首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sex‐specific colour polymorphisms have been extensively documented in many different taxa. When polymorphism in colour pattern is restricted to females, the condition is known as female‐limited pattern polymorphism (FPP), which has been less commonly addressed in vertebrates. FPP is present in several lizard species, although most research on lizards has focused on carotenoid‐ and pteridine‐based coloration and not on melanin‐based polymorphisms. In the present study, we focus on Iberian wall lizards, Podarcis hispanicus, where two female melanin‐based dorsal patterns can be clearly distinguished: striped and reticulated‐blotched. We indirectly tested the hypothesis that selection acts differentially among P. hispanicus female morphs to create alternative morph‐specific phenotypic optima at different levels by investigating whether morphs differ in fitness proxies. We specifically examined whether the two female dorsal pattern morphs differed in adult morphology, dorsal coloration, immune response, reproductive investment, and growth. We did not find a relationship between melanin‐based coloration and hatchling growth and immune response, despite a correlation between these traits possibly being expected as a result of pleiotropy in the melanocortin system. However, our results show that female dorsal morphs in P. hispanicus differ in terms of adult morphology, dorsal coloration, and reproductive investment. Reticulated‐blotched P. hispanicus females had deeper heads and longer femora, less melanin, and more brownish coloration, and also had larger and heavier hatchlings than striped females.  相似文献   

2.
1. Melanism – the occurrence of dark morphs – in insects has been attributed to differences in, among other things, thermoregulation and immune defence. Dark individuals are hypothesised to perform better in colder areas, and to exhibit stronger melanin‐based immune defence. 2. In the present study, the geographical distribution of two colour morphs in Aphodius depressus (Kugelann), its climatic correlates, and temporal stability was described. Underlying mechanisms were then targeted through experiments: the inheritance of colour through controlled crosses, heating rates by thermal imaging, physiological tolerance by critical thermal limits, and immune efficiency by melanisation of implants. 3. In A. depressus, colour appears inherited by simple Mendelian principles, with red dominating over black. The frequency of two colour morphs forms a large‐scale cline. In the South West of Finland, all individuals are black, whereas, in the North East, most are red. This pattern has remained constant over 13 years (1996–2008). 4. The geographical pattern was not attributable to thermoregulation: black morphs were more abundant in warmer rather than colder parts of the country. In experiments, we found no differences in the heating rate of the two morphs, or in their upper temperature maxima. Neither did the morphs differ in their response to artificial objects inserted in their haemolymph. 5. Overall, colour variation in A. depressus occurs as a stable, genetically determined dimorphism, governed by Mendelian inheritance. Yet, no support for prevailing theory of factors sustaining melanism was found. The reasons for colour polymorphism in insects may thus be complex, and should be sought on a case‐by‐case basis.  相似文献   

3.
We conducted field experiments to determine how a naturally occurring petal-color polymorphism influences mating patterns in wild radish (Raphanus raphanistrum). The polymorphism is controlled at a single genetic locus, with white petal color being completely dominant to yellow. In experimental populations with equal numbers of yellow- and white-flowered homozygous individuals, insect visitors strongly discriminated against white flowers. Pieris rapae, the most frequent pollinator, was almost 50% more likely to visit yellow than white flowers. Maternal fecundity did not differ between the morphs and was not significantly influenced by a plant's compatibility with potential donors, suggesting that seed production was not limited by receipt of compatible pollen. In contrast, the yellow-flowered morph sired approximately 75% of all seeds produced during the study. This paternity proportion was consistently greater than that expected on the basis of postpollination compatibility measures and was indistinguishable from that expected on the basis of pollinator-visitation frequency. We conclude that the male-fitness advantage of the yellow morph resulted from enhanced pollen export due to the greater attractiveness of its flowers to insect pollinators. With color morphs evenly distributed in experimental arrays, insects did not move assortatively on the basis of petal color, and we found no evidence for assortative pollen flow due to the floral polymorphism. Once postpollination compatibility relationships within populations were taken into account, paternal success of yellow donors did not differ between yellow- and white-flowered maternal plants.  相似文献   

