首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of vanadate and vanadyl ions on the ATP-dependent succinyl-CoA synthetase (A-SCS) solubilized by Lubrol-PX from the rat brain mitochondria was tested. Vanadate added to the assay medium at 10(-5) mol.l-1 and 10(-4) mol.l-1 concentrations inhibited the enzyme activity by about 50% and 94%, respectively. When the enzyme was solubilized from the mitochondria preincubated with 10(-4) mol.l-1 and 10(-3) mol.l-1 vanadate, the residual inhibitions were 55% and 100% respectively. The vanadyl cation also induced inhibition of the A-SCS activity but the effect was less expressed. At 10(-4) mol.l-1 concentration only 20% inhibition was achieved. The A-SCS solubilized from the mitochondrial subfractions (perikaryal, light and heavy synaptosomal) differed neither in the activity of A-SCS nor in the susceptibility toward action of vanadium ions. A strong dependence of the vanadate inhibition on the concentration of succinate was observed. The above effect (50% inhibition) could be demonstrated only at saturating concentration of succinate (50 mmol.l-1). The mechanism of vanadium ions action as well as differences between vanadate and vanadyl ions effects are discussed.  相似文献   

2.
The effect of vanadium oxides on living systems may involve the in vivo conversion of vanadate and vanadyl ions. The addition of 5 mM orthovanadate (VO4(3-), V(V)), a known inhibitor of the (Na,K)-ATPase, to yeast cells stopped growth. In contrast, the addition of 5 mM vanadyl (VO2+, V(IV) stimulated growth. Orthovanadate addition to whole cells is known to stimulate various cellular processes. In yeast, both ions inhibited the plasma membrane Mg2+ ATPase and were transported into the cell as demonstrated with [48V]VO4(3-) and VO2+. ESR spectroscopy has been used to measure the cell-associated paramagnetic vandyl ion, while 51V NMR has detected cell-associated diamagnetic vanadium (e.g. V(V)). Cells were exposed to both toxic (5 mM) and nontoxic (1 mM) concentrations of vanadate in the culture medium. ESR showed that under both conditions, vanadate became cell associated and was converted to vanadyl which then accumulated in the cell culture medium. 51V NMR studies showed the accumulation of new cell-associated vanadium resonances identified as dimeric vanadate and decavanadate in cells exposed to toxic amounts of medium vanadate (5 mM). These vanadate compounds did not accumulate in cells exposed to 1 mM vanadate. These studies confirm that the inhibitory form of vanadium usually observed in in vitro experiments is vanadate, in one or more of its hydrated forms. These data also support the hypothesis that the stimulatory form of vanadium usually observed in whole cell experiments is the vanadyl ion or one or more of its liganded derivatives.  相似文献   

3.
The number of papers about decavanadate has doubled in the past decade. In the present review, new insights into decavanadate biochemistry, cell biology, and antidiabetic and antitumor activities are described. Decameric vanadate species (V10) clearly differs from monomeric vanadate (V1), and affects differently calcium pumps, and structure and function of myosin and actin. Only decavanadate inhibits calcium accumulation by calcium pump ATPase, and strongly inhibits actomyosin ATPase activity (IC50 = 1.4 μmol/L, V10), whereas no such ef- fects are detected with V1 up to 150 μmol/L; prevents actin polymerization (IC50 of 68 μmol/L, whereas no effects detected with up to 2 mmol/L V1); and interacts with actin in a way that induces cysteine oxidation and vanadate reduction to vanadyl. Moreover, in vivo decavanadate toxicity studies have revealed that acute exposure to polyoxovanadate induces different changes in antioxidant enzymes and oxidative stress parameters, in comparison with vanadate. In vitro studies have clearly demonstrated that mitochondrial oxygen consumption is strongly affected by decavanadate (IC50, 0.1 μmol/L); perhaps the most relevant biological effect. Finally, decavanadate (100 μmol/L) increases rat adipocyte glucose accumulation more potently than several vanadium complexes. Preliminary studies sug- gest that decavanadate does not have similar effects in human adipocytes. Although decavanadate can be a useful biochemical tool, further studies must be carried out before it can be conf irmed that decavanadate and its complexes can be used as anticancer or antidiabetic agents.  相似文献   

