首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Using the dialysable detergent CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate), the tetrodotoxin-binding protein from the electroplax of the electric eel has been purified to a high degree of both chemical homogeneity and toxin-binding activity. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the best preparations showed only a single microheterogeneous band atM r approximately 260,000, despite attempts to visualize smaller bands by sample overloading. Upon dialysis, this material became incorporated into the membranes of small unilamellar vesicles, and in this form the purified protein exhibited tetrodotoxin-binding properties similar to the component in the original electroplax membrane. Furthermore, in the presence of activator neurotoxins the vesicles were able to accumulate isotopic sodium in a manner similar to that previously described for less active or less pure preparations of vesicles containing either mammalian or eel electroplax toxinbinding proteins. Quantitative consideration of the isotopic transport activity of this pure material, along with the high degree of purity of the protein, strongly suggests that the 260-kDa glycopeptide from electroplax is necessary and sufficient to account for the sodium channel function seen in these studies, and eliminates the possible involvement of smaller peptides in the channel phenomena observed.  相似文献   

2.
Summary To develop a technique for purifying and identifying pore-forming membrane proteins, we used a transport-specific increase in buoyant density to select for lipid vesicles containing voltage-dependent anion channels (VDAC). Monodisperse, single-walled vesicles were formed by gel filtration from a detergent-solubilized mixture of lipid and protein in a urea buffer. The vesicles were layered on a linear iso-osmolar density gradient formed of urea and sucrose buffers. Since VDAC is open at zerotrans-membrane voltage and is permeable to urea and sucrose, vesicles containing functional VDAC should become more dense as sucrose enters and urea leaves, while those lacking open channels should maintain their original density. Vesicles formed in the absence of VDAC migrated to a characteristic density, while vesicles formed in the presence of VDAC fractionated into two populations in the gradients, one migrating to the same density as the vesicles formed without VDAC, and one at a significantly greater density. In contrast to the lower density vesicles, the higher density vesicles showed a high permeability to calcein, and contained functional VDAC channels (shown by electrophysiological recordings following fusion with a planar bilayer). Thus, vesicles containing open channels were separable from those that did not by a transport-specific shift in density. This technique may be useful for the enrichment of channels of known permeability properties from impure, material.  相似文献   

3.
In the present study we used established methods to obtain apical membrane vesicles from the toad urinary bladder and incorporated these membrane fragments to solvent-free planar lipid bilayer membranes. This resulted in the appearance of a macroscopic conductance highly sensitive to the diuretic amiloride added to the cis side. The blockage is voltage dependent and well described by a model which assumes that the drug binds to sites in the channel lumen. This binding site is localized at about 15% of the electric field across the membrane. The apparent inhibition constant (K(0)) is equal to 0.98 microM. Ca2+, in the micromolar range on the cis side, is a potent blocker of this conductance. The effect of the divalent has a complex voltage dependence and is modulated by pH. At the unitary level we have found two distinct amiloride-blockable channels with conductances of 160 pS (more frequent) and 120 pS. In the absence of the drug the mean open time is around 0.5 sec for both channels and is not dependent on voltage. The channels are cation selective (PNa/PCl = 15) and poorly discriminate between Na+ and K+ (PNa/PK = 2). Amiloride decreases the lifetime in the open state of both channels and also the conductance of the 160-pS channel.  相似文献   

4.
Summary The Na-dependent transport of a number of organic molecules (d-glucose,l-proline,l-alanine,l-phenylalanine) in brush-border membrane vesicles isolated from the intestine of the eel (Anguilla anguilla) was monitored by recording the fluorescence quenching of the voltage-sensitive cyanine dye 3,3-diethylthiacarbocyanine iodide (DiS-C2(5)). The experimental approach consisted of: a) generating an inside-negative membrane potential mimicking in vivo conditions: b) measuring the rate of membrane potential decay (i.e., the rate of fluorescence quenching decay) due to Na-neutral substrate cotransport. Rates of membrane potential decay showed saturation on substrate concentration andK app values (the substrate concentration giving 50% of the maximal rate) were estimated for Na-dependent transport ofd-glucose (0,099mm),l-alanine (0.516mm),l-proline (0.118mm) andl-phenylalanine (2.04mm). The influence of an inside-negative membrane potential on the affinity of the transporter for glucose and for sodium is discussed.  相似文献   

