首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Methods for monitoring bird nests might influence rates of nest predation, but the effects of various methods (e.g., visual markers and observer visitation rates) are often separately investigated among disparate avian taxa and geographic regions. Few investigators have explored the potential effects observers might have on nest success of grassland birds, despite concerns regarding population declines of these species in North America. We examined the possible effects of three monitoring techniques on daily nest survival of Lark Sparrows (Chondestes grammacus): (1) presence or absence of visible markers near nests, (2) observer visitation frequency, and (3) presence or absence of data loggers in nests. We monitored 113 Lark Sparrow nests during the 2009 breeding season. Of these nests, 88.5% failed due to predation, abandonment, weather, or unknown causes, yielding an overall nest success estimate of 9.8% based on daily survival estimation. Main effects of each monitoring technique appeared in top (ΔAICc <2) logistic exposure models. However, 95% confidence intervals around parameter estimates for each technique included zero, indicating no significant effects on daily nest survival. Our results suggest that the nest‐monitoring techniques we used had no effect on Lark Sparrow nest success and, if true, nest survival of other songbirds in arid grasslands of the Great Plains may also be unaffected by cautious nest monitoring. However, we cannot rule out the possibility that any effects of the various techniques in our study were masked by locally intense nest predation. Therefore, additional study is needed to determine if there may be observable variation in nest survival among various nest‐monitoring treatments in other areas of the southern Great Plains where nest predation is less frequent.  相似文献   

2.
We conducted a two-part study to assets predator avoidance byreproductive male fathead minnows (Pimephales promelos) subjectedto predation threat from northern pike (Esox lucius). First,we determined if patterns of nest use by egg-guarding male minnowsin a boreal lake were related to pike densities. We samplednorthern pike and identified four areas of "high pike-density"and three areas of "low pike-density." We censused natural nestsand placed nest boards in these areas. We found eggs on naturalnests more frequently in areas with low densities of pike thanin areas with high densities of pike. However, we could notfully explain the distribution of nests by predation risk. Second,we evaluated the behavioral response of egg-guarding males toa control stimulus (a piece of wood) or a live pike in a wirecage. We used time to return to the nest after a stimulus asa measure of risk taking. Males took different amounts of riskbased on predation threat; males in the predator treatment tooklonger to return to their nests than control males. Risk takingwas not related to the number or age of the eggs but to distanceto nearest egg-guarding neighbor; males with close neighborsreturned sooner than more isolated males. Males in the predatortreatment had lower total activity and egg rubbing than controlmales after they returned to their nests. We conclude that malefathead minnows altered their reproductive behavior in waysthat reduced predation risk, but the cost of predator avoidancemight include egg predation, lost mating opportunities, or usurpationof nests  相似文献   

3.
Predation strongly influences reproductive behaviours because reproducing individuals must balance mortality risks to themselves and to their offspring. In many freshwater turtles, the nest predation risk decreases with nest distance from water, whereas the predation risk to females increases farther from water. To determine whether predation pressure influences the distance from water at which female turtles nest, we measured predation pressure on nesting females and on nests, as well as the distances of nests to water, in two populations of painted turtles. Using models, we found that female survival in both populations was high and did not vary with distance from water. Nest survival was also uncorrelated with nest distance to water, although it was significantly lower than adult survival in both populations and was only 1.2% in one population. Our results suggest that nest sites are not predictably safe from predators. Instead, turtles may hedge their bets by nesting over a wide range of distances from water because any distance is risky for nests and no distance is particularly risky for the nesting female. We suggest that other factors, such as suitable incubation conditions and/or post‐emergence hatchling survival, probably play a larger role than predation in driving nest‐site choice in painted turtles.  相似文献   