4.
Flower color polymorphism is relatively uncommon in natural flowering plants, suggesting that maintenance of different color morphs within populations is difficult. To address the selective mechanisms shaping pollen‐color dimorphism, pollinator preferences and reproductive performance were studied over three years in Epimedium pubescens in which some populations had plants with either green or yellow pollen (and anthers). Visitation rate and pollen removal and receipt by the bee pollinator (Andrena emeishanica) did not differ between the two color morphs. Compared to the green morph, siring success of the yellow morph's pollen was lower, but that of mixtures of pollen from green and yellow morphs was lowest. This difference, corresponding to in vivo and ex vivo experiments on pollen performance, indicated that pollen germination, rather than tube growth, of the green morph was higher than that of the yellow morph and was seriously constrained in both morphs if a pollen competitor was present. A rare green morph may invade a yellow‐morph population, but the coexistence of pollen color variants is complicated by the reduced siring success of mixed pollinations. Potential pollen competition between morphs may have discouraged the maintenance of multiple phenotypes within populations, a cryptic mechanism of competitive exclusion.  相似文献   

5.
Natural populations of the Midas cichlid species in several different crater lakes in Nicaragua exhibit a conspicuous color polymorphism. Most individuals are dark and the remaining have a gold coloration. The color morphs mate assortatively and sympatric population differentiation has been shown based on neutral molecular data. We investigated the color polymorphism using segregation analysis and a candidate gene approach. The segregation patterns observed in a mapping cross between a gold and a dark individual were consistent with a single dominant gene as a cause of the gold phenotype. This suggests that a simple genetic architecture underlies some of the speciation events in the Midas cichlids. We compared the expression levels of several candidate color genes Mc1r, Ednrb1, Slc45a2, and Tfap1a between the color morphs. Mc1r was found to be up regulated in the gold morph. Given its widespread association in color evolution and role on melanin synthesis, the Mc1r locus was further investigated using sequences derived from a genomic library. Comparative analysis revealed conserved synteny in relation to the majority of teleosts and highlighted several previously unidentified conserved non-coding elements (CNEs) in the upstream and downstream regions in the vicinity of Mc1r. The identification of the CNEs regions allowed the comparison of sequences from gold and dark specimens of natural populations. No polymorphisms were found between in the population sample and Mc1r showed no linkage to the gold phenotype in the mapping cross, demonstrating that it is not causally related to the color polymorphism in the Midas cichlid.  相似文献   

6.
Mimetic resemblance in unpalatable butterflies has been studied by evolutionary biologists for over a century, but has largely focused on the convergence in wing color patterns. In Heliconius numata, discrete color‐pattern morphs closely resemble comimics in the distantly related genus Melinaea. We examine the possibility that the shape of the butterfly wing also shows adaptive convergence. First, simple measures of forewing dimensions were taken of individuals in a cross between H. numata morphs, and showed quantitative differences between two of the segregating morphs, f. elegans and f. silvana. Second, landmark‐based geometric morphometric and elliptical Fourier outline analyses were used to more fully characterize these shape differences. Extension of these techniques to specimens from natural populations suggested that, although many of the coexisting morphs could not be discriminated by shape, the differences we identified between f. elegans and f. silvana hold in the wild. Interestingly, despite extensive overlap, the shape variation between these two morphs is paralleled in their respective Melinaea comimics. Our study therefore suggests that wing‐shape variation is associated with mimetic resemblance, and raises the intriguing possibility that the supergene responsible for controlling the major switch in color pattern between morphs also contributes to wing shape differences in H. numata.  相似文献   

