首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 222 毫秒
1.
The sporadic growth of Cynodon dactylon was observed to occur directly on the surface of hard coal in dumps of the Witbank coal mining area of South Africa with the surface coal being broken down into a humic-like particulate material. Microorganism analysis of plants and rhizosphere material from the dumps revealed the presence of arbuscular mycorrhizal fungi and the coal solubilising fungus, Neosartorya fischeri. Studies established to replicate the dump environment revealed increased coal degradation in the form of humic acid production and an increase in small size particles as a result of Cynodon dactylon growth in association with arbuscular mycorrhizal fungi and Neosartorya fischeri. Results suggest that interactions between Cynodon dactylon, arbuscular mycorrhizal fungi, Neosartorya fischeri and other coal-degrading rhizosphere fungi could lead to the degradation of hard coal in situ and that the application of these organisms to discard dumps could be a novel method of coal dump rehabilitation.  相似文献   

2.
Cynodon dactylon (Bermuda grass) has been observed to grow sporadically on the surface of coal dumps in the Witbank coal mining area of South Africa. Root zone investigation indicated that a number of fungal species may be actively involved in the biodegradation of hard coal, thus enabling the survival of the plant, through mutualistic interaction, in this extreme environment. In an extensive screening program of over two thousand samples, the Deuteromycete, Neosartorya fischeri, was isolated and identified. The biodegradation of coal by N. fischeri was tested in flask studies and in a perfusion fixed-bed bioreactor used to simulate the coal dump environment. The performance of N. fischeri was compared to Phanaerochaete chrysosporium and Trametes (Polyporus) versicolor, previously described in coal biodegradation studies. Fourier transform infrared spectrometry and pyrolysis gas chromatography mass spectrometry of the biodegradation product indicated oxidation of the coal surface and nitration of the condensed aromatic structures of the coal macromolecule as possible reaction mechanisms in N. fischeri coal biodegradation. This is a first report of N. fischeri-mediated coal biodegradation and, in addition to possible applications in coal biotechnology, the findings may enable development of sustainable technologies in coal mine rehabilitation.  相似文献   

3.
以采煤沉陷区柠条为宿主植物,研究接种丛枝菌根真菌(arbuscular mycorrhizal fungi,简称AM菌)对柠条生长和根际土壤的改良效应。结果表明:8月份接种AM菌比不接菌柠条的株高、冠幅和地径显著增加了29.11%,29.83%和14.81%,9月份接菌区柠条的根长、平均直径、根表面积和根体积分别比对照区增加了151.0%,34.2%,116.0%和129.3%。接种AM菌增强柠条的抗逆性,接菌区的柠条叶片可溶性糖含量和过氧化氢酶活性分别比对照区增加了13.4%和111.1%。8月份接种AM菌改善了土壤的生物理化性质,接菌区有机质、碱解氮、速效磷和速效钾比对照区分别增加7.06g/kg,140.0 mg/kg,1.82 mg/kg和16.72mg/kg,接种AM菌显著增加了根际土壤中真菌、放线菌、细菌数量和酸性磷酸酶活性。总之,接种AM菌促进采煤沉陷区柠条的生长和土壤的改良。  相似文献   

4.
AM真菌对采煤沉陷区黄花菜生长及根际土壤养分的影响   总被引:1,自引:0,他引:1  
于陕北黄土沟壑采煤沉陷区内布设试验小区,对黄花菜(Hemerocallis citrina Baroni)接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)—摩西管柄囊霉菌,通过测定黄花菜光合性能、植株生长、抗逆性、土壤养分含量、根际微生物数量等,揭示AM真菌对黄花菜生长和土壤养分的影响。结果表明,黄花菜种植3—5个月后,接种AM真菌显著提高了黄花菜株高、冠幅及其根系菌根侵染率、菌丝密度。与不接种对照区相比,接种AM真菌后黄花菜叶片的光合速率、可溶性糖含量和过氧化氢酶活性分别提高了51%、12%、79%。接种AM真菌处理区黄花菜根际土壤的电导率、有机质、碱解氮和速效钾含量等均显著高于对照区,细菌数量和磷酸酶活性的菌根贡献率分别达77%和24%。表明采煤沉陷区扰动土壤接种AM真菌具有增强土壤微生物活性、改善土壤肥力和提高黄花菜植株抗逆性的作用,对促进陕北黄土沟壑采煤沉陷区经济作物生长和提高土壤质量具有重要现实生态意义。  相似文献   