4.
Radiolabeled vanadium as either vanadyl ion or vanadate ion was injected intravenously into adult beagle dogs, and blood samples were collected at various times up to 48 hr post injection. For each sample, the distribution of vanadium between the cells and the plasma was determined, and the plasma was analyzed by electrophoresis to identify specific vanadium-binding proteins. Initially, vanadyl ion left the bloodstream more rapidly than vanadate, but the rates equalized after about 5 hr. A significant fraction of the vanadium in blood was associated with the cellular component following injection of both forms of vanadium. About 77% of the plasma vanadium was eventually bound by the serum iron transport protein transferrin, regardless of the vanadium species initially injected. For both vanadyl and vanadate, about 30 hr were required to reach the maximum degree of transferrin binding.  相似文献   

5.
The fate of vanadate (+5 oxidation state of vanadium) taken up by the red cell was studied using EPR spectroscopy. The appearance of an EPR signal indicated that most of the cytoplasmic vanadate is reduced to the +4 oxidation state with axial symmetry characteristic of vanadyl ions. The signal at 23 degrees C was characteristic of an immobilized system indicating that the vanadyl ions in the cytoplasm are associated with a large molecule. [48V]Vanadium eluted with hemoglobin when the lysate from Na3[48V[O4-treated red cells was passed through a Sephadex G-100 column and rabbit anti-human hemoglobin serum caused a hemoglobin-specific precipitation of 48V when added to the red cell lysate. Both results indicate that hemoglobin is the protein which binds cytoplasmic vanadyl ions. However, neither sodium vanadate nor vanadyl sulfate bound to purified hemoglobin in vitro. Finally, transient kinetics of vanadyl sulfate interaction with the sodium-and potassium-stimulated adenosine triphosphatase showed that the +4 oxidation state of vanadium is less effective than the +5 oxidation state in inhibiting this enzyme. These results indicate that oxidation-reduction reactions in the cytoplasm are capable of relieving vanadate inhibition of cation transport.  相似文献   

6.
While the stimulatory effect of vanadate, an anion of pentavalent vanadium, on adenylate cyclase (AC) has been repeatedly demonstrated in various tissues only a few studies have been hitherto devoted to the effect of vanadyl, a cation of tetravalent vanadium, but these have provided contradictory results. In the present experiments synaptic plasma membranes from normal rat cerebral cortex were used for estimation of the vanadyl effect (in the concentration range from 10(-5) mol.1(-1) to 10(-3) mol.1(-1) on the basal adenylate cyclase activity. Four types of incubation media were used. In the presence of Tris-maleate and creatine phosphate + creatine phosphokinase (CP + CK) maximal stimulation (33%) was reached at 10(-4) mol.1(-1). In the same buffer but in absence or (CP + CK) maximum was already obtained at 10(-5) mol.1(-1) (49%); at 10(-3) mol.1(-1) no effect was observed. In Tric.HCl buffer with (CP + CK) maximal stimulation appeared at 10(-5) mol.1(-1), whereas at 10(-3) mol.1(-1) inhibition (-25%) was observed. In a medium containing Tris.HCl without (CP + CK) the biphasic nature of vanadyl effect was less markedly expressed: maximal stimulation (+55%) occurred at 10(-4) mol.1(-1). Thus vanadyl stimulates AC, but at relatively low concentrations (10(-5)-10(-4); at higher concentration it tends to exert an inhibitory action. Vanadate had a qualitatively similar effect, but the stimulation was more pronounced and the tendency to inhibition was shifted to higher concentrations.  相似文献   

