首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

The α7 nicotinic acetylcholine receptors (nAChRs) play a vital role in the pathophysiology of neuropsychiatric diseases such as Alzheimer’s disease and depression. However, there is currently no suitable positron emission tomography (PET) or Single-Photon Emission Computed Tomography (SPECT) radioligands for imaging α7 nAChRs in brain. Here our aim is to radiosynthesize a novel SPECT radioligand 131I-CHIBA-1001 for whole body biodistribution study and in vivo imaging of α7 nAChRs in brain.

Method

131I-CHIBA-1001 was radiosynthesized by chloramine-T method. Different conditions of reaction time and temperature were tested to get a better radiolabeling yield. Radiolabeling yield and radiochemical purities of 131I-CHIBA-1001 were analyzed by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC) system. Whole body biodistribution study was performed at different time points post injection of 131I-CHIBA-1001 in KM mice. Monkey subject was used for in vivo SPECT imaging in brain.

Result

The radiolabeling yield of 131I-CHIBA-1001 reached 96% within 1.5∼2.0 h at 90∼95°C. The radiochemical purity reached more than 99% after HPLC purification. 131I-CHIBA-1001 was highly stable in saline and fresh human serum in room temperature and 37°C separately. The biodistribution data of brain at 15, 30, and 60 min were 11.05±1.04%ID/g, 8.8±0.04%ID/g and 6.28±1.13%ID/g, respectively. In experimental SPECT imaging, the distribution of radioactivity in the brain regions was paralleled with the distribution of α7 nAChRs in the monkey brain. Moreover, in the blocking SPECT imaging study, the selective α7 nAChR agonist SSR180711 blocked the radioactive uptake in the brain successfully.

Conclusion

The CHIBA-1001 can be successfully radiolabeled with 131I using the chloramine-T method. 131I-CHIBA-1001 can successfully accumulate in the monkey brain and image the α7 acetylcholine receptors. 131I-CHIBA-1001 can be a candidate for imagingα7 acetylcholine receptors, which will be of great value for the diagnosis and treatment of mental diseases.  相似文献   

2.
Biomedical imaging techniques such as skeletal survey and 18F-fluorodeoxyglucose (FDG)/Positron Emission Tomography (PET) are frequently used to diagnose and stage multiple myeloma (MM) patients. However, skeletal survey has limited sensitivity as it can detect osteolytic lesions only after 30–50% cortical bone destruction, and FDG is a marker of cell metabolism that has limited sensitivity for intramedullary lesions in MM. Targeted, and non-invasive novel probes are needed to sensitively and selectively image the unique molecular signatures and cellular processes associated with MM. Very late antigen-4 (VLA-4; also called α4β1 integrin) is over-expressed on MM cells, and is one of the key mediators of myeloma cell adhesion to the bone marrow (BM) that promotes MM cell trafficking and drug resistance. Here we describe a proof-of-principle, novel molecular imaging strategy for MM tumors using a VLA-4 targeted PET radiopharmaceutical, 64Cu-CB-TE1A1P-LLP2A. Cell uptake studies in a VLA-4-positive murine MM cell line, 5TGM1, demonstrated receptor specific uptake (P<0.0001, block vs. non-block). Tissue biodistribution at 2 h of 64Cu-CB-TE1A1P-LLP2A in 5TGM1 tumor bearing syngeneic KaLwRij mice demonstrated high radiotracer uptake in the tumor (12±4.5%ID/g), and in the VLA-4 rich organs, spleen (8.8±1.0%ID/g) and marrow (11.6±2.0%ID/g). Small animal PET/CT imaging with 64Cu-CB-TE1A1P-LLP2A demonstrated high uptake in the 5TGM1 tumors (SUV 6.6±1.1). There was a 3-fold reduction in the in vivo tumor uptake in the presence of blocking agent (2.3±0.4). Additionally, 64Cu-CB-TE1A1P-LLP2A demonstrated high binding to the human MM cell line RPMI-8226 that was significantly reduced in the presence of the cold targeting agent. These results provide pre-clinical evidence that VLA-4-targeted imaging using 64Cu-CB-TE1A1P-LLP2A is a novel approach to imaging MM tumors.  相似文献   

3.
The human Matrix MetalloProtease-9 (hMMP-9) is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B), fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG) and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05) higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g) with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor.  相似文献   

4.

