首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quenching ability of photogenerated oxidative species by some antimuscarinic drugs generically named atropines (e.g. atropine [I] eucatropine [II], homatropine [III] and scopolamine [IV]) have been investigated employing stationary photolysis, polarographic detection of dissolved oxygen, stationary and time-resolved fluorescence spectroscopy, and laser flash photolysis. Using Rose Bengal as a dye sensitiser for singlet molecular oxygen, O(2)((1)Delta(g)), generation, compounds I-IV behave as moderate chemical plus physical quenchers of the oxidative species. Correlation between kinetic and electrochemical data indicates that the process is possibly driven by a charge-transfer interaction. The situation is somewhat more complicated employing the natural pigment riboflavin (Rf) as a sensitiser. Compounds I and II complex Rf ground state, diminishing the quenching ability towards singlet and triplet excited state of the pigment. On the other hand, compounds III and IV effectively quench Rf excited states, protecting the pigment against photodegradation. Under anaerobic conditions, semireduced Rf (Rf(.-)) is formed through quenching of excited triplet Rf. Nevertheless, although Rf(.-) is a well-known generator of the reactive species superoxide radical anion by reductive quenching in the presence of oxygen, the process of O(2)((1)Delta(g)) production prevails over superoxide radical generation, due to the relatively low rate constants for the quenching of triplet Rf by the atropines (in the order of 10(7) M(-1)s(-1) for compounds III and IV) in comparison to the rate constant for the quenching by ground state oxygen, approximately two orders of magnitude higher, yielding O(2)((1)Delta(g)). Compound I is the most promising O(2)((1)Delta(g)) physical scavenger, provided that it exhibits the higher value for the overall quenching rate constant and only 11% of the quenching process leads to its own chemical damage.  相似文献   

2.
The antioxidative effectiveness of three hydroxyaromatic derivatives (OHAD), namely phenol, resorcinol and phloroglucinol, as reflected by their scavenging ability of the photochemically generated species singlet molecular oxygen [O(2)((1)Delta(g))], was studied in aqueous solution and micellar media. Kinetic results, obtained through time-resolved phosphorescence detection of O(2)((1)Delta(g)) emission and polarographic methods, at pH 7 and 12 in homogeneous and CTAB micellar media, were compared. Calculated photooxidation quantum efficiencies (phi(r)), ranging from very low values ( approximately 0.01) to relatively high ones (approximately 0.3), depend on the preferential solubilization sites of the hydroxyaromatic derivatives either in the micellar or homogeneous media. OHAD in water pH 7 and in CTAB 0.02 M pH 12 exhibit their highest antioxidative efficiency as O(2)((1)Delta(g)) scavengers. In these conditions, they present the best degree of self protection against O(2)((1)Delta(g))-mediated photooxidation with relatively high values for the overall quenching rate constant and, simultaneously, the lowest phi(r).  相似文献   

3.
The quantum yield of singlet oxygen ((1)O(2) ((1)Delta(g))) production (Phi(Delta)) in the oxygen quenching of photoexcited states for 1,2-dicyanonaphthalene (1,2-DCNN), 1,4-dicyanonaphthalene (1,4-DCNN) and 2,3-dicyanonaphthalene (2,3-DCNN) in cyclohexane, benzene, and acetonitrile was measured using a time-resolved thermal lens (TRTL) technique, in order to determine the efficiency of singlet oxygen ((1)Delta(g)) production in the first excited singlet state (S(1)), (f(Delta)(S)). The efficiencies of singlet oxygen ((1)Delta(g)) production from the lowest triplet state (T(1)), (f(Delta)(T)), were nearly unity for all DCNNs in all the solvents. The values of f(Delta)(S) were fairly large for 1,2-DCNN (0.33-0.57) and 1,4-DCNN (0.33-0.66), but were close to zero for 2,3-DCNN. Rate constants for oxygen quenching in the S(1) state (k(q)(S)) obtained for these compounds were significantly smaller than diffusion-controlled rate constants. The kinetics for processes leading to production and no production of singlet oxygen is discussed on the basis of the values of f(Delta)(S) and k(q)(S). The results obtained regarding phenanthrene (PH), 9-cyanophenanthrene (9-CNPH), pyrene (PY) and 1-cyanopyrene (1-CNPY) are also discussed.  相似文献   

