首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Assessment of forest carbon (C) stock and sequestration and the influence of forest harvesting and climatic variations are important issues in global forest ecology. Quantitative studies of the C balance of tropical forests, such as those in Papua New Guinea (PNG), are also required for forest-based climate change mitigation initiatives. We develop a hierarchical Bayesian model (HBM) of aboveground forest C stock and sequestration in primary, selectively harvested, and El Niño Southern Oscillation (ENSO)-effected lowland tropical forest from 15 years of Permanent Sample Plot (PSP) census data for PNG consisting of 121 plots in selectively harvested forest, and 35 plots in primary forest. Model parameters indicated: C stock in aboveground live biomass (AGLB) of 137 ± 9 (95% confidence interval (CI)) MgC ha?1 in primary forest, compared with 62 ± 18 MgC ha?1 for selectively harvested forest (55% difference); C sequestration in primary forest of 0.23 ± 1.70 MgC ha?1 y?1, which was lower than in selectively harvested forest, 1.12 ± 3.41 MgC ha?1 y?1; ENSO-induced fire resulted in significant C emissions (?6.87 ± 3.94 MgC ha?1 y?1). High variability between PSPs in C stock and C sequestration rates necessitated random plot effects for both stock and sequestration. The HBM approach allowed inclusion of hierarchical autocorrelation, providing valid CIs on model parameters and efficient estimation. The HBM model has provided quantitative insights on the C balance of PNG’s forests that can be used as inputs for climate change mitigation initiatives.  相似文献   

2.
Efforts to incentivize the reduction of carbon emissions from deforestation and forest degradation require accurate carbon accounting. The extensive tropical forest of Papua New Guinea (PNG) is a target for such efforts and yet local carbon estimates are few. Previous estimates, based on models of neotropical vegetation applied to PNG forest plots, did not consider such factors as the unique species composition of New Guinea vegetation, local variation in forest biomass, or the contribution of small trees. We analysed all trees >1 cm in diameter at breast height (DBH) in Melanesia's largest forest plot (Wanang) to assess local spatial variation and the role of small trees in carbon storage. Above‐ground living biomass (AGLB) of trees averaged 210.72 Mg ha?1 at Wanang. Carbon storage at Wanang was somewhat lower than in other lowland tropical forests, whereas local variation among 1‐ha subplots and the contribution of small trees to total AGLB were substantially higher. We speculate that these differences may be attributed to the dynamics of Wanang forest where erosion of a recently uplifted and unstable terrain appears to be a major source of natural disturbance. These findings emphasize the need for locally calibrated forest carbon estimates if accurate landscape level valuation and monetization of carbon is to be achieved. Such estimates aim to situate PNG forests in the global carbon context and provide baseline information needed to improve the accuracy of PNG carbon monitoring schemes.  相似文献   

3.
Papua New Guinean forests (PNG), sequestering up to 3% of global forest carbon, are a focus of climate change mitigation initiatives, yet few field‐based studies have quantified forest biomass and carbon for lowland PNG forest. We provide an estimate for the 10 770 ha Wanang Conservation Area (WCA) to investigate the effect of calculation methodology and choice of allometric equation on estimates of above‐ground live biomass (AGLB) and carbon. We estimated AGLB and carbon from 43 nested plots at the WCA. Our biomass estimate of 292.2 Mg AGLB ha?1 (95% CI 233.4–350.6) and carbon at 137.3 Mg C ha?1 (95% CI 109.8–164.8) is higher than most estimates for PNG but lower than mean global estimates for tropical forest. Calculation method and choice of allometric model do not significantly influence mean biomass estimates; however, the most recently calibrated allometric equation generates estimates 13% higher for lower 95% confidence intervals of mean biomass than previous allometric models – a value often used as a conservative estimate of biomass. Although large trees at WCA (>70 cm diameter at breast height) accounted for 1/5 total biomass, their density was lower than that seen in SE Asian and Australia forests. Lower density of large trees accounts for lower AGLB than in neighbouring forests – as large trees contribute disproportionately to forest biomass. Reduced frequency of larger trees at WCA is explained by the lack of diversity of large dipterocarp species common to neighbouring SE Asian forests and, potentially, higher rates of local disturbance dynamics. PNG is susceptible to the El Niño Southern Oscillation (ENSO) extreme drought events to which large trees are particularly sensitive and, with still over 20% carbon in large trees, differential mortality under increasing ENSO drought stress raises the risk of PNG forest switching from carbon sink to source with reduced long‐term carbon storage capacity.  相似文献   