Purpose

This study aimed to explore the diagnostic performance of single photon emission computed tomography / computerized tomography (SPECT/CT) using a new radiotracer 99mTc-RGD-BBN for breast malignant tumor compared with 99mTc-3P4-RGD2.

Methods

6 female patients with breast malignant tumors diagnosed by fine needle aspiration cytology biopsy (FNAB) who were scheduled to undergo surgery were included in the study. 99mTc-3P4-RGD2 and 99mTc-RGD-BBN were performed with single photon emission computed tomography (SPECT) at 1 hour after intravenous injection of 299 ± 30 MBq and 293 ± 32 MBq of radiotracers respectively at separate day. The results were evaluated by the Tumor to non-Tumor ratios (T/NT). 99mTc-RGD-BBN and 99mTc-3P4-RGD2 SPECT/CT images were interpreted independently by 3 experienced nuclear medicine physicians using a 3-point scale system. All of the samples were analyzed immunohistochemically to evaluate the integrin αvβ3 and gastrin-releasing peptide receptor (GRPR) expression. The safety, biodistribution and radiation dosimetry of 99mTc-RGD-BBN were also evaluated in the healthy volunteers.

Results

No serious adverse events were reported in any of the patients during the study. The effective radiation dose entirely conformed to the relevant standards. A total of 6 palpable malignant lesions were detected using 99mTc-RGD-BBN SPECT/CT with clear uptake. All malignant lesions were also detected using 99mTc-3P4-RGD2 SPECT/CT. The results showed that five malignant lesions were with clear uptake and the other one with barely an uptake. 4 malignant cases were found with both αvβ3 and GRPR expression, 1 case with only GRPR positive expression (integrin αvβ3 negative) and 1 case with only integrin αvβ3 positive expression (GRPR negative).

Conclusion

99mTc-RGD-BBN is a safe agent for detecting breast cancer. 99mTc-RGD-BBN may have the potential to make up for the deficiency of 99mTc-3P4-RGD2 in the detection of breast cancer with only GRPR positive expression (integrin αvβ3 negative). The preliminary application of 99mTc-RGD-BBN has demonstrated its powerful potential in breast cancer diagnosis and therapy.  相似文献   

5.
The potential of the HER2-targeting antibody trastuzumab as a radioimmunoconjugate useful for both imaging and therapy was investigated. Conjugation of trastuzumab with the acyclic bifunctional chelator CHX-A″-DTPA yielded a chelate:protein ratio of 3.4 ± 0.3; the immunoreactivity of the antibody unaffected. Radiolabeling was efficient, routinely yielding a product with high specific activity. Tumor targeting was evaluated in mice bearing subcutaneous (s.c.) xenografts of colorectal, pancreatic, ovarian and prostate carcinomas. High uptake of the radioimmunoconjugate, injected intravenously (i.v.), was observed in each of the models and the highest tumor %ID/g (51.18 ± 13.58) was obtained with the ovarian (SKOV-3) tumor xenograft. Specificity was demonstrated by the absence of uptake of 111In-trastuzumab by melanoma (A375) s.c. xenografts and 111In-HuIgG by s.c. LS-174T xenografts. Minimal uptake of i.v. injected 111In-trastuzumab in normal organs was confirmed in non-tumor-bearing mice. The in vivo behavior of 111In-trastuzumab in mice bearing intraperitoneal (i.p.) LS-174T tumors resulted in a tumor %ID/g of 130.85 ± 273.34 at 24 h. Visualization of tumor, s.c. and i.p. xenografts was achieved by γ-scintigraphy and PET imaging. Blood pool was evident as expected but cleared over time. The blood pharmacokinetics of i.v. and i.p. injected 111In-trastuzumab was determined in mice with and without tumors. The data from these in vitro and in vivo studies supported advancement of radiolabeled trastuzumab into two clinical studies, a Phase 0 imaging study in the Molecular Imaging Program of the National Cancer Institute and a Phase 1 radioimmunotherapy study at the University of Alabama.Key words: monoclonal antibody, HER2, trastuzumab, radioimmunodiagnosis, radioimmunotherapy  相似文献   