7.
The genetic covariation among different traits may cause the appearance of correlated response to selection on multivariate phenotypes. Genes responsible for the expression of melanin-based color traits are also involved in other important physiological functions such as immunity and metabolism by pleiotropy, suggesting the possibility of multivariate evolution. However, little is known about the relationship between melanin coloration and these functions at the additive genetic level in wild vertebrates. From a multivariate perspective, we simultaneously explored inheritance and selection of melanin coloration, body mass and phytohemagglutinin (PHA)-mediated immune response by using long-term data over an 18-year period collected in a wild population of the common kestrel Falco tinnunculus. Pedigree-based quantitative genetic analyses showed negative genetic covariance between melanin-based coloration and body mass in male adults and positive genetic covariance between body mass and PHA-mediated immune response in fledglings as predicted by pleiotropic effects of melanocortin receptor activity. Multiple selection analyses showed an increased fitness in male adults with intermediate phenotypic values for melanin color and body mass. In male fledglings, there was evidence for a disruptive selection on rump gray color, but a stabilizing selection on PHA-mediated immune response. Our results provide an insight into the evolution of multivariate traits genetically related with melanin-based coloration. The differences in multivariate inheritance and selection between male and female kestrels might have resulted in sexual dimorphism in size and color. When pleiotropic effects are present, coloration can evolve through a complex pathway involving correlated response to selection on multivariate traits.  相似文献   

8.
Current understanding of the immune system comes primarily from laboratory‐based studies. There has been substantial interest in examining how it functions in the wild, but studies have been limited by a lack of appropriate assays and study species. The three‐spined stickleback (Gasterosteus aculeatus L.) provides an ideal system in which to advance the study of wild immunology, but requires the development of suitable immune assays. We demonstrate that meaningful variation in the immune response of stickleback can be measured using real‐time PCR to quantify the expression of eight genes, representing the innate response and Th1‐, Th2‐ and Treg‐type adaptive responses. Assays are validated by comparing the immune expression profiles of wild and laboratory‐raised stickleback, and by examining variation across populations on North Uist, Scotland. We also compare the immune response potential of laboratory‐raised individuals from two Icelandic populations by stimulating cells in culture. Immune profiles of wild fish differed from laboratory‐raised fish from the same parental population, with immune expression patterns in the wild converging relative to those in the laboratory. Innate measures differed between wild populations, whilst the adaptive response was associated with variation in age, relative size of fish, reproductive status and S. solidus infection levels. Laboratory‐raised individuals from different populations showed markedly different innate immune response potential. The ability to combine studies in the laboratory and in the wild underlines the potential of this toolkit to advance our understanding of the ecological and evolutionary relevance of immune system variation in a natural setting.  相似文献   

9.
Abstract.  1. Greater immune function is associated with the high-density melanic phase of polyphenic insects, appearing to compensate for density-dependent increases in susceptibility to parasites and/or pathogens. Other types of discrete variation in cuticular colour occur in insects (which may or may not be associated with melanin pigmentation), but whether this variation is predictive of immune ability has not been investigated.
2. In the mountain stone weta Hemideina maori , a black morph and yellow banded morph occur. These morphs are not seasonally polyphenic and have discrete haplotype genetic markers. Black individuals are typically found at lower local densities than yellow individuals, contrary to relations between cuticular melanism and density seen in polyphenic insects.
3. Yellow males and females had greater melanotic encapsulation responses upon immune challenge than did black males and females, but these differences were not associated with differences in temperature selection between morphs. Morph differences in melanotic encapsulation responses were somewhat related to differences between morphs in haemocyte concentrations.
4. These results indicate that a common form of immune expression is not heightened with dark coloration in the mountain stone weta. Thus, earlier findings of greater immunity associated with darker cuticles in phase polyphenic insects cannot be extended to insects with other forms of discrete colour variation. These findings will help in elucidating causes and consequences of such colour polymorphism, which is widespread in several insect orders.  相似文献   

10.
Five genetically controlled flower color morphs in Platystemon californicus tend to occur in distinct geographic regions, suggesting regional selection of morphs. I examined the reproductive biology of P. californicus to determine whether color morphs are subject to selection due to differences in pollinator attractiveness. Plants of P. californicus have a high pollen: ovule ratio and are highly self-incompatible. Solitary bees (Andrenidae and Halictidae) are the most effective pollen vectors, but show inconsistent discrimination among color morphs. Platystemon californicus is unusual among annual self-incompatible plants in that wind is an important pollen vector. As a result of wind pollination, most polymorphic populations show no intermorph seed-set differences. Therefore, the geographic distribution of flower color morphs cannot be explained by differential attractiveness of color morphs to pollinators in different regions. Any selective value of color morphs must be due to linkage of flower color with as yet undetected morphologically or physiologically adaptive characters.  相似文献   