4.
Quantifying forest change in the tropics is important because of the role these forests play in the conservation of biodiversity and the global carbon cycle. One of the world's largest remaining areas of tropical forest is located in Papua New Guinea. Here we show that change in its extent and condition has occurred to a greater extent than previously recorded. We assessed deforestation and forest degradation in Papua New Guinea by comparing a land-cover map from 1972 with a land-cover map created from nationwide high-resolution satellite imagery recorded since 2002. In 2002 there were 28,251,967 ha of tropical rain forest. Between 1972 and 2002, a net 15 percent of Papua New Guinea's tropical forests were cleared and 8.8 percent were degraded through logging. The drivers of forest change have been concentrated within the accessible forest estate where a net 36 percent were degraded or deforested through both forestry and nonforestry processes. Since 1972, 13 percent of upper montane forests have also been lost. We estimate that over the period 1990–2002, overall rates of change generally increased and varied between 0.8 and 1.8 percent/yr, while rates in commercially accessible forest have been far higher—having varied between 1.1 and 3.4 percent/yr. These rates are far higher than those reported by the FAO over the same period. We conclude that rapid and substantial forest change has occurred in Papua New Guinea, with the major drivers being logging in the lowland forests and subsistence agriculture throughout the country with comparatively minor contributions from forest fires, plantation establishment, and mining.  相似文献   

5.
Tropical forests hold large stores of carbon, yet uncertainty remains regarding their quantitative contribution to the global carbon cycle. One approach to quantifying carbon biomass stores consists in inferring changes from long-term forest inventory plots. Regression models are used to convert inventory data into an estimate of aboveground biomass (AGB). We provide a critical reassessment of the quality and the robustness of these models across tropical forest types, using a large dataset of 2,410 trees ≥ 5 cm diameter, directly harvested in 27 study sites across the tropics. Proportional relationships between aboveground biomass and the product of wood density, trunk cross-sectional area, and total height are constructed. We also develop a regression model involving wood density and stem diameter only. Our models were tested for secondary and old-growth forests, for dry, moist and wet forests, for lowland and montane forests, and for mangrove forests. The most important predictors of AGB of a tree were, in decreasing order of importance, its trunk diameter, wood specific gravity, total height, and forest type (dry, moist, or wet). Overestimates prevailed, giving a bias of 0.5–6.5% when errors were averaged across all stands. Our regression models can be used reliably to predict aboveground tree biomass across a broad range of tropical forests. Because they are based on an unprecedented dataset, these models should improve the quality of tropical biomass estimates, and bring consensus about the contribution of the tropical forest biome and tropical deforestation to the global carbon cycle. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Abstract This study describes the floristics and structure of a 0.95‐ha lowland tropical rainforest plot at the Australian Canopy Crane Research Facility at Cape Tribulation, Queensland. Five years of post‐cyclonic change in forest floristics and structure following the passage of Tropical Cyclone ‘Rona’ in February 1999 are examined. Local and regional variation in tropical rainforest is examined in comparison with other lowland plots established nearby and mid‐elevation plots located elsewhere in north Queensland at Eungella, Paluma and the Atherton Tablelands. These plots are placed in a broader Australasian context along with lowland rainforest plots at Baitabag and Oomsis, Papua New Guinea. The 2005 survey found 680 stems of 82 species ≥10 cm d.b.h. on the crane plot, an increase of 30.3% in stems and 16.4% of species in the 5 years since the previous survey. The most abundant families were Meliaceae, Euphorbiaceae, Lauraceae, Myrtaceae and Apocynaceae and the most abundant species were Cleistanthus myrianthus, Alstonia scholaris, Myristica insipida, Normanbya normanbyi and Rockinghamia angustifolia. Temporal floristic and structural variation suggests that the crane site remains in an active stage of post‐cyclonic recovery. Local spatial variability in floristics and structure at Cape Tribulation exceeded the variation exhibited by a single plot over a period of 5 years, despite the impact of Cyclone Rona. This finding suggests a high degree of temporal stability within this stand of rainforest despite frequent catastrophic disturbances. The rainforests of Cape Tribulation constitute a relatively unique floristic community when observed in an Australasian context. Variation in rainforest community composition across the region shows the importance of biogeographical connections, the impacts of local topography, environmental conditions and disturbance history.  相似文献   