5.
The fungal species from rhizosphere and rhizoplane of perennial grasses of the Western Ghats of India were studied for their pathogenicity, antagonism in vitro, substrate and root colonization abilities, rhizosphere competence, growth in different soil pH and inoculum shelf-life. Out of 138 non-pathogenic fungal isolates tested, 85 were antagonistic in vitro to chilli anthracnose pathogen Colletotrichum capsici. Fifteen isolates with >60% inhibition zone to pathogen culture had saprophytic and root and rhizosphere colonization abilities. The sorghum grain inocula of test antagonistic fungi- Fusarium oxysporum, Chaetomium globosum and Trichoderma harzianum had the shelf-life of 90 days at 20?±?2?°C and required optimum soil pH of 6.5. The above fungal isolates when tested for biocontrol of anthracnose disease in greenhouse and field caused reduction in seedling mortality and decreased disease incidence and severity at various plant growth stages and significant reduction in chilli fruit and seed infection. The test antagonistic fungi promoted seedling and mature plant growth and increased fruit and seed yield. Populations of these antagonistic fungi were fairly high in chilli rhizosphere at harvest. The present study indicated that antagonistic fungi from grass rhizosphere and rhizoplane could be used to control anthracnose and promote plant growth, and increase yield of chilli in field.  相似文献   

6.
Ulfig K  Korcz M 《Mycopathologia》1995,129(2):83-86
During the study of fungal succesion in the coal mine dump in Brzezinka (Poland), soil samples were examined for keratinolytic fungi. These micro-organisms were rather poorly represented in the area studied. Out of 300 soil samples examined, only 48 (16%) were positive for keratinolytic fungi.Trichophyton ajelloi andArthroderma curreyi were the prevailing species. These species occurred practically at two locations, i.e. on the naked carbon rocks inhabited by algae crops (chiefly byCyanophyta) and in the pine litter. It can be supposed that the occurrence of keratinolytic fungi was more dependent on the favourable general conditions such as increasing organic matter content, microflora, and humidity than on the presence of keratin remains in the soil. Because of the lack of potentially pathogenic fungi, the coal mine dump examined cannot be considered as an important source of fungal infection.  相似文献   

7.
三峡库区消落带植被修复过程中,物种的更替对库区土壤的地球化学循环产生潜在影响。以三峡库区忠县石宝寨汝溪河消落带植被修复示范基地165-170 m海拔段人工种植狗牙根、牛鞭草、落羽杉以及立柳根际与非根际土为试验对象,探究其根际与非根际土壤的养分含量及酶活性差异,以阐明不同物种的生长适应性及其根际养分利用策略,比较不同物种对库区土壤的营养改良作用。结果表明:(1)三峡库区消落带4种适生植物根系活动导致根际与非根际土壤养分因子以及土壤酶活性产生差异,不同物种的栽植均在一定程度上使库区土壤营养条件得以改善;(2)碳、氮两种元素在4种适生植物根际土壤中发生不同程度的富集,但磷素与钾素在不同物种根际与非根际土壤之间的变化不一致;(3)蔗糖酶、脲酶以及酸性磷酸酶在4种适生植物根际土中均表现出一定程度的根际正效应(R/S>1),且狗牙根对3种土壤酶的根际活化效果最为明显,其根际效应分别高达2.39、1.89和2.7;(4)在植物根系的调控下,根际土中有机质与氮素、磷素以及钾素的相关性更为显著,而非根际土壤中,仅钾素与有效氮、有效磷呈显著负相关,其余各土壤养分因子之间均无显著相关性;(5)与落羽杉和立柳两木本植物相比,狗牙根与牛鞭草两草本植物根际具有更为合理的养分调节模式,对库区土壤的改良效果更好。  相似文献   