4.
Previous studies of avian nest predation have focused on how human-induced changes in the landscape influence the frequency of predation However, natural variation in the abundance of predators due to their choice of habitat can also influence predation rate To determine if predation on artificial nests was influenced by forest stand type, we placed ground and shrub nests containing quail and plasticine eggs in contiguous coniferous, mixedwood and deciduous stands in the southern boreal mixedwood forest of central Canada Nest predators were identified using remotely triggered cameras and marks left in plasticine eggs, while the relative abundance of nest predators such as squirrels and corvids were estimated using acoustic-visual surveys Using the fate of quail eggs to calculate predation rate, we found that predation was significantly higher in coniferous (67%) than in deciduous (17%) or mixedwood (25%) forest, with similar predation on ground (37%) and shrub (29%) nests Using plasticine eggs to calculate predation rate, nests in coniferous forest still suffered higher rates of predation, although predation rates were 15–20% higher, and ground nests suffered significantly higher rates of predation than shrub nests Quail eggs seemed to suffer lower rates of predation because small mammals were unable to penetrate the shell, but could leave marks on plasticine eggs The higher predation rate in coniferous forest was likely caused by higher abundance of red squirrels Tamiasciurus hudsonicus , the presence of fishers Martes pennanti and a simplified understory which may have made it easier for predators to find nests relative to the deciduous and mixedwood forest Plasucine eggs provide new insights into nest predation by identifying predation events by smaller predators such as mice that are missed when using quail eggs  相似文献   

5.
Aquatic turtles worldwide are plagued with habitat loss due to development and shoreline alteration that destroys the terrestrial–aquatic linkage which they must cross to reproduce successfully. Furthermore, nesting habitat loss can concentrate nesting, increasing nest predator efficiency. We describe how the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island created nesting habitat for Malaclemys terrapin (Diamondback Terrapin), and document nesting success in response to construction progress and the absence of raccoons and foxes, the primary nest predators. We monitored terrapin nests throughout the nesting seasons from 2002 to 2011 to determine overall and within‐nest survivorship. Female terrapins began nesting on the restoration project within 1 year but planned construction during the study eliminated some nesting areas and opened previously inaccessible areas. Overall, nest survivorship was considerably higher than mainland nesting areas due to the absence of raccoons and foxes on the island and within‐nest survivorship was similar. Egg size, hatchling size, and the frequency of shell scute anomalies were similar to other terrapin populations, suggesting normal developmental conditions on the island. We documented annual variation in hatchling size that correlated negatively with mean air temperature during the incubation season. Our results indicate that restored or created isolated island habitat can be located rapidly by terrapins and can become an important source of recruitment in regions where nesting habitat is limited and predation is high. Poplar Island illustrates how habitat loss and restoration can affect turtle populations by revealing the changes in nesting patterns and success in newly created, predator‐free habitat.  相似文献   

6.
Nest predation has been used to explain aspects of avian ecology ranging from nest site selection to population declines. Many arguments rely on specific assumptions regarding how predators find nests, yet these predatory mechanisms remain largely untested. Here we combine artificial nest experiments with behavioural observations of individual red squirrels Tamiasciurus hudsonicus to differentiate between two common hypotheses: predation is incidental versus learned. Specifically, we tested: 1) whether nest survival could be explained solely by a squirrel's activity patterns or habitat use, as predicted if predation was incidental; or 2) if predation increased as a squirrel gained experience preying on a nest, as predicted if predation was learned. We also monitored squirrel activity after predation to test for evidence of two search mechanisms: area‐restricted searching and use of microhabitat search images. Contrary to incidental predation and in support of learning, squirrels did not find nests faster in areas with high use (e.g. forest edges). Instead, survival of artificial nests was strongly related to a squirrel's prior experience preying on artificial nests. Experience reduced nest survival times by over half and increased predation rates by 150–200%. Squirrels returned to and doubled their activity at the site of a previously preyed on nest. However, neither area‐restricted searching nor microhabitat search images can explain how squirrels located artificial nests more readily with experience. Instead, squirrels likely used cues associated with the nests or eggs themselves. Learning implies that squirrels could be increasingly effective predators as the density or profitability of nests increases. Our results add support to the view that nest predation is complex and broadly influenced (e.g. by predator experience, motivation), and is unlikely to be predicted consistently by simple relationships with predator activity, abundance or habitat.  相似文献   