7.
On the African continent, the population is expected to expand fourfold in the next century, which will increasingly impact the global carbon cycle and biodiversity conservation. Therefore, it is of vital importance to understand how carbon stocks and community assembly recover after slash‐and‐burn events in tropical second growth forests. We inventoried a chronosequence of 15 1‐ha plots in lowland tropical forest of the central Congo Basin and evaluated changes in aboveground and soil organic carbon stocks and in tree species diversity, functional composition, and community‐weighted functional traits with succession. We aimed to track long‐term recovery trajectories of species and carbon stocks in secondary forests, comparing 5 to 200 + year old secondary forest with reference primary forest. Along the successional gradient, the functional composition followed a trajectory from resource acquisition to resource conservation, except for nitrogen‐related leaf traits. Despite a fast, initial recovery of species diversity and functional composition, there were still important structural and carbon stock differences between old growth secondary and pristine forest, which suggests that a full recovery of secondary forests might take much longer than currently shown. As such, the aboveground carbon stocks of 200 + year old forest were only 57% of those in the pristine reference forest, which suggests a slow recovery of aboveground carbon stocks, although more research is needed to confirm this observation. The results of this study highlight the need for more in‐depth studies on forest recovery in Central Africa, to gain insight into the processes that control biodiversity and carbon stock recovery.  相似文献   

8.
Xishuangbanna is a region located at the northern edge of tropical Asia. Biomass estimates of its tropical rain forest have not been published in English literature. We estimated forest biomass and its allocation patterns in five 0.185–1.0 ha plots in tropical seasonal rain forests of Xishuangbanna. Forest biomass ranged from 362.1 to 692.6 Mg/ha. Biomass of trees with diameter at 1.3 m breast height (DBH) ≥ 5 cm accounted for 98.2 percent of the rain forest biomass, followed by shrubs (0.9%), woody lianas (0.8%), and herbs (0.2%). Biomass allocation to different tree components was 68.4–70.0 percent to stems, 19.8–21.8 percent to roots, 7.4–10.6 percent to branches, and 0.7–1.3 percent to leaves. Biomass allocation to the tree sublayers was 55.3–62.2 percent to the A layer (upper layer), 30.6–37.1 percent to the B layer (middle), and 2.7–7.6 percent to the C layer (lower). Biomass of Pometia tomentosa, a dominant species, accounted for 19.7–21.1 percent of the total tree biomass. The average density of large trees (DBH ≥100 cm) was 9.4 stems/ha on two small plots and 3.5 stems/ha on two large plots, illustrating the potential to overestimate biomass on a landscape scale if only small plots are sampled. Biomass estimations are similar to typical tropical rain forests in Southeast Asia and the Neotropics.  相似文献   

9.
Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor—an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests, and to highlight areas where cost savings in carbon stock assessments could be most easily made.  相似文献   