8.
The chitinase enzyme was identified in isolated bacteria of maize rhizosphere as well as its potential for the biological control of fungi associated at seeds of the same plant. The production of chitinase enzyme was found in the genera identified as Acinetobacter, Bacterium, Burkholderia, Paenibacillus, Pseudomonas, Rhizobium, Shewanella, Sphingomonas and Stenotrophomonas. Bacterial isolates with ability to degrade fungal mycelium from maize fungi as Fusarium and Alternaria among others, were detected. Bacterial chitinase activity and the presence of the chiA gene were determined. The inoculation of chitinolytic bacteria showed a positive effect in the control of fungi in maize seeds. The results support the potential use of chitinase enzyme producing bacteria on the control of phytopathogenic fungi.  相似文献   

9.
Several isolates ofPhoma sp., certain nonsporulating fungi, as well asPenicillium andTrichoderma, all isolated from zoysiagrass rhizosphere, promoted growth of wheat and soybean under greenhouse conditions. However, the ability of these rhizosphere fungi to enhance plant growth varied with the crop tested. For example, most of the fungi effectively promoted the growth of wheat, whereas only a few fungi were effective on soybean. In consecutive plantings of wheat and soybean grown in soil previously infested with these zoysiagrass rhizosphere fungi, the growth promotion ability of the fungi was lowered. However, addition of fresh potting medium appeared to restore their growth-promotive effects. It appears that the activation of plant growth-promoting fungi in soil might depend on the availability of organic substrates to colonize, as evidenced by the promotion of plant growth.  相似文献   

10.
Tracking carbon from the atmosphere to the rhizosphere   总被引:2,自引:0,他引:2  
Turnover rates of arbuscular mycorrhizal (AM) fungi may influence storage of soil organic carbon (SOC). We examined the longevity of AM hyphae in monoxenic cultures; and we also used 13C incorporation into signature fatty acids to study C dynamics in a mycorrhizal symbiosis involving Glomus intraradices and Plantago lanceolata. 13C enrichment of signature fatty acids showed rapid transfer of plant assimilates to AM fungi and a gradual release of C from roots to rhizosphere bacteria, but at a much slower rate. Furthermore, most C assimilated by AM fungi remained 32 days after labelling. These findings indicate that 13C labelled fatty acids can be used to track C flux from the atmosphere to the rhizosphere and that retention of C in AM fungal mycelium may contribute significantly to SOC.  相似文献   

11.
【背景】植物内生真菌对宿主植物促生长、抗旱和增强抗病能力等方面有着重大的研究和利用价值,尤其对兰科植物的生长起到重要的作用。【目的】通过对掌裂兰根部内生真菌和根际土真菌多样性进行系统分析,掌握掌裂兰根部内生真菌与根际土真菌群落结构,为进一步探究掌裂兰植物与真菌共生规律提供参考。【方法】采用Illumina MiSeq高通量测序技术分析掌裂兰根部内生真菌和根际土真菌多样性。【结果】掌裂兰根部内生真菌隶属于7门89属,优势菌属为瘤菌根菌属(Epulorhiza)(16.93%)、头梗霉属(Cephaliophora)(10.41%)、酵母属(Saccharomyces)(5.73%)、角担菌属(Ceratobasidium)(5.32%)和镰刀菌属(Fusarium)(5.12%),其中Epulorhiza和Ceratobasidium为兰科植物菌根真菌;根际土真菌隶属于11门269属,优势菌属为镰刀菌属(Fusarium)(8.09%)、丛赤壳属(Neonectria)(6.79%)、Plectosphaerella (3.39%)和被孢霉属(Mortierella)(3.01%)。通过...  相似文献   

12.
真菌多样性是植物根际生态系统的重要构成与植物健康稳定的重要指标。海桑属是红树林的先锋物种,采用真菌ITS1区高通量测序方法,分析了六种海桑属红树根际真菌的组成和多样性,结合土壤理化性质探讨影响不同植物根际真菌群落组成差异的因素。结果显示,根际真菌隶属于7门、96科、155属,子囊菌门作为优势菌门在海桑属不同红树中相对丰度无显著差异,都超过27%,但次优势的担子菌门丰度含量有差异;属水平上,优势菌属的丰度含量不同,曲霉属在卵叶海桑的丰度最高(29.57%),在海南海桑最低(3.47%)。六种红树植物根际存在特有的代表类群,如无瓣海桑的马拉色菌(9.31%)和毛腐菌属(10.05%),海南海桑中的Talaromyces(19.61%)和Acremonium(13.58%)。比较多样性指数Simpson和Shannon,发现拟海桑是六种植物中丰度最高的,卵叶海桑最低。RDA分析发现子囊菌门与全磷含量呈显著负相关,担子菌门与速效钾呈明显正相关。六种海桑属红树植物根际核心物种分析表明,优势真菌类群曲霉属和一些低丰度的真菌类群,通过降解有机质参与碳循环,对根际土壤生态系统的稳定起重要作用。六种海桑...  相似文献   