7.
We studied the effects of forest patch size and forest edge structure on nest predation in a boreal coniferous forest landscape. The following predictions were tested. Nest predation should be higher in small than in large stands, in edges than in interior areas of forest stands, and in barren forest/clear–cut edges created by forestry than in natural forest/open marsh edges. Four types of artificial above ground nests (total of 261) were used; open cup nests with reindeer Rangifer t. tarandus hair, open cup nests with domestic hen Gallus domesticus feathers, and unlined open cup and nest–box nests. Nests were baited with one Japanese quail Coturnix coturnix japonica egg. Nest–boxes were depredated significantly less than open cup nests of all types. No edge- or stand size–related nest predation was found. The predation rate, regardless of the nest type, did not differ relative to the edge type and vegetation characteristics. However, better horizontal visibility of open cup nests due to more open vegetation structure increased predation risk in man–made edges compared to inherent edges. The results suggest that edge–related nest predation is absent or weak in forest dominated landscapes. This may be due to predator types present in the landscape and/or predators habitat use in forest dominated areas. Therefore, it might be that findings documented in other areas, such as in agricultural dominated landscapes, cannot be directly applied to managed forest landscapes.  相似文献   

8.
Many avian species are behaviorally‐plastic in selecting nest sites, and may shift to new locations or habitats following an unsuccessful breeding attempt. If there is predictable spatial variation in predation risk, the process of many individuals using prior experience to adaptively change nest sites may scale up to create shifting patterns of nest density at a population level. We used 18 years of waterfowl nesting data to assess whether there were areas of consistently high or low predation risk, and whether low‐risk areas increased, and high‐risk areas decreased in nest density the following year. We created kernel density maps of successful and unsuccessful nests in consecutive years and found no correlation in predation risk and no evidence for adaptive shifts, although nest density was correlated between years. We also examined between‐year correlations in nest density and nest success at three smaller spatial scales: individual nesting fields (10–28 ha), 16‐ha grid cells and 4‐ha grid cells. Here, results were similar across all scales: we found no evidence for year‐to‐year correlation in nest success but found strong evidence that nest density was correlated between years, and areas of high nest success increased in nest density the following year. Prior research in this system has demonstrated that areas of high nest density have higher nest success, and taken together, our results suggest that ducks may adaptively select nest sites based on the local density of conspecifics, rather than the physical location of last year's nest. In unpredictable environments, current cues, such as the presence of active conspecific nests, may be especially useful in selecting nest sites. The cues birds use to select breeding locations and successfully avoid predators deserve continued attention, especially in systems of conservation concern.  相似文献   

9.
ABSTRACT.   Nest predation is the primary cause of nest failure in most passerine birds, and increases in nest predation associated with anthropogenic habitat disturbance are invoked as explanations for population declines of some bird species. In most cases, however, the identity of the nest predators is not known with certainty. We monitored active bird nests with infrared time-lapse video cameras to determine which nest predators were responsible for depredating bird nests in northern New Hampshire. We monitored 64 nests of 11 bird species during three breeding seasons, and identified seven species of predators during 14 predation events. In addition, we recorded two instances of birds defending nests from predators and, in both cases, these nests were ultimately lost to predation. These results contrast with other studies in terms of the relatively high proportion of nests depredated by raptors and mice, as well as the absence of any predation by snakes. The diverse suite of predators in this and other studies is likely to confound our understanding of patterns of nest predation relative to fragmentation and habitat structure.  相似文献   

10.
I studied cavity-nesting birds in an undisturbed site in lowland Peru to determine the relative roles of competition and predation in favoring termitarium nesting over tree cavity nesting. Occupancy rates of both nest boxes and natural tree cavities near 2% suggest that competition for tree cavities is not favoring the use of termitaria. Artificial nests and bird nests in termitaria suffer significantly lower predation rates than similar nests in old tree cavities showing that predation is favoring the use of termitaria over old tree cavities. Bird nests in newly excavated tree cavities also show lower predation rates than older cavities suggesting that cavity age is more important than substrate (tree or termitaria) per se . This study suggests that nest predation has a greater influence than nest competition on life history evolution for many cavity-nesting birds.  相似文献   