5.
Insulin receptors were incorporated into liposomes by two different procedures, one using dialysis and one using detergent removal by Bio-Beads. Receptor incorporation was analyzed by gradient centrifugation and electron microscopy. Reconstituted receptors projected up to 12 nm above the membrane and exhibited a T-shaped structure compatible with that previously described for the solubilized receptor. Insulin binding and autophosphorylation experiments indicated that approx. 50% of the receptors were incorporated right-side out. Such random orientation was confirmed by immunogold labeling of the - and the -subunit of the receptor. Immunogold labeling of the C-terminus of the -subunit indicates that it resides about 6 nm off the membrane, while two -subunit epitopes were labeled at about twice this distance, confirming that the -subunit is harbored in the cross-bar of the T-structure.We thank Ms. Birthe Nystrøm, Lisette Hansen and Ulla Blankensteiner for excellent technical assistance and Ms. Birgit Risto for skillful work with the photographic prints.  相似文献   

6.
Summary Eleven monoclonal antibodies were identified that recognized eel electroplax sodium channels. All the monoclonal antibodies specifically immunostained the mature TTX-sensitive sodium channel (M r 265,000) on immunoblots. None of the monoclonal antibodies would precipitate the in vitro translated channel core polypeptide in solution. One monoclonal antibody, 3G4, was found to bind to an epitope involving terminal polysialic acids. Extensive digestion of the channel by the exosialidase, neuraminidase, or partial polysialic acid removal bythe endosialidase, endo-N-acetylneuraminidase, destroy the 3G4 epitope, 3G4 is, therefore, a highly selective probe for the post-translationally attached polysialic acids. Except for this monoclonal antibody, the epitopes recognized by the remaining antibodies were highly resistant to extensive N-linked deglycosylation. Thus, the monoclonal antibodies may be directed against unique post-translationally produced domains of the electroplax sodium channel, presumably sugar groups that are abundant on this protein (Miller, J.A., Agnew, W.S., Levinson, S.R. 1983.Biochemistry 22:462–470). These monoclonal antibodies should prove useful as tools to study discrete post-translational processing events in sodium channel biosynthesis.  相似文献   

7.
Summary Recently we reported a simple manual assay for the measurements of isotope fluxes through channels in heterogenous vesicle populations (Garty et al.,J. Biol. Chem. 258:13094–13099 (1983)). The present paper describes the application of this method to the assessment of amiloride blockable fluxes in toad bladder microsomes. When22Na+ uptake was monitored in the presence of an opposing Na+ gradient, a relatively large and transient amiloride-sensitive flux was observed. Such an amiloride-blockable flux could also be induced by a KCl+valinomycin diffusion potential. The effects of the intra- and extravesicular ionic composition on the rate of22Na+ uptake were examined. It was shown that the amiloride-blockable fluxes occur in particles permeable to Na+ and Li+ but relatively impermeable to K+, Tris+ and Cl. Analysis of the amiloride dose-response relations revealed a complex non Michaelis-Menten behavior. The data could be accounted for by assuming either a strong negative cooperativity in the amiloride-membrane interaction, or two amiloride-sensitive Na+ conducting pathways withK i values of 0.06 and 6.4 m. Both pathways appear to be electrogenic and therefore the possibility of an electroneutral amiloride-blockable Na/H exchange was excluded. Calcium ions could block the amiloride-sensitive flux from the inner but not from the outer phase of the membrane. It is suggested that although a substantial part of the22Na+ flux is inhibited only by a relatively high concentration of amiloride, this uptake represents transport through the apical Na-specific channels. The data also define the optimal experimental conditions for the study of amiloride-sensitive fluxes in toad bladder microsomes.  相似文献   