13.
Curculigo orchioides Gaertn. (family Hypoxidaceae) is an endangered anticarcinogenic and aphrodisiac herb, native of India. This study reports the effect of three arbuscular mycorrhizal (AM) fungal inocula on post-transplanting performance of ‘in vitro’ raised C. orchioides plantlets. The three AM fungal inocula consisted of two monospecific cultures of Glomus geosporum and G. microcarpum and one crude consortium of AM fungal spores isolated from rhizosphere soil of C. orchioides growing in natural habitat. Complete plantlets of C. orchioides were raised by direct organogenesis of leaf explants on half strength Murashige and Skoog’s medium devoid of any growth hormone. C. orchioides plantlets responded significantly different to all three mycorrhizal treatments. Mycorrhization enhanced the survival rate of C. orchioides plantlets to 100%. The inoculated plantlets fared significantly better than the uninoculated ones in terms of biomass production and number of leaves and roots per plant. Mycorrhizal plantlets exhibited higher concentrations of photosynthetic pigments as well as minerals P, Mg, Cu, Zn, Mn and Fe in both shoots and roots. Among the three inocula tested, plantlets inoculated with the mixed consortium of AM fungi consistently performed better in terms of the parameters evaluated. The study suggests use of mixed consortium of AM fungi over monospecific cultures for the sustainable cultivation and conservation of endangered medicinal plant: Curculigo orchioides.  相似文献   

14.
Summary The fungal flora of the rhizosphere of three varieties of broad bean and cotton was studied by the dilution-plate technique. The numbers of fungi were higher in the rhizosphere than in the non-rhizosphere soil. Plant type and age, and soil type have a significant influence of the nature and numbers of fungal flora associated with plant roots.Cladosporium was relatively more abundant in the rhizosphere of broad bean varieties, whilePenicillium was found to constitute a high percentage of fungi found in the rhizosphere of cotton varieties. Plant variety has no influence on the nature of such fungal flora.  相似文献   

15.
为探究不同生长条件下黑老虎根际和根部内生真菌群落组成和多样性及其与土壤环境因子的相关性,该文应用Illumina高通量测序方法对贵州3个不同生境下黑老虎根际和根部内生真菌进行了研究。结果表明:(1)3种生境下,根际土壤真菌OTU数量(3 867)远多于根部内生真菌(801),其中根际土壤真菌共有的OTU为72个,共注释到5个门、49个属,大多为子囊菌门; 属水平上被孢霉属、外瓶柄霉属、 柱孢属占比较高; 根部内生真菌共有的OTU为14个,共注释到2个门、11个属,子囊菌门(13个,占比92.9%)占绝对优势,属水平上被孢霉属、外瓶柄霉属、 柱孢属和丛赤壳属占比最高; 所有样本中,共有的OTU仅为6个,注释到2个门、5个属,子囊菌门(5个,占比83.3%)为优势门; 在属水平上,占比最高的为外瓶柄霉属(2个,33.3%),其余分别为被孢霉属、柱孢属和丛赤壳属 。Alpha多样性分析表明,根际土壤的真菌群落多样性和丰富度均显著高于根部内生真菌,而野生生境的真菌多样性高于栽培生境。(2)在门水平上,3个生境下主要内生真菌类群均为子囊菌门(Ascomycota)和担子菌门(Basidiomycota),占总菌群的88.28%; 在属水平上,不同生境条件下,根际和根部内生真菌群落结构差异明显; 栽培生境下,根部内生真菌菌群具有一定的偏好性,而野生生境下,根部内生真菌菌群均匀度更高; FUNGuild真菌群落功能预测显示,栽培生境下的病理-腐生营养型(pathotroph-saprotroph)在根部内生真菌中占比较高,而野生生境下的腐生营养型(saprotroph)及共生营养型(symbiotroph)占比较高。(3)土壤环境因子对根部内生真菌和根际真菌的影响方式不同,其中土壤总钾(TK)和土壤总磷(TP)与黑老虎根部内生真菌香农指数和辛普森指数显著正相关,而土壤有机质(SOM)、总氮(TN)和速效氮(AN)与黑老虎根际土壤真菌Ace指数和Chao1指数显著正相关。综上表明,土壤有机质、总氮、速效氮是影响黑老虎根际土壤真菌群落的主要土壤环境因子。  相似文献   