11.
Do artificial nests reveal relative nest predation risk for real nests?   总被引:2,自引:0,他引:2  
Present knowledge of the effects of nest predation on spatial distribution, habitat selection and community structure of birds is to a large extent based on results from experiments with artificial nests. Although nest predation risk is likely to differ between artificial and real nests, most previous studies of nest predation using artificial nests have been lacking a proper control. We investigated whether predation rates on artificial nests predicted those on real nests by simultaneously comparing the fate of real and artificial nests (containing quail Coturnix coturnix and plasticine eggs) in 92 territories of the northern wheatear Oenanthe oenanthe in 1996. We also investigated whether risk for artificial nests was related to relative average risk for real nests in these territories (based on data collected two years before and two years after the experiment). Nest predation on artificial nests did predict relative predation risk for real nests only when quail egg depredation was used as the criterion for artificial nest predation. Despite plasticine egg depredation being the most common type of predation it was not associated with predation risk for real nests. Small mice and vole species dominated among cases with only plasticine egg depredation, while predatory mammals and snakes destroyed most quail eggs in artificial nests and most eggs in real wheatear nests. The results suggest that artificial nests may only predict the risk for real nests when the nest predator species are similar among the two types of nest. Furthermore, our data suggest that small mice and vole species rarely depredate nests of mid-sized passerine birds . Our results cast doubt on many previous conclusions based on experiments with artificial nests, since predation risk for such nests is likely to be uncorrelated with risk for real nests due to nest-type-specific differences in nest preying species.  相似文献   

12.
Predation causes most nest failure in birds. Predator communities are likely to vary across a gradient of increasing urbanization, so nest predation also is likely to vary across this gradient. Although predation is thought to decline with increasing urbanization, relatively little is known about variation in predation pressure within strata along an urban gradient and how factors known to affect nest success, such as nest location, interact with urban variables, such as human housing density. Native habitats are frequently fragmented and isolated by suburban residential development, thus we quantified predation rates on artificial nests located in natural oak scrub patches within a suburban matrix in south-central Florida. We examined patterns of predation based on nest location relative to habitat edges, artificial nest weathering treatment, nest shrub height, and human housing density. Over two 18-d trials, we placed a total of 240 nests, each containing a single quail egg and a clay sham, along three roadside transects. Nest predation was not influenced by proximity to edge, nest weathering, or trial date, but was highest at high housing density and lowest at low housing density. The proportion of quail eggs removed from nests increased with human housing density. Birds were the most frequent predators of artificial nests, but the relative frequency of predation by birds or mammals did not differ relative to any of our treatments. Higher rates of nest predation with increasing human housing density within suburban habitats may reflect changes in habitat structure and composition that increase the vulnerability of nests to predation or changes in the composition of the predator community. Our results modify the conclusions of previous studies by suggesting that at scales smaller than the entire urban gradient, nest predation may increase with human housing density, one common measure of urbanization.  相似文献   

13.
Nest survival may vary throughout the breeding season for many bird species, and the nature of this temporal variation can reveal the links between birds, their predators, and other components of the ecosystem. We used program Mark to model patterns in nest survival within the breeding season for shorebirds nesting on arctic tundra. From 2000 to 2007, we monitored 521 nests of five shorebird species and found strong evidence for variation in nest survival within a nesting season. Daily nest survival was lowest in the mid-season in 5 of 8 years, but the timing and magnitude of the lows varied. We found no evidence that this quadratic time effect was driven by seasonal changes in weather or the abundance of predators. Contrary to our prediction, the risk of predation was not greatest when the number of active shorebird nests was highest. Although nest abundance reached a maximum near the middle of the breeding season, a daily index of shorebird nest activity was not supported as a predictor of nest survival in the models. Predators’ access to other diet items, in addition to shorebird nests, may instead determine the temporal patterns of nest predation. Nest survival also displayed a positive, linear relationship with nest age; however, this effect was most pronounced among species with biparental incubation. Among biparental species, parents defended older nests with greater intensity. We did not detect a similar relationship among uniparental species, and conclude that the stronger relationship between nest age and both nest defence and nest survival for biparental species reflects that their nest defence is more effective.  相似文献   