11.
It is generally believed that industrial melanism in Lepidoptera is mainly caused by differential predation by birds. In polluted areas, melanic individuals are favoured by natural selection because they are better camouflaged than pale moths on lichen‐free and sooty tree trunks. In this article, we show that, in the black arches moth (Lymantria monacha), melanic morphs have a stronger encapsulation response than pale morphs against nylon monofilament implants. This indicates that the melanic and pale morphs differ in the strength of their immune defence. The same chemical precursors and their end product, melanin pigment, are involved in the encapsulation response and in the external coloration. Thus, it seems that there may be two possible, not mutually exclusive, explanations for the frequency changes observed in the industrial melanism of moths. The dominant gene causes an increase in the amount of melanin pigment and its precursors. This increase causes two changes: an intensified immune defence as a form of improved encapsulation ability of foreign objects, and the well‐known protective dark coloration (a case of relational pleiotropy). It seems possible that industrial melanism is a by‐product of selection on the strength of immunity. In the field, these pleiotropic aspects are exceedingly difficult to distinguish from each other, and the factors may even be compensatory. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 831–838.  相似文献   

12.
Male–male competition shapes resource distributions and reproductive success among individuals, and can drive trait evolution when phenotypes differ in competitive abilities and/or strategies. Divergence of populations, regardless of the cause, is often accompanied by divergence in male competitive ability, and such asymmetries can play an important role in mediating the interactions and evolutionary trajectory of the nascent lineages. Here, we designed a field experiment to examine the importance of color, a divergent trait, in determining territorial contest outcomes in the poison frog Oophaga pumilio. Males of different O. pumilio color morphs differ in aggression level, suggesting a potential dominance hierarchy between these divergent phenotypes. In a contact zone between red and blue-color morphs, we first removed territorial males from their calling sites, and examined whether certain color morph(s) were better at establishing in these now-vacant territories. We then staged a territorial contest by simultaneously releasing the original and the new occupant to their point of capture. Surprisingly, we found no significant effect of color on acquiring territories or winning staged contests. However, the original occupants won against the new occupant in 84% of the staged contests, revealing a strong prior residence effect. This suggests that asymmetries that stem from prior residency override coloration in predicting contest outcomes of male–male territorial contests in wild O. pumilio. Thus, contradicting our hypothesis, male–male territorial competition alone seems unlikely to exert selection on coloration in this contact zone.  相似文献   

13.
Although the genetic basis of color variation has been extensively studied in humans and domestic animals, the genetic polymorphisms responsible for different color morphs remain to be elucidated in many wild vertebrate species. For example, hypopigmentation has been observed in numerous marine mammal species but the underlying mutations have not been identified. A particularly compelling candidate gene for explaining color polymorphism is the melanocortin 1 receptor (MC1R), which plays a key role in the regulation of pigment production. We therefore used Antarctic fur seals (Arctocephalus gazella) as a highly tractable marine mammal system with which to test for an association between nucleotide variation at the MC1R and melanin‐based coat color phenotypes. By sequencing 70 wild‐type individuals with dark‐colored coats and 26 hypopigmented individuals with cream‐colored coats, we identified a nonsynonymous mutation that results in the substitution of serine with phenylalanine at an evolutionarily highly conserved structural domain. All of the hypopigmented individuals were homozygous for the allele coding for phenylalanine, consistent with a recessive loss‐of‐function allele. In order to test for cryptic population structure, which can generate artefactual associations, and to evaluate whether homozygosity at the MC1R could be indicative of low genome‐wide heterozygosity, we also genotyped all of the individuals at 50 polymorphic microsatellite loci. We were unable to detect any population structure and also found that wild‐type and hypopigmented individuals did not differ significantly in their standardized multilocus heterozygosity. Such a lack of association implies that hypopigmented individuals are unlikely to suffer disproportionately from inbreeding depression, and hence, we have no reason to believe that they are at a selective disadvantage in the wider population.  相似文献   

