstituted system using recombinant APAF-1 and recombinant procaspase-9. These results suggest that the potency of adenine deoxynucleotides as co-factors for APAF-1-dependent caspase activation is due both to stimulation by the 5'-triphosphates and lack of inhibition by the 5'-diphosphates. The capacity of adenine deoxynucleoside metabolites to activate the apoptosome pathway may be an additional biochemical mechanism that plays a role in the chemotherapy of indolent lymphoproliferative diseases. 相似文献
16.
Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis 总被引:4,自引:0,他引:4
下载免费PDF全文

Degradation of certain inhibitor of apoptosis proteins (IAPs) appears to be critical in the initiation of apoptosis, but the factors that regulate their degradation in mammalian cells are unknown. Nrdp1/FLRF is a RING finger-containing ubiquitin ligase that catalyzes degradation of the EGF receptor family member, ErbB3. We show here that Nrdp1 associates with BRUCE/apollon, a 530 kDa membrane-associated IAP, which contains a ubiquitin-carrier protein (E2) domain. In the presence of an exogenous E2, UbcH5c, purified Nrdp1 catalyzes BRUCE ubiquitination. In vivo, overexpression of Nrdp1 promotes ubiquitination and proteasomal degradation of BRUCE. In many cell types, apoptotic stimuli induce proteasomal degradation of BRUCE (but not of XIAP or c-IAP1), and decreasing Nrdp1 levels by RNA interference reduces this loss of BRUCE. Furthermore, decreasing BRUCE content by RNA interference or overexpression of Nrdp1 promotes apoptosis. Thus, BRUCE normally inhibits apoptosis, and Nrdp1 can be important in the initiation of apoptosis by catalyzing ubiquitination and degradation of BRUCE. 相似文献
17.
18.
The self-activation of initiator caspases is dependent on their oligomerization driven by interaction with the death fold domains (DFD) of adaptor proteins. Here, we show that the E2 protein of human papillomavirus type 18 triggers apoptosis by assembling cytoplasmic filaments together with caspase 8, in which its efficient self-activation occurs. The E2 protein binds directly to the death effector domains (DED) of caspase 8 through non-DFD interaction. This interaction is independent of FADD, but it can cooperate with FADD homotypic binding to caspase 8 to induce its oligomerization; hence cell death, while it is antagonized by competitive binding of MC159 FLICE inhibitory protein. The amino-terminal domain of E2 contains a 27 amino-acid alpha-helix, which is necessary and sufficient to induce caspase oligomerization and cell death. Our results provide evidence for adaptor-independent oligomerization of caspase 8, mediated by non-DFD direct interactions with the HPV18 E2 protein, thus deciphering a new pathway for caspase 8 activation. 相似文献
19.
The accumulation of damaged or misfolded proteins, if unresolved, can lead to a detrimental consequence within cells termed proteotoxicity. Since cancerous cells often display elevated protein synthesis and by-product disposal, inhibition of the protein degradation pathways is an emerging approach for cancer therapy. However, the molecular mechanism underlying proteotoxicity remains largely unclear. We show here that inhibition of proteasomal degradation results in an increased oligomerization and activation of caspase-8 on the cytosolic side of intracellular membranes. This enhanced caspase-8 oligomerization and activation are promoted through its interaction with the ubiquitin-binding protein SQSTM1/p62 and the microtubule-associated protein light chain 3 (LC3), which are enriched at intracellular membranes in response to proteotoxic stress. Silencing LC3 by shRNA, or the LC3 mutants defective in membrane localization or p62 interaction fail to induce caspase-8 activation and apoptosis. Our results unveiled a previously unknown mechanism through which disruption of protein homeostasis induces caspase-8 oligomerization, activation, and apoptosis. 相似文献