10.
Our ability to model global carbon fluxes depends on understanding how terrestrial carbon stocks respond to varying environmental conditions. Tropical forests contain the bulk of the biosphere's carbon. However, there is a lack of consensus as to how gradients in environmental conditions affect tropical forest carbon. Papua New Guinea (PNG) lies within one of the largest areas of contiguous tropical forest and is characterized by environmental gradients driven by altitude; yet, the region has been grossly understudied. Here, we present the first field assessment of aboveground biomass (AGB) across three main forest types of PNG using 193 plots stratified across 3,100‐m elevation gradient. Unexpectedly, AGB had no direct relationship to rainfall, temperature, soil, or topography. Instead, natural disturbances explained most variation in AGB. While large trees (diameter at breast height > 50 cm) drove altitudinal patterns of AGB, resulting in a major peak in AGB (2,200–3,100 m) and some of the most carbon‐rich forests at these altitudes anywhere. Large trees were correlated to a set of climatic variables following a hump‐shaped curve. The set of “optimal” climatic conditions found in montane cloud forests is similar to that of maritime temperate areas that harbor the largest trees in the world: high ratio of precipitation to evapotranspiration (2.8), moderate mean annual temperature (13.7°C), and low intra‐annual temperature range (7.5°C). At extreme altitudes (2,800–3,100 m), where tree diversity elsewhere is usually low and large trees are generally rare or absent, specimens from 18 families had girths >70 cm diameter and maximum heights 20–41 m. These findings indicate that simple AGB‐climate‐edaphic models may not be suitable for estimating carbon storage in forests where optimal climate niches exist. Our study, conducted in a very remote area, suggests that tropical montane forests may contain greater AGB than previously thought and the importance of securing their future under a changing climate is therefore enhanced.  相似文献   

11.
An estimate of live tree carbon stored in New Zealand forests at 1990 was made to partially satisfy New Zealand's international obligations under the Framework Convention for Climate Change. A national database was compiled of 4956 forest inventory plots measured as recently as possible to 1990. Plot biomass estimates were obtained by applying species allometric relationships derived from harvested stands. Forest areas and classes were taken from a 1987 national map of vegetation cover. Regularly spaced grids, based on an initial 1 km × 1 km grid, were overlaid on the total forest area and plots were tested for bias against site characteristics at the grid points. As grid point density and sample size increased, bias was minimal in regional sampling intensity and in total annual precipitation. Differences in mean elevation and annual temperature remained stable as grid point density increased, and showed little correlation with stem biomass. This sampling method gave a measure of precision not available from previous estimates. An efficient sample size to estimate the mean within a 5% level of precision (at 95% probability) required a sample of 574 plots selected from a 4‐km grid. This strategy generated a mean estimate for the 1990 New Zealand forest carbon biomass of 179.3 ± 4.9 Mg ha?1 (± SE), totalling 919.1 ± 25.1 Mt for the 5.1 million ha mapped forest area. The mean was 6–10% lower than previous estimates, and was within the range reported for other countries. Within forest classes, mean carbon biomass ranged from 105 Mg ha?1 in pure podocarp forest to 215 Mg ha?1 in mixed lowland podocarp–broadleaved–beech forest. Of the major taxa groups throughout the forest estate, beech (Nothofagus) contributed 60% of the national forest carbon biomass reservoir, 26.7% was in other hardwoods, 13.2% in conifers, and 0.1% in other taxa (e.g. tree ferns).  相似文献   

12.
Savannas are widespread in sub‐Saharan Africa (SSA) and play a major role in the global carbon balance. Extensive quantification of savanna carbon stocks in SSA will therefore contribute to better accounting of the global carbon budget in the era of climate change. In this study, we investigated the spatial distribution of carbon stocks of different soil fractions and aboveground biomass within three forest reserves in the Guinea savanna zone of Ghana. Soil carbon stocks (SCSs) ranged from 4.80 to 12.61 Mg C/ha in surface soils (0–10 cm depth). Higher SCSs were associated with the silt +clay fraction than microaggregates and small macroaggregates in all three reserves. Relative to the dominant tree species (Vitellaria paradoxa), the highest SCSs were recorded under the sub‐canopy (SC), drip line (DL), and interspace (2 * SC + DL) zones for the Klupene, Sinsablegbinni, and Kenikeni forest reserves, respectively. The highest tree carbon stock was 60.01 Mg C/ha in Kenikeni. Sinsablegbinni had an average stock of 26.74 Mg C/ha and had the highest tree density. Average carbon capture by a single tree ranged from 0.04 to 0.34 Mg C. Aboveground grass carbon stock ranged from 0.08 to 0.47 Mg C/ha, while the belowground carbon stock ranged from 0.03 to 0.44 Mg C/ha. Accumulation of carbon in the aboveground grass biomass was greater at Klupene with low forest cover.  相似文献   

