首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This Perspective is intended to raise questions about the conventional interpretation of protein folding. According to the conventional interpretation, developed over many decades, a protein population can visit a vast number of conformations under unfolding conditions, but a single dominant native population emerges under folding conditions. Accordingly, folding comes with a substantial loss of conformational entropy. How is this price paid? The conventional answer is that favorable interactions between and among the side chains can compensate for entropy loss, and moreover, these interactions are responsible for the structural particulars of the native conformation. Challenging this interpretation, the Perspective introduces a proposal that high energy (i.e., unfavorable) excluding interactions winnow the accessible population substantially under physical–chemical conditions that favor folding. Both steric clash and unsatisfied hydrogen bond donors and acceptors are classified as excluding interactions, so called because conformers with such disfavored interactions will be largely excluded from the thermodynamic population. Both excluding interactions and solvent factors that induce compactness are somewhat nonspecific, yet together they promote substantial chain organization. Moreover, proteins are built on a backbone scaffold consisting of α‐helices and strands of β‐sheet, where the number of hydrogen bond donors and acceptors is exactly balanced. These repetitive secondary structural elements are the only two conformers that can be both completely hydrogen‐bond satisfied and extended indefinitely without encountering a steric clash. Consequently, the number of fundamental folds is limited to no more than ~10,000 for a protein domain. Once excluding interactions are taken into account, the issue of “frustration” is largely eliminated and the Levinthal paradox is resolved. Putting the “bottom line” at the top: it is likely that hydrogen‐bond satisfaction represents a largely under‐appreciated parameter in protein folding models.  相似文献   

2.
3.
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR‐411‐3p in bleomycin (BLM)‐induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real‐time quantitative polymerase chain reaction assess the expression levels of miR‐411‐3p, collagen (COLI) and transforming growth factor (TGF)‐β/Smad ubiquitin regulatory factor (Smurf)‐2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR‐411‐3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR‐411‐3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson''s staining. We found that miR‐411‐3p expression was decreased in bleomycin (BLM)‐induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)‐β signalling and collagen production. Overexpression of miR‐411‐3p inhibited the expression of collagen, F‐actin and the TGF‐β/Smad signalling pathway factors in BLM‐induced skin fibrosis and fibroblasts. In addition, miR‐411‐3p inhibited the target Smad ubiquitin regulatory factor (Smurf)‐2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF‐β/Smad signalling pathway. We demonstrated that miR‐411‐3p exerts antifibrotic effects by inhibiting the TGF‐β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.  相似文献   

4.
STI1‐domains are present in a variety of co‐chaperone proteins and are required for the transfer of hydrophobic clients in various cellular processes. The domains were first identified in the yeast Sti1 protein where they were referred to as DP1 and DP2. Based on hidden Markov model searches, this domain had previously been found in other proteins including the mammalian co‐chaperone SGTA, the DNA damage response protein Rad23, and the chloroplast import protein Tic40. Here, we refine the domain definition and carry out structure‐based sequence alignment of STI1‐domains showing conservation of five amphipathic helices. Upon examinations of these identified domains, we identify a preceding helix 0 and unifying sequence properties, determine new molecular models, and recognize that STI1‐domains nearly always occur in pairs. The similarity at the sequence, structure, and molecular levels likely supports a unified functional role.  相似文献   

5.
6.
T‐cell co‐stimulation through CD28/CTLA4:B7‐1/B7‐2 axis is one of the extensively studied pathways that resulted in the discovery of several FDA‐approved drugs for autoimmunity and cancer. However, many aspects of the signaling mechanism remain elusive, including oligomeric association and clustering of B7‐2 on the cell surface. Here, we describe the structure of the IgV domain of B7‐2 and its cryptic association into 1D arrays that appear to represent the pre‐signaling state of B7‐2 on the cell membrane. Super‐resolution microscopy experiments on heterologous cells expressing B7‐2 and B7‐1 suggest, B7‐2 form relatively elongated and larger clusters compared to B7‐1. The sequence and structural comparison of other B7 family members, B7‐1:CTLA4 and B7‐2:CTLA‐4 complex structures, support our view that the observed B7‐2 1D zipper array is physiologically important. This observed 1D zipper‐like array also provides an explanation for its clustering, and upright orientation on the cell surface, and avoidance of spurious signaling.  相似文献   