7.
Although the number of papers about "vanadium" has doubled in the last decade, the studies about "vanadium and actin" are scarce. In the present review, the effects of vanadyl, vanadate and decavanadate on actin structure and function are compared. Decavanadate (51)V NMR signals, at -516 ppm, broadened and decreased in intensity upon actin titration, whereas no effects were observed for vanadate monomers, at -560 ppm. Decavanadate is the only species inducing actin cysteine oxidation and vanadyl formation, both processes being prevented by the natural ligand of the protein, ATP. Vanadyl titration with monomeric actin (G-actin), analysed by EPR spectroscopy, reveals a 1:1 binding stoichiometry and a K(d) of 7.5 μM(-1). Both decavanadate and vanadyl inhibited G-actin polymerization into actin filaments (F-actin), with a IC(50) of 68 and 300 μM, respectively, as analysed by light scattering assays, whereas no effects were detected for vanadate up to 2 mM. However, only vanadyl (up to 200 μM) induces 100% of G-actin intrinsic fluorescence quenching, whereas decavanadate shows an opposite effect, which suggests the presence of vanadyl high affinity actin binding sites. Decavanadate increases (2.6-fold) the actin hydrophobic surface, evaluated using the ANSA probe, whereas vanadyl decreases it (15%). Both vanadium species increased the ε-ATP exchange rate (k = 6.5 × 10(-3) s(-1) and 4.47 × 10(-3) s(-1) for decavanadate and vanadyl, respectively). Finally, (1)H NMR spectra of G-actin treated with 0.1 mM decavanadate clearly indicate that major alterations occur in protein structure, which are much less visible in the presence of ATP, confirming the preventive effect of the nucleotide on the decavanadate interaction with the protein. Putting it all together, it is suggested that actin, which is involved in many cellular processes, might be a potential target not only for decavanadate but above all for vanadyl. By affecting actin structure and function, vanadium can regulate many cellular processes of great physiological significance.  相似文献   

8.
Vanadate and vanadyl have many insulin-mimetic effects on cellular metabolism and also have been shown to alter cellular Ca2+ fluxes. In this report, vanadate and vanadyl, like insulin, are shown to inhibit the plasma membrane (Ca2+ + Mg2+)-ATPase/Ca2+ transport system as well as Ca2+ transport by endoplasmic reticulum from rat adipocytes. Ca2+ transport by the endoplasmic reticulum was inhibited half-maximally (I50) by vanadate and vanadyl at concentrations of 30 and 33 microM, respectively. Inhibition of the plasma membrane Ca2+ transport by vanadate and vanadyl was less sensitive, with I50 values of 144 and 92 microM, respectively. These I50 values for plasma membrane Ca2+ transport were similar when measured under conditions of calmodulin-stimulated and non-calmodulin-stimulated Ca2+ transport. The predominant effect of both ions on the kinetic parameters of Ca2+ transport was a substantial decrease in the Vmax by 43-46% for both transport systems. An increase in intracellular Ca2+ following the inhibition of the (Ca2+ + Mg2+)-ATPase/Ca2+ pump in the plasma membrane and endoplasmic reticulum by these vanadium ions may result, at least in part, in the observed insulin-mimetic alterations in cellular metabolism.  相似文献   

9.
Experiments were carried out on infant rats aged five days and on adult rats (of both sexes) to investigate vanadate inhibition of (Na+-K+)ATPase activity in various parts of the brain. Vanadate was administered in 10(-5), 10(-7), 10(-8), 10(-9) and 10(-10) mol/l concentration. The enzyme activity and the effect of vanadate were studied in the tissue of the cerebral cortex, subcortical formations and the medulla oblongata. It was demonstrated that an inhibitory effect of vanadate on ouabain-sensitive ATPase could be determined in the brain of very young rats, i.e. in the immature nervous tissue. It was further demonstrated that the inhibitory effect of vanadate (in low concentrations) was significantly more potent in the nervous tissue of adult rats than in the CNS tissue of 5-day-old animals. Lastly, attention is drawn to certain differences in the sensitivity of ouabain-sensitive ATPase to the action of vanadate indifferent parts of the CNS in both the given age groups.  相似文献   