4.
The kinetics and mechanistic aspects of the riboflavin-photosensitised oxidation of the topically administrable ophthalmic drugs Timolol (Tim) and Pindolol (Pin) were investigated in water-MeOH (9:1, v/v) solution employing light of wavelength > 400 nm. riboflavin, belonging to the vitamin B(2) complex, is a known human endogenous photosensitiser. The irradiation of riboflavin in the presence of ophthalmic drugs triggers a complex picture of competitive reactions which produces the photodegradation of both the drugs and the pigment itself. The mechanism was elucidated employing stationary photolysis, polarographic detection of dissolved oxygen, stationary and time-resolved fluorescence spectroscopy, and laser flash photolysis. Ophthalmic drugs quench riboflavin-excited singlet and triplet states. From the quenching of excited triplet riboflavin, the semireduced form of the pigment is generated, through an electron transfer process from the drug, with the subsequent production of superoxide anion radical (O(2)(*-)) by reaction with dissolved molecular oxygen. Through the interaction of dissolved oxygen with excited triplet riboflavin, the species singlet oxygen (O(2)((1)Delta(g))) is also generated to a lesser extent. Both O(2)(*-) and O(2)((1)Delta(g)) induce photodegradation of ophthalmic drugs, Tim being approximately 3-fold more easily photooxidisable than Pin, as estimated by oxygen consumption experiments.  相似文献   

5.
Benzylhexadecyl dimethylammonium chloride (BHDC) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) water-in-oil micro-emulsions were employed to study the influence of medium heterogeneity on singlet molecular oxygen [O(2)((1)Delta(g))]-mediated degradation of 1-hydroxynaphthalene (1-OHN) and 2-hydroxynaphthalene (2-OHN) in their naphthoate form. The kinetic study in the micellar system, that was considered as a closer model for the environment of contaminants in natural polluted waters, consisted of a comparative work with the process in homogeneous solution, by varying surfactant structure and water content of the micro-emulsion. While it is known that 1-OHN and 2-OHN are rapidly and efficiently photo-oxidised in aqueous medium, time-resolved phosphorescence detection of O(2)((1)Delta(g)) and stationary photolysis experiments demonstrate that both the values for the overall and reactive rate constants for the quenching of O(2)((1)Delta(g)) and the photo-oxidation efficiencies are lowered in BHDC micelles, whereas the photo-oxidative process in AOT micro-emulsions was totally inhibited. Results are interpreted and discussed on the basis of different locations of the probe in the micellar environment.  相似文献   

6.
We report on the photostability of a mixture of vitamins B6 and B2 (riboflavin, Rf) upon visible light irradiation and on the possible role of the vitamin B6 family (B6D) as deactivators of reactive oxygen species (ROS). The work is a systematic kinetic and mechanistic study under conditions in which only Rf absorbs photoirradiation. Pyridoxine, pyridoxal hydrochloride, pyridoxal phosphate and pyridoxamine dihydrochloride were studied as representative members of the vitamin B6 family. The visible light irradiation of dissolved Rf and B6D in pH 7.4 aqueous medium under aerobic conditions induces photoprocesses that mainly produce B6D degradation. The overall oxidative mechanism involves the participation of ROS. Photogenerated (3)Rf* is quenched either by oxygen, giving rise to O(2)((1)Δ(g)) by electronic energy transfer to dissolved ground state oxygen, or by B6D yielding, through an electron transfer process, the neutral radical RfH˙, and O(2)˙(-) in an subsequent step. B6D act as quenchers of O(2)((1)Δ(g)) and O(2)˙(-), the former in a totally reactive event that also inhibits Rf photoconsumption. The common chromophoric moiety of B6D represented by 3-hydroxypyridine, constitutes an excellent model that mimics the kinetic behavior of the vitamin as an antioxidant towards Rf-generated ROS. The protein lysozyme, taken as an O(2)((1)Δ(g))-mediated oxidizable biological target, is photoprotected by B6D from Rf-sensitized photodegradation through the quenching of electronically excited triplet state of the pigment, in a process that competes with O(2)((1)Δ(g)) generation.  相似文献   