7.
The aggregation of β‐amyloid peptide 42 results in the formation of toxic oligomers and plaques, which plays a pivotal role in Alzheimer''s disease pathogenesis. Aβ42 is one of several Aβ peptides, all of Aβ30 to Aβ43 that are produced as a result of γ‐secretase–mediated regulated intramembrane proteolysis of the amyloid precursor protein. γ‐Secretase modulators (GSMs) represent a promising class of Aβ42‐lowering anti‐amyloidogenic compounds for the treatment of AD. Gamma‐secretase modulators change the relative proportion of secreted Aβ peptides, while sparing the γ‐secretase–mediated processing event resulting in the release of the cytoplasmic APP intracellular domain. In this study, we have characterized how GSMs affect the γ‐secretase cleavage of three γ‐secretase substrates, E‐cadherin, ephrin type A receptor 4 (EphA4) and ephrin type B receptor 2 (EphB2), which all are implicated in important contexts of cell signalling. By using a reporter gene assay, we demonstrate that the γ‐secretase–dependent generation of EphA4 and EphB2 intracellular domains is unaffected by GSMs. We also show that γ‐secretase processing of EphA4 and EphB2 results in the release of several Aβ‐like peptides, but that only the production of Aβ‐like proteins from EphA4 is modulated by GSMs, but with an order of magnitude lower potency as compared to Aβ modulation. Collectively, these results suggest that GSMs are selective for γ‐secretase–mediated Aβ production.  相似文献   

8.
The intestinal barrier dysfunction is crucial for the development of liver fibrosis but can be disturbed by intestinal chronic inflammation characterized with cyclooxygenase‐2 (COX‐2) expression. This study focused on the unknown mechanism by which COX‐2 regulates intestinal epithelial homeostasis in liver fibrosis. The animal models of liver fibrosis induced with TAA were established in rats and in intestinal epithelial–specific COX‐2 knockout mice. The impacts of COX‐2 on intestinal epithelial homeostasis via suppressing β‐catenin signalling pathway were verified pharmacologically and genetically in vivo. A similar assumption was tested in Ls174T cells with goblet cell phenotype in vitro. Firstly, disruption of intestinal epithelial homeostasis in cirrhotic rats was ameliorated by celecoxib, a selective COX‐2 inhibitor. Then, β‐catenin signalling pathway in cirrhotic rats was associated with the activation of COX‐2. Furthermore, intestinal epithelial–specific COX‐2 knockout could suppress β‐catenin signalling pathway and restore the disruption of ileal epithelial homeostasis in cirrhotic mice. Moreover, the effect of COX‐2/PGE2 was dependent on the β‐catenin signalling pathway in Ls174T cells. Therefore, inhibition of COX‐2 may enhance intestinal epithelial homeostasis via suppression of the β‐catenin signalling pathway in liver fibrosis.  相似文献   

9.
ObjectivesEvidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti‐fibrotic effect of sorafenib.Materials and MethodsThe effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4. In vitro, Fer‐1 and DFO were used to block ferroptosis and then explored the anti‐fibrotic effect of sorafenib by detecting α‐SMA, COL1α1 and fibronectin proteins. Finally, HIF‐1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.ResultsSorafenib attenuated liver injury and ECM accumulation in CCl4‐induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib‐treated HSC‐T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib‐elicited HSC ferroptosis and ECM reduction were abrogated by Fer‐1 and DFO. Additionally, both HIF‐1α and SLC7A11 proteins were reduced in sorafenib‐treated HSC‐T6 cells. SLC7A11 was positively regulated by HIF‐1α, inactivation of HIF‐1α/SLC7A11 pathway was required for sorafenib‐induced HSC ferroptosis, and elevation of HIF‐1α could inhibit ferroptosis, ultimately limited the anti‐fibrotic effect.ConclusionsSorafenib triggers HSC ferroptosis via HIF‐1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.  相似文献   

10.
Although 15–20% of COVID‐19 patients experience hyper‐inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N‐terminal domain (NTD) of the SARS‐CoV‐2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning‐based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD‐induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA‐approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD‐mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS‐CoV‐2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide‐mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS‐CoV‐2‐mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID‐19.  相似文献   