6.
RG7356 is a humanized antibody targeting the constant region of CD44. RG7356 was radiolabeled with 89Zr for preclinical evaluations in tumor xenograft-bearing mice and normal cynomolgus monkeys to enable study of its biodistribution and the role of CD44 expression on RG7356 uptake. Studies with 89Zr-RG7356 were performed in mice bearing tumor xenografts that differ in the level of CD44 expression (CD44+ or CD44-) and RG7356 responsiveness (resp or non-resp): MDA-MB-231 (CD44+, resp), PL45 (CD44+, non-resp) and HepG2 (CD44, non-resp). Immuno-PET whole body biodistribution studies were performed in normal cynomolgus monkeys to determine normal organ uptake after administration of a single dose. At 1, 2, 3, and 6 days after injection, 89Zr-RG7356 uptake in MDA-MB-231 (CD44+, resp) xenografts was nearly constant and about 9 times higher than in HepG2 (CD44, non-resp) xenografts (range 27.44 ± 12.93 to 33.13 ± 7.42% ID/g vs. 3.25 ± 0.38 to 3.90 ± 0.58% ID/g). Uptake of 89Zr-RG7356 was similar in MDA-MB-231 (CD44+, resp) and PL45 (CD44+, non-resp) xenografts. Studies in monkeys revealed antibody uptake in spleen, salivary glands and bone marrow, which might be related to the level of CD44 expression. 89Zr-RG7356 uptake in these normal organs decreased with increasing dose levels of unlabeled RG7356.89Zr-RG7356 selectively targets CD44+ responsive and non-responsive tumors in mice and CD44+ tissues in monkeys. These studies indicate the importance of accurate antibody dosing in humans to obtain optimal tumor targeting. Moreover, efficient binding of RG7356 to CD44+ tumors may not be sufficient in itself to drive an anti-tumor response.  相似文献   

7.
BackgroundLeft bundle branch area pacing (LBBAP) has recently been introduced as a physiological pacing technique with synchronous left ventricular activation. It was our aim to evaluate the feasibility and learning curve of the technique, as well as the electrical characteristics of LBBAP.Methods and resultsLBBAP was attempted in 80 consecutive patients and electrocardiographic characteristics were evaluated during intrinsic rhythm, right ventricular septum pacing (RVSP) and LBBAP. Permanent lead implantation was successful in 77 of 80 patients (96%). LBBAP lead implantation time and fluoroscopy time shortened significantly from 33 ± 16 and 21 ± 13 min to 17 ± 5 and 12 ± 7 min, respectively, from the first 20 to the last 20 patients. Left bundle branch (LBB) capture was achieved in 54 of 80 patients (68%). In 36 of 45 patients (80%) with intact atrioventricular conduction and narrow QRS, an LBB potential (LBBpot) was present with an LBBpot to onset of QRS interval of 22 ± 6 ms. QRS duration increased significantly more during RVSP (141 ± 20 ms) than during LBBAP (125 ± 19 ms), compared to 130 ± 30 ms without pacing. An even clearer difference was observed for QRS area, which increased significantly more during RVSP (from 32 ± 16 µVs to 73 ± 20 µVs) than during LBBAP (41 ± 15 µVs). QRS area was significantly smaller in patients with LBB capture compared to patients without LBB capture (43 ± 18 µVs vs 54 ± 21 µVs, respectively). In patients with LBB capture (n = 54), the interval from the pacing stimulus to R‑wave peak time in lead V6 was significantly shorter than in patients without LBB capture (75 ± 14 vs 88 ± 9 ms, respectively).ConclusionLBBAP is a safe and feasible technique, with a clear learning curve that seems to flatten after 40–60 implantations. LBB capture is achieved in two-thirds of patients. Compared to RVSP, LBBAP largely maintains ventricular electrical synchrony at a level close to intrinsic (narrow QRS) rhythm.Supplementary InformationThe online version of this article (10.1007/s12471-022-01679-7) contains supplementary material, which is available to authorized users.  相似文献   

8.
Based on the conjugate strategy, two neutral 99mTc labeled 2-(1-(6-(dialkylamino)naphthalen-2-yl)ethylidene)malononitrile (DDNP) and 1-(6-(dialkylamino)naphthalen-2-yl)ethanone (ENE) derivatives, and their corresponding rhenium complexes were synthesized. In vitro fluorescent staining indicated that the corresponding rhenium derivatives selectively stained the β-amyloid (Aβ) plaques in the brain sections of AD model mice with low background. Compared with FDDNP and FENE, the affinities of the corresponding rhenium derivatives to Aβ aggregates decreased about 10-14-fold. In vivo biodistribution experiments in normal mice showed that 99mTc-MAMA-ENE displayed medium initial brain uptake (0.65 %ID/g at 2 min) with a reasonable washout from the brain (0.19 %ID/g at 2 h) while 99mTc-MAMA-DDNP showed a low brain uptake (0.28 %ID/g at 2 min). Further optimize these 99mTc-labeled tracers in order to improve their binding affinities to Aβ plaques and diffusion through the blood brain barrier may generate useful imaging agents for SPECT.  相似文献   