8.
Summary The effects of scorpion and sea anemone polypeptide toxins on partially purified veratridine (VER)-activated Na channels from rat brain were studied at the single-channel level in planar lipid bilayers. The probability of the VER-activated channel being open (P o ) increased with depolarization;P o was 0.5 at –40 to –50 mV. Saxitoxin (STX) blocked VER-activated channels with an apparent dissociation constant of about 1nm at –45 mV. The apparent single-channel conductance was approximately 9 pS, similar to that seen in VER-activated Na channels from skeletal muscle transverse tubules. Addition of sea anemone or scorpion polypeptide toxins to VER-activated Na channels resulted in a 19% increase in apparent single-channel conductance and a hyperpolarizing shift in theP o vs. V m relation such that the channels were more likely to be open at potentials <40 mV. These effects of the polypeptide toxins on the single-channel properties of VER-activated Na channels may account for the previously described potentiation of VER action by polypeptide toxins.  相似文献   

9.
Summary The potency of members of the homologous series of alkanols to block22Na uptake through sodium channels stimulated by veratridine was studied in membrane vesicles obtained from lobster walking leg nerves. A cut-off was revealed at the level of 1-undecanol. However, secondary isomers of inactive primary homologues, such as 5-dodecanol and 5-tridecanol, were able to block ion flux. From the concentration required for an equipotent effect, it was calculated that the standard free energy for adsorption of primary alkanols is –725 cal/mol CH2. Furthermore, since the concentration required for an equipotent effect for primary isomer was found to be lower than that obtained for secondary isomers, it is concluded that the latter are less potent than the former. The similarity between this set of results and those obtained in intact frog sciatic nerve (J. Requena et al.,J. Membrane Biol. 84:229–238, 1985) offers further support to the notion that the procedure employed to isolate the membrane vesicles does preserve the Na channels. However, the mechanism of alcohol inhibition of the Na channel in isolated membrane vesicles would seem to be somewhat different from that preferred in axons. While in vesicles the block needs to be thought in terms of a reduction in the number of conducting Na channel, in axons this is considered to be the less likely mode of action, mainly because under veratridine it is not possible to invoke a shift in the steady-state activation or inactivation.  相似文献   

10.
11.
Summary Thel-alanine-dependent transport of sodium ions across the plasma membrane of rat-liver parenchymal cells was studied using isolated plasma membrane vesicles. Sodium uptake is stimulated specifically by thel-isomer of alanine and other amino acids, whose transport is sodium-dependent in rat-liver plasma membrane vesicles. Thel-alanine-dependent sodium flux across the membrane is inhibited by an excess of Li+ ions, but not by K+ or choline ions. Sodium transport is sensitive to-SH reagents and ionophores, and is an electrogenic process: a membrane potential (negative inside) can enhancel-alanine-dependent sodium accumulation. The data presented provide further evidence for a sodium-alanine cotransport mechanism.  相似文献   

12.
Summary Vesicles derived from epithelial cells of the colonic mucosa of the rat were fused to planar phospholipid bilayer membranes, revealing spontaneously switching anion-conducting channels of 50 pS conductance (at-30 mV with 200mm Cl each side). The equilibrium selectivity series was I (1.7)/Br (1.3)/Cl (1.0)/F (0.4)/HCO 3 (0.4)/Na (<0.11.). Only one dominant open-state conductance could be resolved, which responded linearly to Cl concentrations up to 600mm. The singlechannel current-voltage curve was weakly rectifying with symmetrical solutions. When 50 mV were exceeded at the highconductance branch of the curve, switching was arrested in the closed state. At more moderate voltages (±40 mV) kinetics were dominated by one open state of about 35-msec lifetime and two closed states of about 2 and 9-msec lifetime. Of these, the more stable closed state occurred less often. At these voltages one additional closed state of significantly longer lifetime (>0.5 sec) was observed.  相似文献   

13.
The basolateral membrane of the jejunal enterocyte of the rat was separated by self-orienting Percoll-gradient centrifugation and further purified from brush border contamination. Pellets were analysed for Mg-, Na- and (Na, K)-ATPase activities. The uptake of 0·02 M NaCl was also followed by the rapid micro-filtration technique. Transintestinal transport of fluid and electrolytes, and cell water, Na and K were determined in the in vitro everted and incubated jejunum. There is ouabain-insensitive Na-ATPase in addition to the well-known (Na, K)-ATPase in the basolateral membrane. These are differently inhibited by furosemide and ethacrynate. Na uptake by osmotically active basolateral membrane vesicles is enhanced by ATP and a further enhancement is obtained if there is intravesicular K. The ATP effect is inhibited differently by strophanthidin, furosemide and ethacrynate. In the everted sac preparation, transintestinal transport of Na and fluid still occurs when the Na/K pump is totally inhibited by ouabain. These experimental results suggest that there is also a ouabain-insensitive Na pump, different from the Na/K pump, in the basolateral membrane.  相似文献   