14.
To determine the genetic relationship between different colour morphs (orange and black morphs) of Clark's anemonefish (Amphiprion clarkii) in Taiwan, we isolated eight polymorphic microsatellite loci. A large number of alleles (range, 6–30), and high levels of observed heterozygosity (range, 0.1231–0.8358) were resolved in 71 individuals from two populations, indicating that these markers should be useful in assessing the relationship between the two colour morphs of A. clarkii.  相似文献   

15.
Cuticular melanism and innate immune parameters can share common physiological pathways in insects, and this functional connection may contribute to the maintenance of insect colour polymorphisms. However, evidence linking colouration and immune function has been equivocal, particularly when tested in wild populations. The present study investigates phenotypic links between colouration and immune function in migratory Mormon crickets (Anabrus simplex, Haldeman), in which juveniles occur in conspicuous colour variants but mature to become uniformly melanic adults. Wild‐caught insects are used to evaluate the relationship between juvenile colouration and three immune parameters: encapsulation ability, lysozyme‐like activity and phenoloxidase activity. As nymphs, brown crickets are better able to encapsulate an inert implant introduced into the haemocoel than green crickets, although the difference is slight and ceases after they all become darkly‐coloured adults. By contrast, adults that develop from brown nymphs have a higher basal phenoloxidase activity than those that develop from green nymphs, regardless of the fact that all adults are brown. Intrinsic factors other than colouration exert larger effects on immunity: males show stronger encapsulation responses but lower phenoloxidase activity than females, suggesting a sex‐specific trade‐off between these two immune parameters, and adults exhibit higher immune function than nymphs. In summary, modest support is found for a correlation between cuticular melanism and increased immune function in wild Mormon crickets. Additional intrinsic factors such as developmental stage and sex appear to interact with colouration and have a more substantial connection to immune function in the wild.  相似文献   

16.
The immune interactions occurring between parasitoids and their host insects, especially in Drosophila–wasp models, have long been the research focus of insect immunology and parasitology. Parasitoid infestation in Drosophila is counteracted by its multiple natural immune defense systems, which include cellular and humoral immunity. Occurring in the hemocoel, cellular immune responses involve the proliferation, differentiation, migration and spreading of host hemocytes and parasitoid encapsulation by them. Contrastingly, humoral immune responses rely more heavily on melanization and on the Toll, Imd and Jak/Stat immune pathways associated with antimicrobial peptides along with stress factors. On the wasps’ side, successful development is achieved by introducing various virulence factors to counteract immune responses of Drosophila. Some or all of these factors manipulate the host's immunity for successful parasitism. Here we review current knowledge of the cellular and humoral immune interactions between Drosophila and its parasitoids, focusing on the defense mechanisms used by Drosophila and the strategies evolved by parasitic wasps to outwit it.  相似文献   

17.
We evaluated hypotheses of intralacustrine diversification and plastic responses to two diet environments in Icelandic Arctic charr (Salvelinus alpinus). Full‐sib families of progeny of wild polymorphic charr from two lakes where morphs vary in their degree of phenotypic and ecological divergence were split, with half of the offspring reared on a benthic and half on a limnetic type of diet to estimate family norms of reaction. We focused on variation in craniofacial traits because they are probably functionally related to diet and complement a previous study of body shape in these charr. A hierarchical analysis of phenotypic variation between lakes, pairs of morphs within each lake, and two families within each morph found that phenotypic variation partitioned between families relative to morphs was reduced in the more ecologically diversified population, which is consistent with adaptive diversification. The effect size of plastic responses between lake populations was similar, suggesting little difference in the degree of canalization in contrast to a previous analysis of body form plasticity. Thus, the role that plastic morphological responses play in the adaptive diversification of morphs and different lake populations of Arctic charr may depend on the trait. © 2013 The Linnean Society of London  相似文献   