13.
Paoli GD  Curran LM  Slik JW 《Oecologia》2008,155(2):287-299
Studies on the relationship between soil fertility and aboveground biomass in lowland tropical forests have yielded conflicting results, reporting positive, negative and no effect of soil nutrients on aboveground biomass. Here, we quantify the impact of soil variation on the stand structure of mature Bornean forest throughout a lowland watershed (8–196 m a.s.l.) with uniform climate and heterogeneous soils. Categorical and bivariate methods were used to quantify the effects of (1) parent material differing in nutrient content (alluvium > sedimentary > granite) and (2) 27 soil parameters on tree density, size distribution, basal area and aboveground biomass. Trees ≥10 cm (diameter at breast height, dbh) were enumerated in 30 (0.16 ha) plots (sample area = 4.8 ha). Six soil samples (0–20 cm) per plot were analyzed for physiochemical properties. Aboveground biomass was estimated using allometric equations. Across all plots, stem density averaged 521 ± 13 stems ha−1, basal area 39.6 ± 1.4 m2 ha−1 and aboveground biomass 518 ± 28 Mg ha−1 (mean ± SE). Adjusted forest-wide aboveground biomass to account for apparent overestimation of large tree density (based on 69 0.3-ha transects; sample area = 20.7 ha) was 430 ± 25 Mg ha−1. Stand structure did not vary significantly among substrates, but it did show a clear trend toward larger stature on nutrient-rich alluvium, with a higher density and larger maximum size of emergent trees. Across all plots, surface soil phosphorus (P), potassium, magnesium and percentage sand content were significantly related to stem density and/or aboveground biomass (R Pearson = 0.368–0.416). In multiple linear regression, extractable P and percentage sand combined explained 31% of the aboveground biomass variance. Regression analyses on size classes showed that the abundance of emergent trees >120 cm dbh was positively related to soil P and exchangeable bases, whereas trees 60–90 cm dbh were negatively related to these factors. Soil fertility thus had a significant effect on both total aboveground biomass and its distribution among size classes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
The net primary productivity, carbon (C) stocks and turnover rates (i.e. C dynamics) of tropical forests are an important aspect of the global C cycle. These variables have been investigated in lowland tropical forests, but they have rarely been studied in tropical montane forests (TMFs). This study examines spatial patterns of above‐ and belowground C dynamics along a transect ranging from lowland Amazonia to the high Andes in SE Peru. Fine root biomass values increased from 1.50 Mg C ha?1 at 194 m to 4.95 ± 0.62 Mg C ha?1 at 3020 m, reaching a maximum of 6.83 ± 1.13 Mg C ha?1 at the 2020 m elevation site. Aboveground biomass values decreased from 123.50 Mg C ha?1 at 194 m to 47.03 Mg C ha?1 at 3020 m. Mean annual belowground productivity was highest in the most fertile lowland plots (7.40 ± 1.00 Mg C ha?1 yr?1) and ranged between 3.43 ± 0.73 and 1.48 ± 0.40 Mg C ha?1 yr?1 in the premontane and montane plots. Mean annual aboveground productivity was estimated to vary between 9.50 ± 1.08 Mg C ha?1 yr?1 (210 m) and 2.59 ± 0.40 Mg C ha?1 yr?1 (2020 m), with consistently lower values observed in the cloud immersion zone of the montane forest. Fine root C residence time increased from 0.31 years in lowland Amazonia to 3.78 ± 0.81 years at 3020 m and stem C residence time remained constant along the elevational transect, with a mean of 54 ± 4 years. The ratio of fine root biomass to stem biomass increased significantly with increasing elevation, whereas the allocation of net primary productivity above‐ and belowground remained approximately constant at all elevations. Although net primary productivity declined in the TMF, the partitioning of productivity between the ecosystem subcomponents remained the same in lowland, premontane and montane forests.  相似文献   