16.
The effects of a host plant on reproduction/abundance of fungal populations in relation to soil nutrients released by plants in the rhizosphere were studied. Abundance in the soil and potato rhizosphere of the fungi Paecilomyces lilacinus, Monographella cucumerina (CABI 380408) and Pochonia chlamydosporia var. chlamydosporia (Pc280, potato cyst nematode biotype) and P. chlamydosporia var. catenulata (Pc392, root‐knot nematode biotype) were assessed. The different ability of break crops (oilseed rape, sugarbeet and wheat) in the potato rotation to support Pa. lilacinus, Pochonia isolates Pc280 and Pc392 and abundance of the latter two isolates in soil and rhizosphere of potato plants infected with Meloidogyne incognita were also studied. Potato chits and crop seedlings were planted into boiling tubes containing 5000 chlamydospores or conidia g?1 in acid washed sand (pH 6) and kept in a growth chamber at 20°C, and 16 h of light for up to 9 weeks. The abundance of the fungi in sand (fallow) differed significantly between fungal species, being in general less abundant in the absence than in the presence of the plant, although there was no interaction between plant species and fungal isolate. There was evidence of a different response to Me. incognita for Pc392 than for Pc280 but there was no significant effect of the presence of the nematode on the rate of increase of the fungus.  相似文献   

17.
Although plants introduced for site restoration are pre‐selected for specific traits (e.g. trace element bioaccumulation, rapid growth in poor soils), the in situ success of these plants likely depends on the recruitment of appropriate rhizosphere microorganisms from their new environment. We introduced three willow (Salix spp.) cultivars to a contaminated landfill, and performed soil chemical analyses, plant measurements, and Ion Torrent sequencing of rhizospheric fungal and bacterial communities at 4 and 16 months post‐planting. The abundance of certain dominant fungi was linked to willow accumulation of Zn, the most abundant trace element at the site. Interestingly, total Zn accumulation was better explained by fungal community structure 4 months post‐planting than 16 months post‐planting, suggesting that initial microbial recruitment may be critical. In addition, when the putative ectomycorrhizal fungi Sphaerosporella brunnea and Inocybe sp. dominated the rhizosphere 4 months post‐planting, Zn accumulation efficiency was negatively correlated with fungal diversity. Although field studies such as this rely on correlation, these results suggest that the soil microbiome may have the greatest impact on plant function during the early stages of growth, and that plant–fungus specificity may be essential.  相似文献   

18.
三峡库区消落带典型植物根际土壤磷形态特征   总被引:6,自引:2,他引:4  
三峡库区消落带生态系统演变对水库安全具有重要影响,其中植物群落演变与土壤氮磷形态转化及释放等广受关注。然而,消落带植物根际效应与土壤磷形态关系及潜在影响并不清楚。选择三峡库区澎溪河消落带为研究对象,分别在冲积潮土、紫色土和水稻土分布的消落区采集典型草本植物(狗牙根、香附子、苍耳)和农作物(玉米)根际、非根际土壤,分析无机磷和有机磷的形态特征,探讨了消落带典型植物生长对土壤磷形态的根际效应及潜在影响。结果表明,土壤类型对土壤磷含量及磷赋存形态具有显著影响,紫色土磷含量最高,且活性磷含量低于冲积潮土和水稻土,表现出磷库稳定性较高;4种植物根际土壤全磷、有效磷及不同形态无机、有机磷(弱吸附态磷WA-P、潜在活性磷PA-P、铁铝结合态磷Fe/Al-P、钙结合态磷Ca-P、残渣态磷R-P)含量均高于非根际,表现出明显的根际富集效应;不同植物根际土壤全磷和有效磷表现为狗牙根苍耳香附子玉米,但磷形态在不同植物根际富集水平不同:活性较高的WA-P、PA-P含量在玉米和苍耳覆盖区均高于狗牙根和香附子,而较稳定Ca-P_i、R-P_i、Fe/Al-P_o、Ca-P_o含量在狗牙根和香附子覆盖区更高,表明玉米和苍耳生长有利于稳定性磷的活化,提高消落带土壤磷流失风险。不同植物根际对不同形态磷富集率差异明显,且玉米根际对活性磷形态的富集率最高,表明农业活动可能加速土壤稳定性磷的活化。pH、土壤有机质、土壤容重与无机磷的赋存形态关系密切,而有机磷赋存形态受pH影响显著,植物根际有机质积累和有机酸分泌等是影响土壤磷形态变化的主要因素。消落带植物群落演变及恢复对土壤磷形态转化具有重要影响。  相似文献   