9.
CD13 receptor plays a critical role in tumor angiogenesis and metastasis. We therefore aimed to develop 99mTc-labeled monomeric and dimeric NGR-containing peptides, namely, NGR1 and NGR2, for SPECT imaging of CD13 expression in HepG2 hepatoma xenografts. Both NGR-containing monomer and dimer were synthesized and labeled with 99mTc. In vivo receptor specificity was demonstrated by successful blocking of tumor uptake of 99mTc-NGR dimer in the presence of 20 mg/kg NGR2 peptide. Western blot and immunofluorescence staining confirmed the CD13 expression in HepG2 cells. The NGR dimer showed higher binding affinity and cell uptake in vitro than the NGR-containing monomer, presumably due to a multivalency effect. 99mTc-Labeled monomeric and dimeric NGR-containing peptides were subjected to SPECT imaging and biodistribution studies. SPECT scans were performed in HepG2 tumor-bearing mice at 1, 4, 12, and 24 h post-injection of ~7.4 MBq tracers. The metabolism of tracers was determined in major organs at different time points after injection which demonstrated rapid, significant tumor uptake and slow tumor washout for both traces. Predominant clearance from renal and hepatic system was also observed in 99mTc-NGR1 and 99mTc-NGR2. In conclusion, monomeric and dimeric NGR peptide were developed and labeled with 99mTc successfully, while the high integrin avidity and long retention in tumor make 99mTc-NGR dimer a promising agent for tumor angiogenesis imaging.  相似文献   

10.
Asialoglycoprotein receptors (ASGP-R) are well known to exist on the mammalian liver, situate on the surface of hepatocyte membrane. Quantitative imaging of asialoglycoprotein receptors could estimate the function of the liver. 99mTc labeled galactosyl-neoglycoalbumin (NGA) and diethylenetriaminepentaacetic acid galactosyl human serum albumin (GSA) have been developed for SPECT imaging and clinical used in Japan. In this study, we labeled the NGA with 18F to get a novel PET tracer [18F]FNGA and evaluated its hepatic-targeting efficacy and pharmacokinetics. Methods: NGA was labeled with 18F by conjugation with N-succinimidyl-4-18F-fluorobenzoate ([18F]SFB) under a slightly basic condition. The in vivo metabolic stability of [18F]FNGA was determined. Ex vivo biodistribution of [18F]FNGA and blocking experiment was investigated in normal mice. MicroPET images were acquired in rat with and without block at 5 min and 15 min after injection of the radiotracer (3.7 MBq/rat), respectively. Results: Starting with 18F Kryptofix 2.2.2./K2CO3 solution, the total reaction time for [18F]FNGA is about 150 min. Typical decay-corrected radiochemical yield is about 8–10%. After rapid purified with HiTrap desalting column, the radiochemical purity of [18F]FNGA was more than 99% determined by radio-HPLC. [18F]FNGA was metabolized to produce [18F]FB-Lys in urine at 30 min. Ex vivo biodistribution in mice showed that the liver accumulated 79.18 ± 7.17% and 13.85 ± 3.10% of the injected dose per gram at 5 and 30 min after injection, respectively. In addition, the hepatic uptake of [18F]FNGA was blocked by pre-injecting free NGA as blocking agent (18.55 ± 2.63%ID/g at 5 min pi), indicating the specific binding to ASGP receptor. MicroPET study obtained quality images of rat at 5 and 15 min post-injection. Conclusion: The novel ASGP receptor tracer [18F]FNGA was synthesized with high radiochemical yield. The promising biological properties of [18F]FNGA afford potential applications for assessment of hepatocyte function in the future. It may provide quantitative information and better resolution which particularly help to the liver surgery.  相似文献   