11.
Obesity is a significant risk factor for atrial fibrillation (AF), which is the most common sustained arrhythmia with increased mortality and morbidity. High‐fat diet (HFD)‐induced obesity is associated with the activation of endoplasmic reticulum stress (ERS). However, the role of ERS in HFD‐induced AF remains elusive. Human atrium samples were examined for the ERS activation test. C57BL/6J mice were divided into four groups, including the control group, the HFD group, the 4‐phenylbutyric acid (4‐PBA) group, and the HFD + 4‐PBA group. At the age of 4 weeks, the HFD group and the HFD + 4‐PBA group were given HFD to construct the obesity model, while the other two groups were given a normal diet (ND). Transesophageal programmed electrical stimulation was conducted to evaluate the AF inducibility and duration. Atrial fibrosis and ERS activation were also investigated.We found that CHOP and GRP‐78 protein were significantly higher in overweight patients than the controls (both P < 0.05). AF inducibility and duration of the HFD group were significantly higher than the other groups (both P < 0.05), while there was no difference between those groups (P > 0.05). The mice of the HFD group had significantly higher collagen volume fraction (CVF%) than the other groups (P < 0.05). ERS marker protein of GRP78, p‐PERK, ATF6 and CHOP protein expression level was increased in the HFD group, which were significantly mitigated in the HFD + 4‐PBA group. In summary, HFD‐induced ERS activation facilitates atrial fibrosis and AF. The inhibition of ERS might alleviate atrial fibrosis and reduce the incidence of AF‐associated obesity.  相似文献   

12.
The TLPSOES parameters were optimized by response surface methodology using Box–Behnken design, which were 16.5% w/w of ammonium citrate, 17.5% w/w of ethanol, and 46% w/w of n‐hexane at 70 min of stirring time. Under optimized conditions the extraction efficiency attained was 90.91 ± 0.97% of EPA, 90.02 ± 1.04% of DHA, and 91.85 ± 1.11% of KO in the top n‐hexane phase. The highest extraction efficiency of proteins and flavonoids, i.e. 88.34 ± 1.35% and 79.67 ± 1.13%, was recorded in the solid interface and ethanol phase, respectively. The KO extracted by TLPSOES system consisted of lowest fluoride level compared to the conventional method and whole wet krill biomass. The TLPSOES is a potential candidate for nutraceutical industry of KO extraction from wet krill biomass.  相似文献   

13.
Animals possess conserved mechanisms to detect pathogens and to improve survival in their presence by altering their own behavior and physiology. Here, we utilize Caenorhabditis elegans as a model host to ask whether bacterial volatiles constitute microbe‐associated molecular patterns. Using gas chromatography–mass spectrometry, we identify six prominent volatiles released by the bacterium Pseudomonas aeruginosa. We show that a specific volatile, 1‐undecene, activates nematode odor sensory neurons inducing both flight and fight responses in worms. Using behavioral assays, we show that worms are repelled by 1‐undecene and that this aversion response is driven by the detection of this volatile through AWB odor sensory neurons. Furthermore, we find that 1‐undecene odor can induce immune effectors specific to P. aeruginosa via AWB neurons and that brief pre‐exposure of worms to the odor enhances their survival upon subsequent bacterial infection. These results show that 1‐undecene derived from P. aeruginosa serves as a pathogen‐associated molecular pattern for the induction of protective responses in C. elegans.  相似文献   

14.
We hypothesized that rapamycin (Rapa), acarbose (ACA), which both increase mouse lifespan, and 17α‐estradiol, which increases lifespan in males (17aE2) all share common intracellular signaling pathways with long‐lived Snell dwarf, PAPPA‐KO, and Ghr−/− mice. The long‐lived mutant mice exhibit reduction in mTORC1 activity, declines in cap‐dependent mRNA translation, and increases in cap‐independent translation (CIT). Here, we report that Rapa and ACA prevent age‐related declines in CIT target proteins in both sexes, while 17aE2 has the same effect only in males, suggesting increases in CIT. mTORC1 activity showed the reciprocal pattern, with age‐related increases blocked by Rapa, ACA, and 17aE2 (in males only). METTL3, required for addition of 6‐methyl‐adenosine to mRNA and thus a trigger for CIT, also showed an age‐dependent increase blunted by Rapa, ACA, and 17aE2 (in males). Diminution of mTORC1 activity and increases in CIT‐dependent proteins may represent a shared pathway for both long‐lived‐mutant mice and drug‐induced lifespan extension in mice.  相似文献   