14.
Summary A fluorescence method is described for the measurement of ATP-driven ion fluxes in lipid vesicles containing purified Na,K-ATPase. The membrane voltage of enzyme containing vesicles was measured by using a voltage-sensitive indocyanine dye. By addition of valinomycin the vesicle membrane is made selectively permeable to K+ so that the membrane voltage approaches the Nernst potential for K+. With constant external K+ concentration, the time course of internal K+ concentration can be continuously measured as change of the fluorescence signal after activation of the pump. The optical method has a higher time resolution than tracer-flux experiments and allows an accurate determination of initial flux rates. From the temperature dependence of active K+ transport its activation energy was determined to be 115 kJ/mol. ATP-stimulated electrogenic pumping can be measured as a fast fluorescence change when the membrane conductance is low (i.e., at low or zero valinomycin concentration). In accordance with expectation, the amplitude of the fast signal change increases with decreasing passive ion permeability of the vesicle membrane. The resolution of the charge movement is so high that a few pump turnovers can be easily detected.  相似文献   

15.
Summary The basolateral membrane of the thick ascending loop of Henle (TALH) of the mammalian kidney is highly enriched in Na+/K+ ATPase and has been shown by electrophysiological methods to be highly conductive to Cl. In order to study the Cl conductive pathways, membrane vesicles were isolated from the TALH-containing region of the porcine kidney, the red outer medulla, and Cl channel activity was determined by a36Cl uptake assay where the uptake of the radioactive tracer is driven by the membrane potential (positive inside) generated by an outward Cl gradient. The accumulation of36Cl inside the vesicles was found to be dependent on the intravesicular Cl concentration and was abolished by clamping the membrane potential with valinomycin. The latter finding indicated the involvement of conductive pathways. Cl channel activity was also observed using a fluorescent potential-sensitive carbocyanine dye, which detected a diffusion potential induced by an imposed inward Cl gradient. The anion selectivity of the channels was Cl>NO 3 =I gluconate. Among the Cl transport inhibitors tested, 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPAB), 4,4-diisothiocyano-stilbene-2,2-disulfonate (DIDS), and diphenylamine-2-carboxylate (DPC) showed IC50 of 110, 200 and 550 m, respectively. Inhibition of36Cl uptake by NPPAB and two other structural analogues was fully reversible, whereas that by DIDS was not. The nonreactive analogue of DIDS, 4,4-dinitrostilbene-2,2-disulfonate (DNDS), was considerably less inhibitory than DIDS (25% inhibition at 200 m). The irreversible inhibition by DIDS was prevented by NPPAB, whereas DPC was ineffective, consistent with its low inhibitory potency. It is proposed that NPPAB and DIDS bind to the same or functionally related site on the Cl channel protein.  相似文献   

16.
Summary Proteolipids extracted from bovine kidney plasma membrane induce irreversible changes in the electrical properties of lipid bilayers formed from diphytanoyl phosphatidylcholine. The interaction with the proteolipid produces channels which are cation selective. At low protein concentrations (i.e., <0.6 g/ml), the single-channel conductance is approximately 10 pS in 100mm KCl and 3 pS in 100mm NaCl. In the presence of protein concentrations above 1 g/ml, another population of channels appears. These channels have a conductance of about 100 pS in 100mm KCl and 30 pS in 100mm NaCl. Further, these channels are voltage dependent in KCl, closing when the voltage is clamped at values 30 mV. The steady-state membrane conductance, measured at low voltages, was found to increase proportional to a high power (2–3) of the proteolipid concentration present in one of the aqueous phases. In 100mm NaCl, the conductance increases at protein concentrations above 5 g/ml, whereas in 100mm KCl in increases at protein concentrations above 0.6 g/ml. These measurements indicate that the higher steady-state conductance observed in KCl at a given proteolipid concentration in a multi-channel membrane presumably results because more channels incorporate in the presence of KCl than in the presence of NaCl.The two major fractions which comprise the proteolipid complex were also tested on bilayers. It was found that both fractions are required to produce the effects described.  相似文献   