16.
The aboveground wood biomass (AWB) of tropical forests plays an important role in the global carbon cycle, and local AWB estimates provide essential data that enable the extrapolation of biomass stocks to ecosystem or biome-wide carbon cycle modelling. Few AWB estimates exist in Neotropical freshwater floodplains, where tree species distribution and forest structure depend on the height and duration of periodic inundations. We investigated tree species composition, forest structure, wood specific gravity, and AWB of trees ≥10 cm dbh in 16 plots totalling an area of 1 ha in a seasonally inundated riparian forest of the lower Miranda River, southern Pantanal, Brazil. The 443 tree individuals belonged to 46 species. Four species (Inga vera, Ocotea suaveolens, Tabebuia heptaphylla and Cecropia pachystachya) comprised more than 50% of the Total Importance Values (TIV), and floristic similarities between the plots averaged 38%. Although we detected an overall increase in species diversity correlated with decreasing flood levels, the most important tree species had almost identical distribution patterns along the flooding gradient. The stand basal area per plot (±?s.d.) amounted to 3.0?±?1.1 m2 (47.8?±?18.1 m2/ha), and the tree heights averaged 10.9?±?1.4 m. Multiplying the individual basal areas by individual tree heights and a form factor of 0.6, we estimated the aboveground wood volume (AWV) for each individual, and for each plot (24.4?±?11.7 m3, 391.1?±?188 m3/ha). Wood specific gravity (SG) varied between 0.39 g/cm3 (Cecropia pachystachya) and 0.87 g/cm3 (Tabebuia heptaphylla), with a stand level average of 0.63?±?0.12 g/cm3. Multiplying the individual AWV with species SG, we estimated the plot AWB to be 16.2?±?6.4 Mg (259.4?±?102 Mg/ha). This value is comparable to that reported for late-successional forest stands of Amazonian floodplain forests, and it is close to the worldwide tropical average AWB. Because tree heights in the present forest were comparatively low when compared to other Neotropical forests, we found that resprouting of stems accounted for comparatively high basal areas. We argue that stem resprouting is an adaptation of tree species originating in non-flooded Cerrado to the seasonal inundations of riparian forests.  相似文献   

17.
A standardized rapid inventory method providing information on both tree species diversity and aboveground carbon stocks in tropical forests will be an important tool for evaluating efforts to conserve biodiversity and to estimate the carbon emissions that result from deforestation and degradation (REDD). Herein, we contrast five common plot methods differing in shape, size, and effort requirements to estimate tree diversity and aboveground tree biomass (AGB). We simulated the methods across six Neotropical forest sites that represent a broad gradient in forest structure, tree species richness, and floristic composition, and we assessed the relative performance of methods by evaluating the bias and precision of their estimates of AGB and tree diversity. For a given sample of forest area, a ‘several small’ (< 1 ha) sampling strategy led to a smaller coefficient of variation (CV) in the estimate of AGB than a ‘few large’ one. The effort (person‐days) required to achieve an accurate AGB estimate (< 10% CV), however, was greater for the smallest plots (0.1 ha) than for a compromise approach using 0.5 ha modified Gentry plots, which proved to be the most efficient method to estimate AGB across all forest types. Gentry plots were also the most efficient at providing accurate estimates of tree diversity (< 10% CV of Hill number). We recommend the use of the 0.5 ha modified Gentry plot method in future rapid inventories, and we discuss a set of criteria that should inform any choice of inventory method.  相似文献   