10.
Vanadate (sodium orthovanadate), an inhibitor of phosphotyrosine phosphatases (PTPs), mimics many of the metabolic actions of insulin in vitro and in vivo. The potential of vanadate to stimulate glucose transport independent of the early steps in insulin signaling prompted us to test its effectiveness in an in vitro model of insulin resistance. In primary rat adipocytes cultured for 18 h in the presence of high glucose (15 mm) and insulin (10(-7) m), sensitivity to insulin-stimulated glucose transport was decreased. In contrast, there was a paradoxical enhanced sensitivity to vanadate of the insulin-resistant cells (EC(50) for control, 325 +/- 7.5 microm; EC(50) for insulin-resistant, 171 +/- 32 microm; p < 0.002). Enhanced sensitivity was also present for vanadate stimulation of insulin receptor kinase activity and autophosphorylation and Akt/protein kinase B Ser-473 phosphorylation consistent with more effective PTP inhibition in the resistant cells. Investigation of this phenomenon revealed that 1) depletion of GSH with buthionine sulfoximine reproduced the enhanced sensitivity to vanadate while preincubation of resistant cells with N-acetylcysteine (NAC) prevented it, 2) intracellular GSH was decreased in resistant cells and normalized by NAC, 3) exposure to high glucose and insulin induced an increase in reactive oxygen species, which was prevented by NAC, 4) EPR (electron paramagnetic resonance) spectroscopy showed a decreased amount of vanadyl (+4) in resistant and buthionine sulfoximine-treated cells, which correlated with decreased GSH and increased vanadate sensitivity, while total vanadium uptake was not altered, and 5) inhibition of recombinant PTP1B in vitro was more sensitive to vanadate (+5) than vanadyl (+4). In conclusion, the paradoxical increased sensitivity to vanadate in hyperglycemia-induced insulin resistant adipocytes is due to oxidative stress and decreased reduction of vanadate (+5) to vanadyl (+4). Thus, sensitivity of PTP inhibition and glucose transport to vanadate is regulated by cellular redox state.  相似文献   

11.
On crude membrane fractions of skeletal musccle, vanadyl (IV) and vanadate (V) compounds inhibited the membrane (Na+K+)-ATPase and neutral (K+-)p-nitrophenylphosphatase equally with Ki 4×10?8 mol.1?1. Only vanadate (V) inhibited significantly the muscle (Na+K+)ATPase with Ki 1×10?6 mol.1?1, whereas vanadyl (IV) ions were almost without effect. Extracellular application of both forms of vanadium failed to inhibit the electrogenic (Na+K+) pump in intact mouse diaphragm fibres.  相似文献   

12.
We synthesized vanadyl (oxidation state +IV) and vanadate (oxidation state +V) complexes with the same hydroxamic acid derivative ligand, and assessed their glucose-lowering activities in relation to the vanadium biodistribution behavior in streptozotocin-induced diabetic mice. When the mice received an intraperitoneal injection of the complexes, the vanadate complex more effectively lowered the elevated glucose levels compared with the vanadyl one. The glucose-lowering effect of the vanadate complex was linearly related to its dose within the range from 2.5 to 7.5 mg V/kg. In addition, pretreatment of the vanadate complex induced a larger insulin-enhancing effect than the vanadyl complex. Both complexes were more effective than the corresponding inorganic vanadium compounds. The vanadyl and vanadate complexes, but not the inorganic vanadium compounds, resulted in almost the same organ vanadium distribution. Consequently, the observed differences in the insulin-like activity between the complexes would reflect the potency of the two compounds in the +IV and +V oxidation states in the subcellular region.  相似文献   

13.
The effect of arachidonic acid in 5.10(-4) and 5.10(-5) mol.l-1 concentration (as the Na salt, SIGMA) on ouabain-sensitive ATPase (E. C. 3.6.1.3) activity was studied in the cerebral cortex and medulla oblongata of 5-day-old and adult rats. In adult rats, arachidonic acid significantly inhibited ouabain-sensitive ATPase activity in both the cerebral cortex and the medulla oblongata. In 5-day-old rats, only the higher concentration (5.10(-4) mol.l-1) inhibited the enzyme statistically significantly; use of the lower concentration was not followed by any significant changes in Na+-K+-ATPase activity.  相似文献   