7.
Volume 62, no. 5, p. 1702, column 2, equation 3: the equation should read as follows. g(sup1)((tau)) = [g(sup2)((tau)) - 1](sup1/2) = exp[-K(sup2)(D(inf1) cos(sup2)(alpha) + D(inf2) sin(sup2)(alpha))(tau)] (3) [This corrects the article on p. 1699 in vol. 62.].  相似文献   

8.
The kinetics of rose bengal-sensitized photooxidation of tyrosine and several tyrosine-derivatives (tyr-D) named tyrosine methyl ester, tyrosine ethyl ester and tyrosine benzyl ester was studied in buffered pH 11 water, and buffered pH 11 micellar aqueous solutions of 0.01 M cetyltrimethylammonium chloride (CTAC) and 0.01 M-octylphenoxypolyethoxyethanol [triton X100 (TX100)]. Through time-resolved phosphorescence detection of singlet molecular oxygen (O(2)((1)Delta(g))) and polarographic determination of oxygen consumption, the respective bimolecular rate constants for reactive (k(r)) and overall (k(t)) quenching of the oxidative species by tyr-D were evaluated. Both rate constants behave in different fashion depending on the particular reaction medium. k(r)/k(t) values, increase in the sense CTAC相似文献   

9.
The ability of the widely employed therapeutic drugs 4-aminosalicylic acid and 5-aminosalicylic acid to act as singlet molecular oxygen (O(2)((1)delta(g))) scavengers was investigated at pH 7 and pH 12. The isomer 3-aminosalicylic acid was also included in the study for comparative purposes. All three compounds quench photochemically generated O(2)((1)delta(g)) with rate constants in the range of 10(7)-10(8) x M(-1)s(-1), depending on the experimental conditions. No chemical reaction (oxidation of the aminosalicylic acids) was detected at the neutral pH, whereas at pH 12 both chemical and physical interactions with O(2)((1)delta(g)) operated. The physical process implies the de-activation of the oxidant species without destruction of the aminosalicylic acid. The quotients between the overall and reactive rate constants for O(2)((1)delta(g)) quenching at pH 12 (k(r)/k(t) ratios), which account for the actual effectiveness of photodegradation, were relatively low (0.22, 0.04, and 0.06 for 3-, 4- and 5-aminosalicylic acids, respectively). This indicates that the drugs, particularly the 4- and 5-amino derivatives, de-activate the excited oxygen species, at both pH values studied, mainly in a physical fashion, preventing its photodegradation and providing an antioxidative protection for possible photo-oxidizable biological targets in the surroundings.  相似文献   

10.
A series of new iron(III) and copper(II) complexes of bovine serum transferrin (BTf), with carbonate and/or oxalate as the synergistic anion, are presented. The complexes [Fe(2)(CO(3))(2)BTf], [Fe(2)(C(2)O(4))(2)BTf], [Cu(2)(CO(3))(2)BTf] and [Cu(C(2)O(4))BTf] were prepared by standard titrimetric techniques. The oxalate derivatives were also obtained from the corresponding carbonate complexes by anion-displacement. The site-preference of the transition metal-oxalate synergism has facilitated the preparation and isolation of the mononuclear complex [Cu(C(2)O(4))BTf], the mixed-anion complexes [Cu(2)(CO(3))(C(2)O(4))BTf] and [Fe(2)(CO(3))(C(2)O(4))BTf] and the mixed-metal complex [FeCu(C(2)O(4))(2)BTf]. The sensitivity of electron paramagnetic resonance (EPR) spectroscopy to the nature of the synergistic anions at the specific-binding sites of the transferrins has made this physical technique particularly indispensable to this study. None of the other members of the transferrin family of proteins has ever been demonstrated to bind the ferric and cupric ions one after the other, each occupying a separate specific-binding site of the same transferrin molecule, as a response to the coordination restrictions imposed by the oxalate ion. The bathochromic shift of the visible p(pi)-d(pi*) CT band for iron(III)-BTf and the hypsochromic shift of the p(pi)-d(sigma*) CT band for copper(II)-BTf, on replacing carbonate by oxalate as the associated anion, are consistent with the relative positions of these anionic ligands in the spectrochemical series and the nature of the d-type acceptor orbitals involved in the CT transitions. The binding and spectroscopic properties of bovine serum transferrin--a serum transferrin--very nearly mirror those of human serum transferrin, but differ significantly from those of human lactoferrin.  相似文献   