18.
Forest Structure and Primary Productivity in a Bornean Heath Forest   总被引:2,自引:0,他引:2  
Aboveground forest structure, biomass, and primary productivity in a tropical heath forest in Central Kalimantan (Indonesian Borneo) were examined using data from 1-ha plots and stand-level allometric equations developed from harvested tree samples. The study site experienced a severe drought in 1997–1998 associated with the El Niño Southern Oscillation event. The drought effect on heath forest productivity was also assessed by evaluating changes in wood mass increment rates. Allometric relationships suggested that heath forest trees had leaves with smaller specific leaf area (SLA), and large heath forest trees allocate more to leaf mass compared to mixed dipterocarp forest trees. Aboveground biomass (for trees ≥ 4.8 cm DBH) in two 1-ha plots, P1 and P4, totaled 244.8 and 232.0 Mg/ha. Aboveground wood mass increment rate was –0.1 and 4.7 Mg/ha/yr in P1 and P4 during the drought period (from February to August 1998), while it quickly recovered to 8.1 and 8.5 Mg/ha/yr during the post-drought period (from August 1998 to August 1999 for P1 and from August 1998 to November 1999 for P4). This suggests a severe impact of the drought on heath forest productivity. Leaf characteristics of heath forest such as small SLA and long-lived leaves probably play a significant role in effective assimilation and maintenance of heath forest productivity under stressful conditions.  相似文献   

19.
Among their effects on forest structure and carbon dynamics, hurricanes frequently create large‐scale canopy gaps that promote secondary growth. To measure the accumulation of aboveground biomass (AGBM) in a hurricane damaged forest, we established permanent plots 4 mo after the landfall of Hurricane Joan on the Atlantic coast of Nicaragua in October 1988. We quantified AGBM accumulation in these plots by correlating diameter measurements to AGBM values using a published allometric regression equation for tropical wet forests. In the first measurement year following the storm, AGBM in hurricane‐affected plots was quite variable, ranging from 26 to 153 Mg/ha, with a mean of 78 (±15) Mg/ha. AGBM was substantially lower than in two control plots several kilometers outside the hurricane's path (331 ±15 Mg/ha). Biomass accumulation was slow (5.36 ± 0.74 Mg/ha/yr), relative to previous studies of forest regeneration following another hurricane (Hugo) and agricultural activity. We suggest that large‐scale, homogenous canopy damage caused by Hurricane Joan impeded the dispersal and establishment of pioneer trees and led to a secondary forest dominated by late successional species that resprouted and survived the disturbance. With the relatively slow rate of biomass accumulation, any tightening in disturbance interval could reduce the maximum capacity of the living biomass to store carbon.  相似文献   

20.
The biomass of tropical forests plays an important role in the global carbon cycle, both as a dynamic reservoir of carbon, and as a source of carbon dioxide to the atmosphere in areas undergoing deforestation. However, the absolute magnitude and environmental determinants of tropical forest biomass are still poorly understood. Here, we present a new synthesis and interpolation of the basal area and aboveground live biomass of old‐growth lowland tropical forests across South America, based on data from 227 forest plots, many previously unpublished. Forest biomass was analyzed in terms of two uncorrelated factors: basal area and mean wood density. Basal area is strongly affected by local landscape factors, but is relatively invariant at regional scale in moist tropical forests, and declines significantly at the dry periphery of the forest zone. Mean wood density is inversely correlated with forest dynamics, being lower in the dynamic forests of western Amazonia and high in the slow‐growing forests of eastern Amazonia. The combination of these two factors results in biomass being highest in the moderately seasonal, slow growing forests of central Amazonia and the Guyanas (up to 350 Mg dry weight ha?1) and declining to 200–250 Mg dry weight ha?1 at the western, southern and eastern margins. Overall, we estimate the total aboveground live biomass of intact Amazonian rainforests (area 5.76 × 106 km2 in 2000) to be 93±23 Pg C, taking into account lianas and small trees. Including dead biomass and belowground biomass would increase this value by approximately 10% and 21%, respectively, but the spatial variation of these additional terms still needs to be quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号