11.
The L-type amino acid transporter-1 (LAT1, SLC7A5) is upregulated in a wide range of human cancers, positively correlated with the biological aggressiveness of tumors, and a promising target for both imaging and therapy. Radiolabeled amino acids such as O-(2-[18F]fluoroethyl)-L-tyrosine (FET) that are transport substrates for system L amino acid transporters including LAT1 have met limited success for oncologic imaging outside of the brain, and thus new strategies are needed for imaging LAT1 in systemic cancers. Here, we describe the development and biological evaluation of a novel zirconium-89 labeled antibody, [89Zr]DFO-Ab2, targeting the extracellular domain of LAT1 in a preclinical model of colorectal cancer. This tracer demonstrated specificity for LAT1 in vitro and in vivo with excellent tumor imaging properties in mice with xenograft tumors. PET imaging studies showed high tumor uptake, with optimal tumor-to-non target contrast achieved at 7 days post administration. Biodistribution studies demonstrated tumor uptake of 10.5 ± 1.8 percent injected dose per gram (%ID/g) at 7 days with a tumor to muscle ratio of 13 to 1. In contrast, the peak tumor uptake of the radiolabeled amino acid [18F]FET was 4.4 ± 0.5 %ID/g at 30 min after injection with a tumor to muscle ratio of 1.4 to 1. Blocking studies with unlabeled anti-LAT1 antibody demonstrated a 55% reduction of [89Zr]DFO-Ab2 accumulation in the tumor at 7 days. These results are the first report of direct PET imaging of LAT1 and demonstrate the potential of immunoPET agents for imaging specific amino acid transporters.  相似文献   

12.
In recent years, the diagnostic and therapeutic uses of radioisotopes have shown significant progress. Immunoglobulin (Ig) appears to be a promising tracer, particularly due to its ability to target selected antigens. The main objective of this study is to optimize and assess an Ig radiolabeling method with Technetium 99m (99mTc), an attractive radioelement used widely for diagnostic imaging. Monoclonal anti-CD20 IgG was retained to study in vitro and in vivo radiolabeling impact. After IgG derivatization with 2-iminothiolane, IgG-SH was radiolabeled by an indirect method, using a 99mTc-tricarbonyl core. Radiolabeling stability was evaluated over 24h by thin-layer chromatography. IgG integrity was checked by sodium dodecyl sulfate—polyacrylamide gel electrophoresis coupled with Western blot and autoradiography. The radiolabeled Ig’s immunoaffinity was assessed in vitro by a radioimmunoassay method and binding experiments with cells (EL4-hCD20 and EL4-WT). Biodistribution studies were performed in normal BALB/c mice. Tumor uptake was assessed in mice bearing EL4-hCD20 and EL4-WT subcutaneous xenografts. With optimized method, high radiolabeling yields were obtained (95.9 ± 3.5%). 99mTc-IgG-SH was stable in phosphate-buffered saline (4°C and 25°C) and in serum (37°C), even if important sensitivity to transchelation was observed. IgG was not degraded by derivatization and radiolabeling, as shown by Western blot and autoradiography results. 99mTc-anti-CD20 IgG-SH immunoaffinity was estimated with Kd = 35 nM by both methods. In vivo biodistribution studies for 48h showed significant accumulation of radioactivity in plasma, liver, spleen, lungs and kidneys. Planar scintigraphy of mice bearing tumors showed a significant uptake of 99mTc-anti-CD20 IgG-SH in CD20+ tumor versus CD20- tumor. Radiolabeling of derivatized IgG with 99mTc-tricarbonyl was effective, stable and required few antibody amounts. This attractive radiolabeling method is “antibody safe” and preserves Ig affinity for antigen, as shown by both in vitro and in vivo experiments. This method could easily be used with noncommercial IgG or other antibody isotypes.  相似文献   

13.

Introduction

Visualization of tumor angiogenesis using radionuclide targeting provides important diagnostic information. In previous study, we proved that an arginine-arginine-leucine (RRL) peptide should be a tumor endothelial cell specific binding sequence. The overall aim of this study was to evaluate whether 99mTc-radiolabeled RRL could be noninvasively used for imaging of malignant tumors in vivo, and act as a new molecular probe targeting tumor angiogenesis.