15.
Colorectal cancer (CRC) is a high‐incidence malignancy worldwide which still needs better therapy options. Therefore, the aim of the present study was to investigate the responses of normal or malignant human intestinal epithelium to bone morphogenetic protein (BMP)‐9 and to find out whether the application of BMP‐9 to patients with CRC or the enhancement of its synthesis in the liver could be useful strategies for new therapy approaches. In silico analyses of CRC patient cohorts (TCGA database) revealed that high expression of the BMP‐target gene ID1, especially in combination with low expression of the BMP‐inhibitor noggin, is significantly associated with better patient survival. Organoid lines were generated from human biopsies of colon cancer (T‐Orgs) and corresponding non‐malignant areas (N‐Orgs) of three patients. The N‐Orgs represented tumours belonging to three different consensus molecular subtypes (CMS) of CRC. Overall, BMP‐9 stimulation of organoids promoted an enrichment of tumour‐suppressive gene expression signatures, whereas the stimulation with noggin had the opposite effects. Furthermore, treatment of organoids with BMP‐9 induced ID1 expression (independently of high noggin levels), while treatment with noggin reduced ID1.In summary, our data identify the ratio between ID1 and noggin as a new prognostic value for CRC patient outcome. We further show that by inducing ID1, BMP‐9 enhances this ratio, even in the presence of noggin. Thus, BMP‐9 is identified as a novel target for the development of improved anti‐cancer therapies of patients with CRC.  相似文献   

16.
ObjectivesInduction of deactivation and apoptosis of hepatic stellate cells (HSCs) are principal therapeutic strategies for liver fibrosis. Krüppel‐like factor 14 (KLF14) regulates various biological processes, however, roles, mechanisms and implications of KLF14 in liver fibrosis are unknown.Materials and MethodsKLF14 expression was detected in human, rat and mouse fibrotic models, and its effects on HSCs were assessed. Chromatin immunoprecipitation assays were utilized to investigate the binding of KLF14 to peroxisome proliferator‐activated receptor γ (PPARγ) promoter, and the binding of enhancer of zeste homolog 2 (EZH2) to KLF14 promoter. In vivo, KLF14‐overexpressing adenovirus was injected via tail vein to thioacetamide (TAA)‐treated rats to investigate the role of KLF14 in liver fibrosis progression. EZH2 inhibitor EPZ‐6438 was utilized to treat TAA‐induced rat liver fibrosis.ResultsKLF14 expression was remarkably decreased in human, rat and mouse fibrotic liver tissues. Overexpression of KLF14 increased LD accumulation, inhibited HSCs activation, proliferation, migration and induced G2/M arrest and apoptosis. Mechanistically, KLF14 transactivated PPARγ promoter activity. Inhibition of PPARγ blocked the suppressive role of KLF14 overexpression in HSCs. Downregulation of KLF14 in activated HSCs was mediated by EZH2‐regulated histone H3 lysine 27 trimethylation. Adenovirus‐mediated KLF14 overexpression ameliorated TAA‐induced rat liver fibrosis in PPARγ‐dependent manner. Furthermore, EPZ‐6438 dramatically alleviated TAA‐induced rat liver fibrosis. Importantly, KLF14 expression was decreased in human with liver fibrosis, which was significantly correlated with EZH2 upregulation and PPARγ downregulation.ConclusionsKLF14 exerts a critical anti‐fibrotic role in liver fibrosis, and targeting the EZH2/KLF14/PPARγ axis might be a novel therapeutic strategy for liver fibrosis.  相似文献   