14.
In ground nesting upland birds, reproductive activities contribute to elevated predation risk, so females presumably use multiple strategies to ensure nest success. Identification of drivers reducing predation risk has primarily focused on evaluating vegetative conditions at nest sites, but behavioral decisions manifested through movements during incubation may be additional drivers of nest survival. However, our understanding of how movements during incubation impact nest survival is limited for most ground nesting birds. Using GPS data collected from female Eastern Wild Turkeys (n = 206), we evaluated nest survival as it relates to movement behaviors during incubation, including recess frequency, distance traveled during recesses, and habitat selection during recess movements. We identified 9,361 movements off nests and 6,529 recess events based on approximately 62,065 hr of incubation data, and estimated mean nest attentiveness of 84.0%. The numbers of recesses taken daily were variable across females (range: 1?7). Nest survival modeling indicated that increased cumulative distance moved during recesses each day was the primary driver of positive daily nest survival. Our results suggest behavioral decisions are influencing trade‐offs between nest survival and adult female survival during incubation to reduce predation risk, specifically through adjustments to distances traveled during recesses.  相似文献   

15.
Parent birds should take greater risks defending nests that have a higher probability of success. Given high rates of mammalian nest predation, therefore, parents should risk more for nests in areas with a lower risk of mammalian predation. We tested this hypothesis using nest defence data from over 1300 nests of six species of dabbling ducks studied in an area where predation risk had been reduced through removal of mammalian predators. When predator removal reduced nest predation, the ducks increased risk taking as predicted. Also as predicted, risk taking varied inversely with body size, an index of annual survival, among species. For ducks to vary nest defence in response to variation in predation risk they must be able to assess the risk of nest predation. Because ducks modified nest defence in the breeding season immediately following predator removal, ducks may be able to assess predator abundance indirectly (e.g. by UV reflection from urine) rather than by seeing or interacting directly with the predators.  相似文献   

16.
Orientation and dispersal to suitable habitat affects fitness in many animals, but the factors that govern these behaviors are poorly understood. In many turtle species, hatchlings must orient and disperse to suitable aquatic habitat immediately after emergence from subterranean nests. Thus, the location of nest sites relative to aquatic habitats ideally should be associated with the direction of hatchling dispersal. At our study site, painted turtles (Chrysemys picta) nest to the west (on an island) and east (on the mainland) of a wetland, which determines the direction that hatchlings must travel to reach suitable aquatic habitat. To determine if hatchling orientation is intrinsically influenced by the location where their mothers nest, we employed a two-part cross-fostering experiment in the field, whereby half the eggs laid in mainland nests were swapped with half the eggs laid in island nests. Moreover, because C. picta hatchlings overwinter inside their nests, we performed a second cross-fostering experiment to fully decouple the effects of (1) the maternally chosen nest location, (2) the embryonic developmental location, and (3) the overwinter location. We released hatchlings into a circular arena in the field and found that turtles generally dispersed in a westerly direction, regardless of the maternally chosen nest location and independent of the locations of embryonic development and overwintering. Although this westerly direction was towards suitable aquatic habitat, we could not distinguish whether naïve hatchling turtles (i) use environmental cues/stimuli to orient their movement, or (ii) have an intrinsic bias to orient west in the absence of stimuli. Nevertheless, these findings suggest that the orientation behavior of naïve hatchling turtles during terrestrial dispersal is not dependent upon the location of maternally-chosen nest sites.  相似文献   