Methods

The RRL peptide was designed and radiosynthesized with 99mTc by a one-step method. The radiolabeling efficiency and radiochemical purity were then characterized in vitro. 99mTc-RRL was injected intravenously in HepG2 xenograft-bearing BALB/c nude mice. Biodistribution and in vivo imaging were performed periodically. The relationship between tumor size and %ID uptake of 99mTc-RRL was also explored.

Results

The labeling efficiencies of 99mTc-RRL reached 76.9%±4.5% (n = 6) within 30–60 min at room temperature, and the radiochemical purity exceeded 96% after purification. In vitro stability experiment revealed the radiolabeled peptide was stable. Biodistribution data showed that 99mTc-RRL rapidly cleared from the blood and predominantly accumulated in the kidneys and tumor. The specific uptake of 99mTc-RRL in tumor was significantly higher than that of unlabeled RRL blocking and free pertechnetate control test after injection (p<0.05). The ratio of the tumor-to-muscle exceeded 6.5, tumor-to-liver reached 1.98 and tumor-to-blood reached 1.95. In planar gamma imaging study, the tumors were imaged clearly at 2–6 h after injection of 99mTc-RRL, whereas the tumor was not imaged clearly in blocking group. The tumor-to-muscle ratio of images with 99mTc-RRL was comparable with that of 18F-FDG PET images. Immunohistochemical analysis verified the excessive vasculature of tumor. There was a linear relationship between the tumor size and uptake of 99mTc-RRL with R2 = 0.821.

Conclusion

99mTc-RRL can be used as a potential candidate for visualization of tumor angiogenesis in malignant carcinomas.  相似文献   

14.

Background

The prevalence of thyroid nodules increases with age, average 4–7% for the U.S.A. adult population, but it is much higher (19–67%) when sub-clinical nodules are considered. About 90% of these lesions are benign and a reliable approach to their preoperative characterization is necessary. Unfortunately conventional thyroid scintigraphy does not allow the distinction among benign and malignant thyroid proliferations but it provides only functional information (cold or hot nodules).The expression of the anti-apoptotic molecule galectin-3 is restricted to cancer cells and this feature has potential diagnostic and therapeutic implications. We show here the possibility to obtain thyroid cancer imaging in vivo by targeting galectin-3.

Methods

The galectin-3 based thyroid immuno-scintigraphy uses as radiotracer a specific 99mTc-radiolabeled mAb. A position-sensitive high-resolution mini-gamma camera was used as imaging capture device. Human galectin-3 positive thyroid cancer xenografts (ARO) and galectin-3 knockout tumors were used as targets in different experiments in vivo. 38 mice with tumor mass of about 1 gm were injected in the tail vein with 100 µCi of 99mTc-labeled mAb to galectin-3 (30 µg protein/in 100 µl saline solution). Tumor images were acquired at 1 hr, 3 hrs, 6 hrs, 9 hrs and 24 hrs post injection by using the mini-gamma camera.

Findings

Results from different consecutive experiments show an optimal visualization of thyroid cancer xenografts between 6 and 9 hours from injection of the radiotracer. Galectin-3 negative tumors were not detected at all. At 6 hrs post-injection galectin-3 expressing tumors were correctly visualized, while the whole-body activity had essentially cleared.

Conclusions

These results demonstrate the possibility to distinguish preoperatively benign from malignant thyroid nodules by using a specific galectin-3 radio-immunotargeting. In vivo imaging of thyroid cancer may allow a better selection of patients referred to surgery. The possibility to apply this method for imaging and treatment of other galectin-3 expressing tumors is also discussed.  相似文献   

15.
The humanized monoclonal antibody with high affinity for the human epidermal growth factor receptor (HER) 3, RG7116, is a glycoengineered, IgG1 class antibody. By labeling RG7116 with zirconium-89 (89Zr) we aimed to visualize in vivo HER3 expression and study the biodistribution of this antibody in human tumor-bearing mice. Biodistribution of 89Zr-RG7116 was studied in subcutaneously xenografted FaDu tumor cells (HER3-positive). Dose-dependency of 89Zr-RG7116 organ distribution and specific tumor uptake was assessed by administering doses ranging from 0.05 to 10 mg/kg RG7116 to SCID/Beige mice. Biodistribution was analyzed at 24 and 144 h after injection. MicroPET imaging was performed at 1, 3, and 6 days after injection of 1.0 mg/kg 89Zr-RG7116 in the FaDu, H441, QG-56 and Calu-1 xenografts with varying HER3 expression. The excised tumors were analyzed for HER3 expression. Biodistribution analyses showed a dose- and time-dependent 89Zr-RG7116 tumor uptake in FaDu tumors. The highest tumor uptake of 89Zr-RG7116 was observed in the 0.05 mg/kg dose group with 27.5%ID/g at 144 h after tracer injection. MicroPET imaging revealed specific tumor uptake of 89Zr-RG7116 in FaDu and H441 models with an increase in tumor uptake over time. Biodistribution data was consistent with the microPET findings in FaDu, H441, QG56 and Calu-1 xenografts, which correlated with HER3 expression levels. In conclusion, 89Zr-RG7116 specifically accumulates in HER3 expressing tumors. PET imaging with this tracer provides real-time non-invasive information about RG7116 distribution, tumor targeting and tumor HER3 expression levels.  相似文献   