19.
We investigated the solubilizing activity of the Basidiomycete fungi Trametes hirsuta and Trametes maxima, with respect to brown coal (lignite) during liquid phase cultivation. We found that the degrading capacity of the fungi is determined by the activity of the ligninolytic enzymes Mn peroxidase and lignin peroxidase. We assessed the growth-stimulating activity of biopreparations (BPs), based on the culture liquids (CL) of the studied fungal strains, which were grown on a rich or minimal medium. We found that the obtained BPs inhibited the growth of wheat shoots and roots at the germination stage, but they either had no effect at later stages of plant growth or showed a mild stimulation. When basidiomycetes were cultivated in the presence of brown coal, the obtained BPs stimulated root growth at the germination stage, and did not influence plant growth (Trametes hirsuta) or stimulated it (Trametes maxima) at later stages. Further, we report a pronounced detoxifying ability of the BPs in respect to the atrazine herbicide. We suggest that this effect is caused by the laccases action, that are present in the studied BPs.  相似文献   

20.
南疆四种盐生植物根际土壤真菌群落结构特征   总被引:2,自引:0,他引:2  
盐生植物特殊的生境孕育了独特的根际微生物群落。为了解南疆干旱区不同盐生植物根际土壤真菌群落结构特征,探讨影响真菌群落结构的土壤环境因子,选取南疆伽师县同一盐碱地盐爪爪(Kalidium foliatum)、黑果枸杞(Lycium ruthenicum)、花花柴(Karelinia caspia)和旱生芦苇(Phragmites australis)四种优势盐生植物,采用Illumina NovaSeq高通量测序技术分析根际土壤真菌群落结构和多样性,并探究其与土壤理化因子的相关性。结果表明,四种盐生植物根际土壤理化特征不尽相同,土壤pH均超过8.0,电导率(EC)由高到低为旱生芦苇 > 盐爪爪 > 花花柴 > 黑果枸杞,黑果枸杞根际土壤的有机质(SOM)、全氮(TN)、全磷(TP)、全钾(TK)、速效氮(AN)和速效磷(AP)含量均最高,旱生芦苇根际土壤的SOM、TN、TP、TK和AN值均最低,但土壤水分含量(SWC)和EC值最高。四种盐生植物共有的操作分类单元(OTUs)数量为153个,各自特有的OTUs数量不尽相同。根际土壤真菌群落丰富度(ACE、Chao 1指数)依次为盐爪爪 > 旱生芦苇 > 黑果枸杞 > 花花柴,Shannons指灵第和Simpson指数大小依次为盐爪爪 > 黑果枸杞 > 旱生芦苇 > 花花柴。从四种盐生植物根际共检测到真菌8门、21纲、44目、89科、124属,子囊菌门(Ascomycota)在四种盐生植物根际土壤中占绝对优势地位。镰孢菌属(Fusarium)、支顶孢属(Acremonium)、曲霉属(Aspergillus)和青霉菌属(Penicillium)是四种盐生植物根际土壤共有优势属,非优势属数量多但相对丰度因植物种类而异。典范对应分析(CCA)显示,土壤速效钾、AP、pH和EC是影响根际土壤真菌群落结构变化的主要驱动因子。研究表明南疆四种盐生植物根际土壤真菌群落具有相似性,但优势菌属丰度差异明显,具有植物种类特异性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号