17.
This study examined predator faunas of artificial ground and shrub nests and whether nest predation risk was influenced by nest site, proximity to forest edge, and habitat structure in 38 grassland plots in south-central Sweden. There was a clear separation of predator faunas between shrub and ground nests as identified from marks in plasticine eggs. Corvids accounted for almost all predation on shrub nests whereas mammals mainly depredated ground nests. Nest predation risk was significantly greater for shrub than for ground nests at all distances (i.e. 0, 15 and 30 m) from the forest edge. However, nest predation risk was not significantly related to distance to forest edge, but significantly increased with decreasing distance to the nearest tree. Different corvid species robbed nests at different distances from the forest edge, with jays robbing nests closest to edges. We conclude that the relationship between the predation risk of grassland bird nests and distance to the forest edge mainly depends on the relative importance of different nest predator species and on the structure of the forest edge zone. A review of published articles on artificial shrub and ground nest predation in the temperate zone corroborated the results of our own study, namely that shrub nests experienced higher rates of depredation in open habitats close to the forest edge and that avian predators predominantly robbed shrub nests. Furthermore, the review results showed that predation rates on nests in general are highest <50 m inside the forest and lower in open as well as forest interior habitats (≥50 m from the edge). Received: 16 March 1998 / Accepted: 30 July 1998  相似文献   

18.
Predation risk has the ability to greatly influence the behaviour of reproducing individuals. In large long-lived species with low risk of predation for parents, reproductive behaviours often involve caring for offspring (i.e. defending broods from predators) and these behaviours are essential for offspring survival. Our objectives were to test for the presence of natural variation in nest predation pressure in an aquatic environment for a species that provides sole-paternal care, smallmouth bass ( Micropterus dolomieu ), and to determine if natural variation in predation pressure influences parental care behaviour. We used snorkeler observations and a series of metrics to assess predation pressure and parental care behaviour in six lakes within a narrow geographical range. Lakes differed in all predation pressure metrics: number of predators in proximity to nest when males were present, time to predator arrival and number of predators that consumed eggs when males were absent and total number of nests that was preyed upon. Similarly, parental behaviour varied between lakes. Parental smallmouth bass spent more time engaged in anti-predator defences in lakes with high predation pressure, while males from low predator pressure lakes remained close to their nest. Conversely, males from lakes with low and high predation pressure showed a similar willingness to defend their nests during simulated nest predation events. Our results show that natural variation in aquatic nest predation pressure across multiple lakes can be significant and has the ability to influence baseline parental care behaviour. Such variation provides opportunities to study the costs and consequences of parental care and to evaluate how this could influence demography and community interactions in aquatic systems.  相似文献   

19.
1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure alternative predation risks, and respond adaptively. From the prey perspective, the landscape is a mosaic of habitat patches the quality of which varies according to structural and floristic features, but also to the spatial distribution of predators.  相似文献   

20.
Breeding close to top predators is a widespread reproductive strategy. Breeding animals may gain indirect benefits if proximity to top predators results in a reduction of predation due to suppression of mesopredators. We tested if passerine birds gain protection from mesopredators by nesting within territories of a top predator, the Ural owl (Strix uralensis). We placed nest boxes for pied flycatchers (Ficedula hypoleuca) in Ural owl nest sites and in control sites (currently unoccupied by owls). The nest boxes were designed so that nest predation risk could be altered (experimentally increased) after flycatcher settlement; we considered predation rate as a proxy of mesopredator abundance. Overall, we found higher nest predation rates in treatment than in control sites. Flycatcher laying date did not differ between sites, but smaller clutches were laid in treatment sites compared to controls, suggesting a response to perceived predation risk. Relative nest predation rate varied between years, being higher in owl nest sites in 2 years but similar in another; this variation might be indirectly influenced by vole abundance. Proximity to Ural owl nests might represent a risky habitat for passerines. High predation rates within owl territories could be because small mesopredators that do not directly threaten owl nests are attracted to owl nest sites. This could be explained if some mesopredators use owl territories to gain protection from their own predators, or if top predators and mesopredators independently seek similar habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号