16.

Background

Neuropilin (NRP) receptors are overexpressed in glioma tumor tissue, and therefore may be a potential target for imaging markers. We investigated whether labelled tLyP-1, an NRP targeting peptide, could be used as the targeting ligand for developing reagents for imaging glioma tumors.

Methods

The tLyP-1 peptide (CGNKRTR) was labeled with 5-carboxyfluorescein (FAM) or 18F-fluoride. A control peptide (MAQKTSH) was also labeled with FAM. The in vitro binding between FAM-tLyP-1 and U87MG cells and in vivo biodistribution of FAM-tLyP-1 in a U87MG glioblastoma xenograft model (nude mouse) were determined. The in vivo biodistribution of 18F-tLyP-1 was also determined by microPET/CT.

Results

In vitro, FAM-tLyP-1 was strongly taken up by U87MG cells at very low concentrations (1μM). In vivo, FAM-tLyP-1 accumulated in glioma (U87MG) tumors, but uptake was minimal in the normal brain tissue 1 h after administration. The distribution of FAM-tLyP-1 in the tumor tissue was consistent with expression of NRP1. The tumor/brain fluorescence intensity ratio in mice treated with FAM-tLyP-1 was significantly higher than the control FAM-labeled peptide 1 h after administration (3.44 ± 0.83 vs. 1.32 ± 0.15; t = 5.547, P = 0.001). Uptake of FAM-tLyP-1 in glioma tumors could be blocked by administering an excess of non-conjugated tLyP-1 peptide. [Lys4] tLyP-1 was labeled with 18F to synthesis a PET (18F-tLyP-1). MicroPET/CT imaging showed the tumor was visualized clearly with a high tumor/brain radiolabel ratio at 60 min (2.69 ± 0.52) and 120 min (3.11±0.25).

Conclusion

Taken together, our results suggest that tLyP-1 could be developed as a novel fluorescent or radio labelled tracer for imaging glioma.  相似文献   

17.
Aminopeptidase N (APN) is known to play important roles in tumor angiogenesis, tumor cell invasion, and metastasis. Thus, APN is an attractive biomarker for imaging tumor angiogenesis. Here we report results obtained from biodistribution and single photon emission computed tomography (SPECT) imaging studies of a technetium-99m labeled probestin (a potent APN inhibitor) conjugate containing a tripeptide, Asp-DAP-Cys (DAP = 2,3-diaminopropionic acid), chelator and a 8-amino-3,6-dioxaoctanoic acid (PEG2) linker conducted in nude mice xenografted with HT-1080 human fibrosarcoma tumors (APN-positive tumors). These results collectively demonstrate that 99mTc-probestin uptake by tumors and other APN expressing tissues in vivo is specific and validate the use of probestin as a vector for targeting APN in vivo.  相似文献   

