首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
X-ray difference Fourier analysis at 2.8 Å resolution shows that the tertiary structures of horse cyanide methemoglobin and methemoglobin differ significantly. The conformations of the heme groups and their interactions with the globin are altered. Short contacts with globin side chains affect cyanide binding to the hemes, and the changes in globin-ligand contact upon substitution of cyanide for water in turn directly affect globin structure. Although the ligand peaks lie off the heme axes, the atoms FeCN may still lie on a straight line (as they do in small iron cyanide complexes), with this line not normal to the mean heme plane. This linear binding configuration is consistent with the observed motion and deformation of the porphyrin. Although motion of the iron atoms is not directly apparent, there is evidence that some changes in tertiary structure are induced by shortening of the iron-pyrrol nitrogen bond lengths. This and other studies suggest that the structural changes responsible for co-operativity in hemoglobin may be initiated not merely by an alteration in the covalent porphyrin-proximal histidine linkage, but by changes in the noncovalent interactions of the globin with the ligand and porphyrin as well.  相似文献   

3.
4.
5.
Selenite, selenate and selenocystine catalyzed the reduction of methemoglobin (metHb) by glutathione (GSH), while selenomethionine did not. Maximal reduction of metHb was observed with 10?5 M selenite and 2 mM GSH, at pH 7.4. Selenite also catalyzed the reduction of metHb with cysteine or 2-mercaptoethylamine in place of GSH. Heavy metals and arsenite completely prevented the effect of selenite. These findings suggest that certain seleno-compounds catalyze the reduction of metHb by thiol compounds.  相似文献   

6.
A computer-assisted method for analyzing photoacoustic spectra has been developed. Using this analysis, the relative absorption spectrum and either the chromophore concentration or thermal diffusivity characteristic of a sample can be derived from its photoacoustic spectrum. We have demonstrated the accuracy of the method by analyzing photoacoustic spectra of solution and crystalline-phase bovine cyanide methemoglobin. BASIC and FORTRAN routines used to collect and to analyze photoacoustic spectra are described. Photoacoustic spectroscopy can be used in conjunction with the analytical method presented here to obtain accurate absorption spectra from a variety of solid, opaque, and/or turbid samples.  相似文献   

7.
8.
The pH dependence of the kinetics of the binding of cyanide ion to methemoglobins A and S and to guinea pig and pigeon methemoglobins appears to be not directly correlated with the net charges on the proteins. The kinetics can, however, be adequately explained in terms of three sets of heme-linked ionizable groups with pK1 ranging between 4.9 and 5.3, pK2 between 6.2 and 7.9, and pK3 between 8.0 and 8.5 at 20 degrees C. pK1 is assigned to carboxylic acid groups, pK2 to histidines and terminal amino groups, and pK3 to the acid-alkaline methemoglobin transition. Kinetic second order rate constants have also been determined for the binding of cyanide ion by the four sets of methemoglobin species present in solution. The pKi values and the rate constants of methemoglobin S are strikingly different from those of methemoglobin A. This result is explained in terms of different electrostatic contributions to the free energy of heme linkage arising from differences in the environments of ionizable groups at the surfaces of the two molecules.  相似文献   

9.
10.
Electron spin resonance (ESR) studies that on reaction with NADPH, alloxan was reduced forming labile anion radicals giving a 7-line signal with g = 2.005. These radicals were also produced on incubation of alloxan with rat liver subcellular fractions and their production was greatly enhanced by NADPH. Alloxan effectively scavenged superoxide anion generated by a xanthine-xanthine oxidase (XOD) system in association with its reduction to these anion radicals. These radicals were also formed during incubation of alloxan with rat pancreatic beta-cells. These results suggest that the cytotoxicity of alloxan is related to the formation of alloxan anion radicals.  相似文献   

11.
12.
13.
Alloxan can generate diabetes in experimental animals and its action can be associated with the production of free radicals. It is therefore important to check how different substances often referred to as free radical scavengers may interact with alloxan, especially that some of these substance may show both pro- and antioxidant activities. Using the alkaline comet assay we showed that alloxan at concentrations 0.01-50 microM induced DNA damage in normal human lymphocytes in a dose-dependent manner. Treated cells were able to recover within a 120-min incubation. Vitamins C and E at 10 and 50 microM diminished the extent of DNA damage induced by 50 microM alloxan. Pre-treatment of the lymphocytes with a nitrone spin trap, alpha-(4-pyridil-1-oxide)- N-t-butylnitrone (POBN) or ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one), which mimics glutathione peroxides, reduced the alloxan-evoked DNA damage. The cells exposed to alloxan and treated with formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), enzymes recognizing oxidized and alkylated bases, respectively, displayed greater extent of DNA damage than those not treated with these enzymes. The results confirmed that free radicals are involved in the formation of DNA lesions induced by alloxan. The results also suggest that alloxan can generate oxidized DNA bases with a preference for purines and contribute to their alkylation.  相似文献   

14.
15.
16.
17.
18.
19.
In neutral solution, 5,6-dihydrocytidine undergoes spontaneous deamination (k25 approximately 3.2 x 10(-5) s(-1)) much more rapidly than does cytidine (k25 approximately 3.0 x 10(-10) s(-1)), with a more favorable enthalpy of activation (DeltaDeltaH# = -8.7 kcal/mol) compensated by a less favorable entropy of activation (TDeltaDeltaS# = -1.8 kcal/mol at 25 degrees C). E. coli cytidine deaminase enhances the rate of deamination of 5,6-dihydrocytidine (kcat/k(non) = 4.4 x 10(5)) by enhancing the entropy of activation (DeltaDeltaH# = 0 kcal/mol; TDeltaDeltaS# = +7.6 kcal/mol, at 25 degrees C). Binding of the competitive inhibitor 3,4,5,6-tetrahydrouridine (THU), a stable analogue of 5,6-dihydrocytidine in the transition state for its deamination, is accompanied by a release of enthalpy (DeltaH = -7.1 kcal/mol, TDeltaDeltaS = +2.2 kcal/mol) that approaches the estimated enthalpy of binding of the actual substrate in the transition state for deamination of 5,6-dihydrocytidine (DeltaH = -8.1 kcal/mol, TDeltaDeltaS = +6.0 kcal/mol). Thus, the shortcomings of THU in capturing all of the binding affinity expected of an ideal transition-state analogue reflect a less favorable entropy of association. That difference may arise from the analogue's inability to displace a water molecule from the "leaving group site" at which ammonia is generated in the normal reaction. The effect on binding of removing the 4-OH group from the transition-state analogue THU, to form 3,4,5,6-tetrahydrozebularine (THZ) (DeltaDeltaH = -2.1 kcal/mol, TDeltaDeltaS = -4.4 kcal/mol), is mainly entropic, consistent with the inability of THZ to displace water from the "attacking group site". These results are consistent with earlier indications [Snider, M. J., and Wolfenden, R. (2001) Biochemistry 40, 11364] that site-bound water plays a prominent role in substrate activation and inhibitor binding by cytidine deaminase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号