17.
A technique has been developed for monitoring the interaction of charged phospholipid vesicles with planar bilayer lipid membranes (BLM) by use of the antibiotics Valinomycin, Nonactin, and Monazomycin as surface-charge probes. Anionic phosphatidylserine vesicles, when added to one aqueous compartment of a BLM, are shown to impart negative surface charge to zwitterionic phosphatidylocholine and phosphatidylethanolamine bilayers. The surface charge is distributed asymmertically, mainly on the vesicular side of the BLM, and is not removed by exchange of the vesicular aqueous solution. Possible mechanisms for the vesicle-BLM interactions are discussed.  相似文献   

18.
Voltage-gated sodium and calcium channels are responsible for inward movement of sodium and calcium during electrical signals in cell membranes. Their principal subunits are members of a gene family and can function as voltage-gated ion channels by themselves. They are expressed in association with one or more auxiliary subunits which increase functional expression and modify the functional properties of the principal subunits. Structural elements which are required for voltage-dependent activation, selective ion conductance, and inactivation have been identified, and their mechanisms of action are being explored through mutagenesis, expression in heterologous cells, and functional analysis. These experiments reveal that these two channels are built on a common structural theme with variations appropriate for functional specialization of each channel type.  相似文献   

19.
Summary Two domains of Na channels were mapped with site-specific antibodies raised in rabbit against synthetic peptides corresponding to a part of the voltage sensor of internal repeat 1C 1 + (amino acids 210–223) and to a region designated dipole (amino acids 1690–1699) of eel electroplax sodium channels. The antibodies bind to their respective domains in both purified and membrane-bound channels and immunoprecipitate the channels from eel electroplax and rat brain synaptosomes.Anti-C 1 + depresses the action potential of rat sciatic nerve in a concentration-dependent way. It binds to the external side of rat brain synaptosomal vesicle, and its binding is potentiated by depolarization. Anti-dipole binds to the inner side of the vesicle, and the binding is inhibited by depolarization.We are most grateful to Dr. M.T. Tosteson (Harvard Medical School) for providing us with samples of the S4IV peptides. We wish to express our gratitude to Drs. D. Gordon (Hebrew University) and A. Safran (The Weizmann Institute) for helping in the immunoprecipitation procedure, to Drs. H. Rahamimoff (Hebrew University) and A. Barzilai (Columbia University) for advising us with the vesicle experiments, to Drs. D. Kassel and M. Gavish (Technion) for many fruitful discussions, and to Dr. Y. Palti (Technion) for discussions of electric field and suggesting the dipole peptide. This work was supported by a basic research fund (BRF) of The Israel Academy of Sciences #430.87 (H.M. and G.S.), a BSF Grant #84-00367 (H.M.) and The Henry Gutwirt Fund for the Promotion of Research-Technion VPR Fund #184-0093 (H.M.).  相似文献   

20.
Potential-sensitive fluorescent probes oxonol V and oxonol VI were employed for monitoring membrane potential (Δψ) generated by the Schizosaccharomyces pombe plasma membrane H+-ATPase reconstituted into vesicles. Oxonol VI was used for quantitative measurements of the Δψ because its response to membrane potential changes can be easily calibrated, which is not possible with oxonol V. However, oxonol V has a superior sensitivity to Δψ at very low concentration of reconstituted vesicles, and thus it is useful for testing quality of the reconstitution. Oxonol VI was found to be a good emission-ratiometric probe. We have shown that the reconstituted H+-ATPase generates Δψ of about 160 mV on the vesicle membrane. The generated Δψ was stable at least over tens of minutes. An influence of the H+ membrane permeability on the Δψ buildup was demonstrated by manipulating the H+ permeability with the protonophore CCCP. Ratiometric measurements with oxonol VI thus offer a promising tool for studying processes accompanying the yeast plasma membrane H+-ATPase-mediated Δψ buildup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号