11.
A new meso-2,4,6-trimethoxyphenyl porphyrin covalently linked to a 2',6'-dinitro-4'-trifluoromethylphenyl group by an amine bond 5 and its metal complex with Cd(II) 6 was prepared. The photodynamic activities of 5 and 6 were evaluated in vitro on Hep-2 cells. A considerable increase in the photocytotoxic effect was found for 6, which has higher singlet molecular oxygen, O(2)((1)Delta(g)), production.  相似文献   

12.
The acid-base properties of γ-L-glutamyl-L-cysteinyl-glycine (glutathione, GSH) were determined by potentiometry (ISE-H(+), glass electrode) in pure NaI((aq)) and in NaCl((aq))/MgCl(2(aq)), and NaCl((aq))/CaCl(2(aq)) mixtures, at T = 298.15 K and different ionic strengths (up to I(c) ~ 5.0 mol L(-1)). In addition, the activity coefficients of glutathione were also determined by the distribution method at the same temperature in various ionic media (LiCl((aq)), NaCl((aq)), KCl((aq)), CsCl((aq)), MgCl(2(aq)), CaCl(2(aq)), NaI((aq))). The results obtained were also used to calculate the Specific ion Interaction Theory (SIT) and Pitzer coefficients for the dependence on medium and ionic strength of glutathione species, as well as the formation constants of weak Mg(j)H( i )(GSH)((i+2j-3)) and Ca(j)H(i)(GSH)((i+2j-3)) complexes. Direct calorimetric titrations were also carried out in pure NaCl((aq)) and in NaCl((aq))/CaCl(2(aq)) mixtures at different ionic strengths (0.25 ≤ I (c )/mol L(-1) ≤ 5.0) in order to determine the enthalpy changes for the protonation and complex formation equilibria in these media at T = 298.15 K. Results obtained are useful for the definition of glutathione speciation in any aqueous media containing the main cations of natural waters and biological fluids, such as Na(+), K(+), Mg(2+), and Ca(2+). Finally, this kind of systematic studies, where a series of ionic media (e.g., all alkali metal chlorides) is taken into account in the determination of various thermodynamic parameters, is useful for the definition of some trends in the thermodynamic behavior of glutathione in aqueous solution.  相似文献   

13.
Singlet molecular oxygen, O(2)(a(1)Delta(g)), has been detected from single neurons and HeLa cells in time-resolved optical experiments by its 1270 nm phosphorescence (a(1)Delta(g)--> X(3)Sigma(-)(g)) upon irradiation of a photosensitizer incorporated into the cell. The cells were maintained in a buffered medium and their viability was assessed by live/dead assays. To facilitate the detection of singlet oxygen, intracellular H(2)O was replaced with D(2)O by an osmotic de- and rehydration process. The effect of this insult on the cells was likewise assessed. The data indicate that, in the complicated transition from a "live" to "dead" cell, the majority of our cells have the metabolic activity and morphology characteristic of a live cell. Quenching experiments demonstrate that the singlet oxygen lifetime in our cells is principally determined by interactions with intracellular water and not by interactions with other cell constituents. The data indicate that in a viable, metabolically-functioning, and H(2)O-containing cell, the lifetime of singlet oxygen is approximately 3 micros. This is consistent with our previous reports, and confirms that the singlet oxygen lifetime in a cell is much longer than hitherto believed. This implies that, in a cell, singlet oxygen is best characterized as a selective rather than reactive intermediate. This is important when considering roles played by singlet oxygen as a signaling agent and as a component in events that result in cell death. The data reported herein also demonstrate that spatially-resolved optical probes can be used to monitor selected events in the light-induced, singlet-oxygen-mediated death of a single cell.  相似文献   