14.
Vanadium compounds are known to stimulate the oxidation of NAD(P)H, but the mechanism remains unclear. This reaction was studied spectrophotometrically and by electron spin resonance spectroscopy (ESR) using vanadium in the reduced state (+4, vanadyl) and the oxidized state (+5, vanadate). In 25 mM sodium phosphate buffer at pH 7.4, vanadyl was slightly more effective in stimulating NADH oxidation than was vanadate. Addition of a superoxide generating system, xanthine/xanthine oxidase, resulted in a marked increase in NADH oxidation by vanadyl, and to a lesser extent, by vanadate. Decreasing the pH with superoxide present increased NADH oxidation for both vanadate and vanadyl. Addition of hydrogen peroxide to the reaction mixture did not change the NADH oxidation by vanadate, regardless of concentration or pH. With vanadyl however, addition of hydrogen peroxide greatly enhanced NADH oxidation which further increased with lower pH. Use of the spin trap DMPO in reaction mixtures containing vanadyl and hydrogen peroxide or a superoxide generating system resulted in the detection by ESR of hydroxyl. In each case, the hydroxyl radical signal intensity increased with vanadium concentration. Catalase was able to inhibit the formation of the DMPO--OH adduct formed by vanadate plus superoxide. These results show that the ability of vanadium to act in a Fenton-type reaction is an important process in the vanadium-stimulated oxidation of NADH.  相似文献   

15.
During incubation with vanadyl, Saccharomyces cerevisiae yeast cells were able to accumulate millimolar concentrations of this divalent cation within an intracellular compartment. The intracellular vanadyl ions were bound to low molecular weight substances. This was indicated by the isotropic nature of the electron paramagnetic resonance (EPR) spectra of the respective samples. Accumulation of intracellular vanadyl was dependent on presence of glucose during incubation. It could be inhibited by various di- and trivalent metal cations. Of these cations lanthanum displayed the strongest inhibitory action. If yeast cells were exposed to more than 50 microM vanadyl sulfate at a pH higher than 4.0, a potassium loss into the medium was detected. The magnitude of this potassium loss suggests a damage of the plasma membrane caused by vanadyl. Upon addition of vanadate to yeast cells surface-bound vanadyl was detectable after several minutes by EPR. This could be the consequence of extracellular reduction of vanadate to vanadyl. The reduction was followed by a slow accumulation of intracellular vanadium, which could be inhibited by lanthanum or phosphate. Therefore, permeation of vanadyl into the cells can be assumed as one mechanism of vanadium accumulation by yeast during incubation with vanadate.  相似文献   

16.
Reduction of Vanadate by Ascorbic Acid and Noradrenaline in Synaptosomes   总被引:3,自引:2,他引:1  
The effect of ascorbic acid and noradrenaline on the inhibition of synaptosomal membrane ATPase by vanadate has been studied. Ascorbic acid (2 x 10(-3) M) and noradrenaline (10(-4) M) partly reversed the inhibition by vanadate (10(-6) M); however, when both were administered together the inhibition was completely eliminated. Using electron spin resonance (ESR) spectroscopy, we detected that ascorbic acid (10(-3) M) caused a 42% of reduction of vanadate (10(-4) M). Noradrenaline (10(-4) M) alone also reduced vanadate (10(-4) M) partially. When ascorbic acid and noradrenaline were present together all the vanadate was reduced to vanadyl. The concentration of ascorbic acid present in the brain under physiological conditions is identical to that found effective in our experiments. We suggest that ascorbic acid may protect the ATPase, at least in part, from inhibition by vanadate as a consequence of reducing vanadate to vanadyl. In those tissues where noradrenaline is also present a complete reduction of endogenous vanadium can be presumed.  相似文献   