18.
BackgroundCardiovascular guidelines recommend (bi-)annual computed tomography (CT) or magnetic resonance imaging (MRI) for surveillance of the diameter of thoracic aortic aneurysms (TAAs). However, no previous study has demonstrated the necessity for this approach. The current study aims to provide patient-specific intervals for imaging follow-up of non-syndromic TAAs.MethodsA total of 332 patients with non-syndromic ascending aortic aneurysms were followed over a median period of 6.7 years. Diameters were assessed using all available imaging techniques (echocardiography, CT and MRI). Growth rates were calculated from the differences between the first and last examinations. The diagnostic accuracy of follow-up protocols was calculated as the percentage of subjects requiring pre-emptive surgery in whom timely identification would have occurred.ResultsThe mean growth rate in our population was 0.2 ± 0.4 mm/year. The highest recorded growth rate was 2.0 mm/year, while 40.6% of patients showed no diameter expansion during follow-up. Females exhibited significantly higher growth rates than men (0.3 ± 0.5 vs 0.2 ± 0.4 mm/year, p = 0.007). Conversely, a bicuspid aortic valve was not associated with more rapid aortic growth. The optimal imaging protocol comprises triennial imaging of aneurysms 40–49 mm in diameter and yearly imaging of those measuring 50–54 mm. This strategy is as accurate as annual follow-up, but reduces the number of imaging examinations by 29.9%.ConclusionsIn our population of patients with non-syndromic TAAs, we found aneurysm growth rates to be lower than those previously reported. Yearly imaging does not lead to changes in the management of small aneurysms. Thus, lower imaging frequencies might be a good alternative approach.  相似文献   

19.
BackgroundAs coronavirus disease 2019 (COVID-19) has reached pandemic status, authors from the most severely affected countries have reported reduced rates of hospital admissions for patients with acute coronary syndrome (ACS).AimThe aim of the present study was to investigate the influence of the COVID-19 outbreak on hospital admissions and outcomes in ACS patients in a single high-volume centre in southeastern Europe.MethodsThis retrospective observational study aimed to investigate the number of hospital admissions for ACS, clinical findings at admission, length of hospitalisation, major complications and in-hospital mortality during the COVID-19 outbreak and to compare the data with the same parameters during an equivalent time frame in 2019. For the ST-elevated myocardial infarction (STEMI) subgroup of patients, changes in ischaemic times were analysed as well.ResultsThere was a significant reduction of 44.3% in the number of patients admitted for ACS during the COVID-19 outbreak when compared with the same period in 2019 (151 vs 271; 95% confidence interval 38.4–50.2, p < 0.01) with a higher mortality rate (13.2% vs 7.2%, p = 0.03). In 2020, patients with non-ST-elevated myocardial infarction presented more often with acute heart failure (3.3% vs 0.7%, p = 0.04). During the COVID-19 outbreak, we observed increases in the total ischaemic time (303 ± 163.4 vs 200.8 ± 156.8 min, p < 0.05) and door-to-balloon time (69.2 ± 58.4 vs 50.5 ± 31.3 min, p < 0.01) in STEMI patients.ConclusionsThese findings should increase the awareness of morbidity and mortality related to missed or delayed treatment of ACS among the public and the healthcare services.  相似文献   

20.
Radiolabeling of nanoparticles (NPs) has been performed for a variety of reasons, such as for studying pharmacokinetics, for imaging, or for therapy. Here, we describe the in vitro and in vivo evaluation of DTPA-derivatized lipid-based NP (DTPA-NP) radiolabeled with different radiometals, including 111In and 99mTc, for single-photon emission computed tomography (SPECT), 68Ga for positron emission tomography (PET), and 177Lu for therapeutic applications. PEGylated DTPA-NP with varying DTPA amounts, different composition, and size were radiolabeled with 111In, 177Lu, and 68Ga, using various buffers. 99mTc-labeling was performed directly and by using the carbonyl aquaion, [99mTc(H2O)3(CO)3]+. Stability was tested and biodistribution evaluated. High labeling yields (>90%) were achieved for all radionuclides and different liposomal formulations. Specific activities (SAs) were highest for 111In (>4 MBq/μg liposome), followed by 68Ga and 177Lu; for 99mTc, high labeling yields and SA were only achieved by using [99mTc(H2O)3(CO)3]+. Stability toward DTPA/histidine and in serum was high (>80 % RCP, 24 hours postpreparation).). Biodistribution in Lewis rats revealed no significant differences between NP in terms of DTPA loading and particle composition; however, different uptake patterns were found between the radionuclides used. We observed lower retention in blood (<3.3 %ID/g) and lower liver uptake (< 2.7 %ID/g) for 99mTc- and 68Ga, compared to 111In-NP (blood, <4 %ID/g; liver, <3.6 %ID/g). Imaging potential was shown by both PET magnetic resonance imaging fusion imaging and SPECT imaging. Overall, our study shows that PEGylated DTPA-NP are suitable for radiolabeling studies with a variety of radiometals, thereby achieving high SA suitable for targeting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号