14.
Gillon JS  Yakir D 《Plant physiology》2000,123(1):201-214
(18)O discrimination in CO(2) stems from the oxygen exchange between (18)O-enriched water and CO(2) in the chloroplast, a process catalyzed by carbonic anhydrase (CA). A proportion of this (18)O-labeled CO(2) escapes back to the atmosphere, resulting in an effective discrimination against C(18)OO during photosynthesis (Delta(18)O). By constraining the delta(18)O of chloroplast water (delta(e)) by analysis of transpired water and the extent of CO(2)-H(2)O isotopic equilibrium (theta(eq)) by measurements of CA activity (theta(eq) = 0.75-1.0 for tobacco, soybean, and oak), we could apply measured Delta(18)O in a leaf cuvette attached to a mass spectrometer to derive the CO(2) concentration at the physical limit of CA activity, i.e. the chloroplast surface (c(cs)). From the CO(2) drawdown sequence between stomatal cavities from gas exchange (c(i)), from Delta(18)O (c(cs)), and at Rubisco sites from Delta(13)C (c(c)), the internal CO(2) conductance (g(i)) was partitioned into cell wall (g(w)) and chloroplast (g(ch)) components. The results indicated that g(ch) is variable (0.42-1.13 mol m(-2) s(-1)) and proportional to CA activity. We suggest that the influence of CA activity on the CO(2) assimilation rate should be important mainly in plants with low internal conductances.  相似文献   

15.
Visible-light photo-irradiation of the commercial phenolic antioxidants (PhAs) butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), in the presence of vitamin B2 (riboflavin, Rf), in methanolic solutions and under aerobic conditions, results in the photo-oxidation of the PhAs. The synthetic dye photosensitiser Rose Bengal was also employed for auxiliary experiments. With concentrations of riboflavin and PhAs of ca. 0.02 mM and < 1 mM, respectively, the excited triplet state of the vitamin (3Rf*) is quenched by BHT in a competitive fashion with dissolved ground state triplet oxygen. From the quenching of 3Rf*, the semireduced form of the pigment is generated through an electron transfer process from BHT, with the subsequent production of superoxide anion radical (O2*-) by reaction with dissolved molecular oxygen. In parallel, the species singlet molecular oxygen, O2(1delta(g)), is also generated. Both reactive oxygen species produce the photodegradation of BHT. In the case of BHA, the lack of any effect exerted by superoxide dismutase drives out a significant participation of a O2(*-)-mediated mechanism. BHA mainly interacts with O2(1delta(g)) and exhibits a desirable property as an antioxidant--a relatively high capacity for O2(1delta(g)) de-activation and a low photodegradation efficiency by the oxidative species. Electrochemical determinations support the proposed photodegradative mechanism.  相似文献   