17.
The iron storage protein, ferritin, represents a possible source of iron for oxidative reactions in biological systems. It has been shown that superoxide and several xenobiotic free radicals can release iron from ferritin by a reductive mechanism. Tetravalent vanadium (vanadyl) reacts with oxygen to generate superoxide and pentavalent vanadium (vanadate). This led to the hypothesis that vanadyl causes the release of iron from ferritin. Therefore, the ability of vanadyl and vanadate to release iron from ferritin was investigated. Iron release was measured by monitoring the generation of the Fe2+-fcrrozine complex. It was found that vanadyl but not vanadate was able to mobilize ferritin iron in a concentration dependent fashion. Initial rates. and iron release over 30 minutes. were unaffected by the addition of superoxide dismutase. Glutathione or vanadate added in relative excess to the concentration of vanadyl, inhibited iron release up to 45%. Addition of ferritin at the concentration used for measuring iron release prevented vanddyl-induced NADH oxidation. Vanadyl promoted lipid peroxidation in phospholipid liposomes. Addition of ferritin to the system stimulated lipid peroxidation up to 50% above that with vanadyl alone. Fcrritin alone did not promote significant levels of lipid peroxidation.  相似文献   

18.
《Free radical research》2013,47(1):125-129
The iron storage protein, ferritin, represents a possible source of iron for oxidative reactions in biological systems. It has been shown that superoxide and several xenobiotic free radicals can release iron from ferritin by a reductive mechanism. Tetravalent vanadium (vanadyl) reacts with oxygen to generate superoxide and pentavalent vanadium (vanadate). This led to the hypothesis that vanadyl causes the release of iron from ferritin. Therefore, the ability of vanadyl and vanadate to release iron from ferritin was investigated. Iron release was measured by monitoring the generation of the Fe2+-fcrrozine complex. It was found that vanadyl but not vanadate was able to mobilize ferritin iron in a concentration dependent fashion. Initial rates. and iron release over 30 minutes. were unaffected by the addition of superoxide dismutase. Glutathione or vanadate added in relative excess to the concentration of vanadyl, inhibited iron release up to 45%. Addition of ferritin at the concentration used for measuring iron release prevented vanddyl-induced NADH oxidation. Vanadyl promoted lipid peroxidation in phospholipid liposomes. Addition of ferritin to the system stimulated lipid peroxidation up to 50% above that with vanadyl alone. Fcrritin alone did not promote significant levels of lipid peroxidation.  相似文献   

19.
Vanadyl ion (+4 oxidation state) has been shown to be an effective agent for chemoprotection of cancers in animals. For understanding the mechanism, distribution of vanadium was studied. More vanadium was found to accumulate in the nuclei of the liver of rats when it was given as vanadyl sulfate than when it was given as sodium vanadate (+5 oxidation state). The reactivity of vanadyl ion with DNA was investigated by the DNA cleavage technique and the reaction mechanism by ESR spectroscopy. Incubation of double-strand DNA with vanadyl ion and hydrogen peroxide resulted in marked concentration- and pH-dependent DNA cleavage. Studies by the ESR spin-trap method demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion with hydrogen peroxide. Thus the antineoplastic action of vanadyl ion is proposed to be due to DNA cleavage by hydroxyl radicals generated in the cells.  相似文献   

20.
Vanadium compounds are shown to have a mitogenic effect on fibroblast cells. The effects of vanadate, vanadyl and pervanadate on the proliferation and morphological changes of Swiss 3T3 cells in culture are compared. Vanadium derivatives induced cell proliferation in a biphasic manner, with a toxic-like effect at doses over 50mM, after 24h of incubation. Vanadyl and vanadate were equally potent at 2.5–10mM. At 50mM vanadate inhibited cell proliferation, whereas slight inhibition was observed at 100mM of vanadyl. At 10mM pervanadate was as potent as vanadate and vanadyl in stimulating fibroblast proliferation, but no effect was observed at lower concentrations. A pronounced cytotoxic-like effect was induced by pervanadate at 50mM. All of these effects were accompanied by morphological changes: transformation of fibroblast shape from polygonal to fusiform; retraction with cytoplasm condensation; and loss of lamellar processes. The magnitude of these transformations correlates with the potency of vanadium derivatives to induce a cytotoxic-like effect: pervanadate>vanadate>vanadyl. These data suggest that the oxidation state and coordination geometry of vanadium determine the degree of the cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号