17.
Radiation‐induced lung injury (RILI) mainly contributes to the complications of thoracic radiotherapy. RILI can be divided into radiation pneumonia (RP) and radiation‐induced lung fibrosis (RILF). Once RILF occurs, patients will eventually develop irreversible respiratory failure; thus, a new treatment strategy to prevent RILI is urgently needed. This study explored the therapeutic effect of pirfenidone (PFD), a Food and Drug Administration (FDA)‐approved drug for (IPF) treatment, and its mechanism in the treatment of RILF. In vivo, C57BL/6 mice received a 50 Gy dose of X‐ray radiation to the whole thorax with or without the administration of PFD. Collagen deposition and fibrosis in the lung were reversed by PFD treatment, which was associated with reduced M2 macrophage infiltration and inhibition of the transforming growth factor‐β1 (TGF‐β1)/Drosophila mothers against the decapentaplegic 3 (Smad3) signalling pathway. Moreover, PFD treatment decreased the radiation‐induced expression of TGF‐β1 and phosphorylation of Smad3 in alveolar epithelial cells (AECs) and vascular endothelial cells (VECs). Furthermore, IL‐4–induced M2 macrophage polarization and IL‐13–induced M2 macrophage polarization were suppressed by PFD treatment in vitro, resulting in reductions in the release of arginase‐1 (ARG‐1), chitinase 3‐like 3 (YM‐1) and TGF‐β1. Notably, the PFD‐induced inhibitory effects on M2 macrophage polarization were associated with downregulation of nuclear factor kappa‐B (NF‐κB) p50 activity. Additionally, PFD could significantly inhibit ionizing radiation‐induced chemokine secretion in MLE‐12 cells and consequently impair the migration of RAW264.7 cells. PFD could also eliminate TGF‐β1 from M2 macrophages by attenuating the activation of TGF‐β1/Smad3. In conclusion, PFD is a potential therapeutic agent to ameliorate fibrosis in RILF by reducing M2 macrophage infiltration and inhibiting the activation of TGF‐β1/Smad3.  相似文献   

18.
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although cisplatin‐based chemotherapy is commonly used in HNSCC, frequent development of cisplatin resistance is a potential cause of poor HNSCC prognosis. In the present study, we investigated the anticancer efficacy of a major paclitaxel metabolite namely 7‐Epitaxol in cisplatin‐resistant HNSCC. The findings revealed that 7‐Epitaxol exerts cytotoxic effects in cisplatin‐resistant HNSCC cell lines by inducing cell cycle arrest and intrinsic and extrinsic apoptotic pathways. Specifically, 7‐Epitaxol increased Fas, TNF‐R1, DR5, DcR3 and DcR2 expressions, reduced Bcl‐2 and Bcl‐XL (anti‐apoptotic proteins) expressions, and increased Bid and Bim L/S (pre‐apoptotic proteins) expressions, leading to activation of caspase‐mediated cancer cell apoptosis. At the upstream cell signalling level, 7‐Epitaxol reduced the phosphorylation of AKT, ERK1/2 and p38 to trigger apoptosis. In vivo results showed that animals treated with 7‐Epitaxol show antitumor growth compared to control animals. Taken together, the study demonstrates the potential anticancer efficacy of 7‐Epitaxol in inducing apoptosis of cisplatin‐resistant HNSCC cells through the suppression of AKT and MAPK signalling pathways.  相似文献   

19.
20.
Alzheimer''s disease (AD) is an age‐related neurodegenerative disease, and the imbalance between production and clearance of β‐amyloid (Aβ) is involved in its pathogenesis. Autophagy is an intracellular degradation pathway whereby leads to removal of aggregated proteins, up‐regulation of which may be a plausible therapeutic strategy for the treatment of AD. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Our previous study showed that thioperamide, as an antagonist of H3R, enhances autophagy and protects against ischemic injury. However, the effect of thioperamide on autophagic function and Aβ pathology in AD remains unknown. In this study, we found that thioperamide promoted cognitive function, ameliorated neuronal loss, and Aβ pathology in APP/PS1 transgenic (Tg) mice. Interestingly, thioperamide up‐regulated autophagic level and lysosomal function both in APP/PS1 Tg mice and in primary neurons under Aβ‐induced injury. The neuroprotection by thioperamide against AD was reversed by 3‐MA, inhibitor of autophagy, and siRNA of Atg7, key autophagic‐related gene. Furthermore, inhibition of activity of CREB, H3R downstream signaling, by H89 reversed the effect of thioperamide on promoted cell viability, activated autophagic flux, and increased autophagic‐lysosomal proteins expression, including Atg7, TFEB, and LAMP1, suggesting a CREB‐dependent autophagic activation by thioperamide in AD. Taken together, these results suggested that H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB‐mediated autophagy and lysosomal pathway, which contributed to Aβ clearance. This study uncovered a novel mechanism involving autophagic regulating behind the therapeutic effect of thioperamide in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号