16.
Two zinc(II) phthalocyanines bearing either four methoxy (ZnPc 3) or trifluoromethylbenzyloxy (ZnPc 4) substituents have been synthesized by a two-step procedure starting from 4-nitrophthalonitrile. Absorption and fluorescence spectroscopic studies were analyzed in different media. These compounds are essentially non-aggregated in the organic solvent. Fluorescence quantum yields (phi(F)) of 0.26 for ZnPc 3 and 0.25 for ZnPc 4 were calculated in tetrahydrofuran (THF). The photodynamic activity of these compounds was compared in both THF containing photooxidizable substrates and in vitro on Hep-2 human larynx-carcinoma cell line. The production of singlet molecular oxygen, O(2)((1)Delta(g)), was determined using 9,10-dimethylanthracene yielding values of approximately 0.56 for both sensitizers. Under these conditions, the addition of beta-carotene (Car) suppresses the O(2)((1)Delta(g))-mediated photooxidation. In biological medium, no dark cytotoxicity was found for cells incubated with 0.1 microM of phthalocyanines 3 and 4 for 24 h. However, under similar conditions 0.5 microM of ZnPc 4 was toxic (70% cell survival). The uptake into Hep-2 cells was evaluated using 0.1muM of sensitizer, reaching values of approximately 0.05 nmol/10(6) cells after 3h of incubation at 37 degrees C. The cell survival after irradiation of the cultures with visible light was dependent upon both light exposure level and intracellular sensitizer concentration. A higher photocytotoxic effect was found for ZnPc 3 with respect to 4 (32%/70% cell survival after 15 min of irradiation). Also, these studies were performed treating the cells with 0.5 microM of ZnPc 3. In this case, an increase in the uptake (approximately 0.28 nmol/10(6) cells) was observed, which is accompanied by a higher photocytotoxic activity (20% cell survival). These results show that even though both sensitizer present similar photophysical properties in homogeneous medium, the photodynamic behavior in cellular media can significantly be changed.  相似文献   

17.
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels underlie spontaneous rhythmic activities in the heart and brain. Sulfhydryl modification of ion channels is a proven approach for studying their structure-function relationships; here we examined the effects of the hydrophilic sulfhydryl-modifying agents methanethiosulfonate ethylammonium (MTSEA(+)) and methanethiosulfonate ethylsulfonate (MTSES(-)) on wild-type (WT) and engineered HCN1 channels. External application of MTSEA(+) to WT channels irreversibly reduced whole-cell currents (I(MTSEA)/I(Control) = 42 +/- 2%), slowed activation and deactivation kinetics ( approximately 7- and approximately 3-fold at -140 and -20 mV, respectively), and produced hyperpolarizing shifts of steady-state activation (V(12)((MTSEA)) = -125.8 +/- 9.0 mV versus V(12)((Control)) = -76.4 +/- 1.6 mV). Sequence inspection revealed the presence of five endogenous cysteines in the transmembrane domains of HCN1: three are putatively close to the extracellular milieu (Cys(303), Cys(318), and Cys(347) in the S5, S5-P, and P segments, respectively), whereas the remaining two are likely to be cytoplasmic or buried. To identify the molecular constituent(s) responsible for the effects of MTSEA(+), we mutated the three "external" cysteines individually to serine. C303S did not yield measurable currents. Whereas C347S channels remained sensitive to MTSEA(+), C318S was not modified (I(MTSEA)/I(Control) = 101 +/- 2%, V(12)((MTSEA)) = -78.4 +/- 1.1 mV, and V(12)((Control)) = -79.8 +/- 2.3 mV). Likewise, WT (but not C318S) channels were sensitive to MTSES(-). Despite their opposite charges, MTSES(-) produced changes directionally similar to those effected by MTSEA(+) (I(MTSES)/I(Control) = 22 +/- 1.6% and V(12)((MTSES)) = -145.9 +/- 4.9 mV). We conclude that S5-P Cys(318) of HCN1 is externally accessible and that the external pore vestibule and activation gating of HCN channels are allosterically coupled.  相似文献   