18.
Several studies demonstrated that in insects cuticle melanism is interrelated with pathogen resistance, as melanin‐based coloration and innate immunity possess similar physiological pathways. For some insects, higher pathogen resistance was observed in darker individuals than in individuals with lighter cuticular coloration. Here, we investigated the difference in immune response between two color morphs (black and red) and between the life stages (pupa and adult) of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Here in this study, cuticle thickness, microbial test (antimicrobial activity, phenoloxidase activity, and hemocyte density), and immune‐related gene expression were evaluated at different stages of RPW. Study results revealed that cuticle thickness of black phenotype was thicker than red phenotype at old‐pupa stage, while no significant difference found at adult stage. These results may relate to the development processes of epidermis in different stages of RPW. The results of antimicrobial activity, phenoloxidase (PO) activity, and hemocyte density analyses showed that adults with a red phenotype had stronger pathogen resistance than those with a black phenotype. In addition to antimicrobial activity and PO activity, we tested relative gene expression in the fat body of old pupae. The results of hemolymph antimicrobial analysis showed that old pupae with a red phenotype were significantly different from those with a black phenotype at 12 hr after Staphylococcus aureus injection, suggesting that red phenotype pupae were more sensitive to S. aureus. Examination of gene expression in the fat body also revealed that the red phenotype had a higher immune response than the black phenotype. Our results were inconsistent with the previous conclusion that dark insects had increased immune function, suggesting that the relationship between cuticle pigmentation and immune function in insects was not a direct link. Additional possible factors that are associated with the immune response, such as life‐history, developmental, physiological factors also need to be considered.  相似文献   

19.
The mechanisms through which trophic interactions between species are indirectly mediated by distant members in a food web have received increasing attention in the field of ecology of multitrophic interactions. Scarcely studied aspects include the effects of varying plant chemistry on herbivore immune defences against parasitoids. We investigated the effects of constitutive and herbivore-induced variation in the nutritional quality of wild and cultivated populations of cabbage (Brassica oleracea) on the ability of small cabbage white Pieris rapae (Lepidoptera, Pieridae) larvae to encapsulate eggs of the parasitoid Cotesia glomerata (Hymenoptera, Braconidae). Average encapsulation rates in caterpillars parasitised as first instars were low and did not differ among plant populations, with caterpillar weight positively correlating with the rates of encapsulation. When caterpillars were parasitised as second instar larvae, encapsulation of eggs increased. Caterpillars were larger on the cultivated Brussels sprouts plants and exhibited higher levels of encapsulation compared with caterpillars on plants of either of the wild cabbage populations. Observed differences in encapsulation rates between plant populations could not be explained exclusively by differences in host growth on the different Brassica populations. Previous herbivore damage resulted in a reduction in the larval weight of subsequent herbivores with a concomitant reduction in encapsulation responses on both Brussels sprouts and wild cabbage plants. To our knowledge this is the first study demonstrating that constitutive and herbivore-induced changes in plant chemistry act in concert, affecting the immune response of herbivores to parasitism. We argue that plant-mediated immune responses of herbivores may be important in the evaluation of fitness costs and benefits of herbivore diet on the third trophic level.  相似文献   

20.
Many species of nonmodel deceptively pollinated orchids are polymorphic for corolla color. These species are pollinated by naive insects searching for nectar, and are not mimics. It has been suggested that the foraging behavior of insect pollinators during the avoidance learning process results in these stable corolla color polymorphisms; for this to occur pollinators must induce negative frequency-dependent selection on corolla color. Therefore the hypothesis that pollinator behavior results in a preference for rare color morphs of deceptive species was tested experimentally. Bumblebees (Bombus terrestris) foraged in the laboratory on arrays of artificial flowers with different corolla color morphs. Morphs were varied in frequency, and bumblebee preferences were recorded on arrays where morphs did and did not contain sucrose solution rewards. Bumblebees preferred the most common color morph when flowers contained sucrose solution rewards, but overvisited rare morphs when sampling flowers that contained no rewards. Bumblebees also tended to move between unlike color morphs when these were unrewarding, suggesting that a probabilistic sampling strategy was adopted. Thus experiments demonstrated that pollinator behavior could result in a selective advantage for rare color morphs of plant species that are pollinated by deception without mimicry, which would induce negative frequency-dependent selection on corolla color. The observed pollinator behavior could allow stable corolla color polymorphisms to be maintained by selection in nonmodel deceptively pollinated species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号