18.
The time course of electron transfer in vitro between soluble domains of the Rieske iron-sulfur protein (ISP) and cytochrome f subunits of the cytochrome b(6)f complex of oxygenic photosynthesis was measured by stopped-flow mixing. The domains were derived from Chlamydomonas reinhardtii and expressed in Escherichia coli. The expressed 142-residue soluble ISP apoprotein was reconstituted with the [2Fe-2S] cluster. The second-order rate constant, k(2)((ISP-f)) = 1.5 x 10(6) m(-1) s(-1), for ISP to cytochrome f electron transfer was <10(-2) of the rate constant at low ionic strength, k(2)((f-PC))(> 200 x 10(6) m(-1) s(-1)), for the reduction of plastocyanin by cytochrome f, and approximately 1/30 of k(2)((f-PC)) at the ionic strength estimated for the thylakoid interior. In contrast to k(2)((f-PC)), k(2)((ISP-f)) was independent of pH and ionic strength, implying no significant role of electrostatic interactions. Effective pK values of 6.2 and 8.3, respectively, of oxidized and reduced ISP were derived from the pH dependence of the amplitude of cytochrome f reduction. The first-order rate constant, k(1)((ISP-f)), predicted from k(2)((ISP-f)) is approximately 10 and approximately 150 times smaller than the millisecond and microsecond phases of cytochrome f reduction observed in vivo. It is proposed that in the absence of electrostatic guidance, a productive docking geometry for fast electron transfer is imposed by the guided trajectory of the ISP extrinsic domain. The requirement of a specific electrically neutral docking configuration for ISP electron transfer is consistent with structure data for the related cytochrome bc(1) complex.  相似文献   

19.
The kinetic parameters of porphyrin-photosensitized formation and deactivation of singlet molecular oxygen (1O2) and their dependence on the concentration of the 1O2 quencher sodium azide were investigated in air-saturated water, ethanol, and aqueous micellar solutions of detergents using time-resolved measurements of oxygen phosphorescence under pulsed laser excitation. The lifetimes of 1O2 formation and deactivation and the rate constants of 1O2 quenching by sodium azide were determined. It was shown that, with no azide in the solutions, the rise in phosphorescence intensity after the laser flash corresponded to the kinetics of energy transfer from the porphyrin triplet molecules to oxygen, while the decay kinetics corresponded to the kinetics of 1O2 deactivation. In the presence of detergent, a considerable increase in the 1O2 lifetime was observed, which is likely due to the localization of 1O2 molecules mostly in lipophilic micelles and not in the water phase. If relatively high azide concentrations were used, the lifetime of the porphyrin triplet state did not change but the 1O2 lifetime decreased to values similar to those in living cells. In this case, the inversion of the phosphorescence kinetic phases was observed. The rise corresponded to 1O2 deactivation, and the decay, to the energy transfer from triplet porphyrin to oxygen. The data suggest that, in living cells, 1O2 molecules are also located mainly in lipophilic structures and the 1O2 lifetime determines the kinetics of the phosphorescence rise after the laser pulse.  相似文献   

20.
The photodynamic activity of a cationic Zn(II) tetramethyltetrapyridinoporphyrazinium salt (ZnPc ) was compared with that of a non-charged Zn(II) tetrapyridinoporphyrazine (ZnPc 1), both in vitro using human red blood (HRB) cells and a typical Gram-negative bacterium Escherichia coli. Absorption and fluorescence spectroscopic studies were analyzed in different media. Fluorescence quantum yields (phi(F)) of 0.35 for ZnPc 1 and 0.30 for ZnPc 2 were calculated in N,N-dimethylformamide (DMF). The singlet molecular oxygen, O(2)((1)Delta(g)), production was evaluated using 9,10-dimethylanthracene (DMA) in DMF yielding values of Phi(Delta)= 0.56 for ZnPc 1 and 0.50 for ZnPc 2. In biological medium, the photodynamic effect was first evaluated in HRB cells. Both phthalocyanines produce similar photohemolysis of HRB cells, reaching values >90% of lysis after 5 min of irradiation with visible light. The photodynamic effect is accompanied by an increase in the membrane fluidity of HRB cells. However, these studies on E. coli cells showed that the cationic ZnPc 2 produces a higher photoinactivation of Gram-negative bacteria than ZnPc 1. Also, these results were established by stopped of growth curves for E. coli. Therefore the studies show that cationic ZnPc 2 is an efficient phototherapeutic agent with potential applications in tumor cell and Gram-negative bacteria inactivation by photodynamic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号