共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim Ponderosa pine (Pinus ponderosa Douglas ex Lawson & C. Lawson) is an economically and ecologically important conifer that has a wide geographic range in the western USA, but is mostly absent from the geographic centre of its distribution – the Great Basin and adjoining mountain ranges. Much of its modern range was achieved by migration of geographically distinct Sierra Nevada (P. ponderosa var. ponderosa) and Rocky Mountain (P. ponderosa var. scopulorum) varieties in the last 10,000 years. Previous research has confirmed genetic differences between the two varieties, and measurable genetic exchange occurs where their ranges now overlap in western Montana. A variety of approaches in bioclimatic modelling is required to explore the ecological differences between these varieties and their implications for historical biogeography and impending changes in western landscapes. Location Western USA. Methods We used a classification tree analysis and a minimum‐volume ellipsoid as models to explain the broad patterns of distribution of ponderosa pine in modern environments using climatic and edaphic variables. Most biogeographical modelling assumes that the target group represents a single, ecologically uniform taxonomic population. Classification tree analysis does not require this assumption because it allows the creation of pathways that predict multiple positive and negative outcomes. Thus, classification tree analysis can be used to test the ecological uniformity of the species. In addition, a multidimensional ellipsoid was constructed to describe the niche of each variety of ponderosa pine, and distances from the niche were calculated and mapped on a 4‐km grid for each ecological variable. Results The resulting classification tree identified three dominant pathways predicting ponderosa pine presence. Two of these three pathways correspond roughly to the distribution of var. ponderosa, and the third pathway generally corresponds to the distribution of var. scopulorum. The classification tree and minimum‐volume ellipsoid model show that both varieties have very similar temperature limitations, although var. ponderosa is more limited by the temperature extremes of the continental interior. The precipitation limitations of the two varieties are seasonally different, with var. ponderosa requiring significant winter moisture and var. scopulorum requiring significant summer moisture. Great Basin mountain ranges are too cold at higher elevations to support either variety of ponderosa pine, and at lower elevations are too dry in summer for var. scopulorum and too dry in winter for var. ponderosa. Main conclusions The classification tree analysis indicates that var. ponderosa is ecologically as well as genetically distinct from var. scopulorum. Ecological differences may maintain genetic separation in spite of a limited zone of introgression between the two varieties in western Montana. Two hypotheses about past and future movements of ponderosa pine emerge from our analyses. The first hypothesis is that, during the last glacial period, colder and/or drier summers truncated most of the range of var. scopulorum in the central Rockies, but had less dramatic effects on the more maritime and winter‐wet distribution of var. ponderosa. The second hypothesis is that, all other factors held constant, increasing summer temperatures in the future should produce changes in the distribution of var. scopulorum that are likely to involve range expansions in the central Rockies with the warming of mountain ranges currently too cold but sufficiently wet in summer for var. scopulorum. Finally, our results underscore the growing need to focus on genotypes in biogeographical modelling and ecological forecasting. 相似文献
2.
3.
4.
Aim Woody plant expansion and infilling in grasslands and savannas are occurring across a broad range of ecosystems around the globe and are commonly attributed to fire suppression, livestock grazing, nutrient enrichment and/or climate variability. In the western Great Plains, ponderosa pine (Pinus ponderosa) woodlands are expanding across broad geographical and environmental gradients. The objective of this study was to reconstruct the establishment of ponderosa pine in woodlands in the west‐central Great Plains and to identify whether it was mediated by climate variability. Location Our study took place in a 400‐km wide region from the base of the Front Range Mountains (c. 105° W) to the central Great Plains (c. 100° W) and from Nebraska (43° N) to northern New Mexico (36° N), USA. Methods Dates for establishment of ponderosa pine were reconstructed with tree rings in 11 woodland sites distributed across the longitudinal and latitudinal gradients of the study area. Temporal trends in decadal pine establishment were compared with summer Palmer Drought Severity Index (PDSI). Annual trends in pine establishment from 1985 to 2005 were compared with seasonal PDSI, temperature and moisture availability. Results Establishment of ponderosa pine occurred in the study area in all but one decade (1770s) between the 1750s and the early 2000s, with over 35% of establishment in the region occurring after 1980. Pine establishment was highly variable among sites. Across the region, decadal pine establishment was persistently low from 1940 to 1960, when PDSI was below average. Annual pine establishment from 1985 to 2005 was positively correlated with summer PDSI and inversely correlated with minimum spring temperatures. Main conclusions Most ponderosa pine woodlands pre‐date widespread Euro‐American settlement of the region around c. ad 1860 and currently have stable tree populations. High variability in the timing of establishment of pine among sites highlights the multiplicity of factors that can drive woodland dynamics, including land use, fire history, CO2 enrichment, tree population dynamics and climate. Since the 1840s, the influence of climate was most notable across the study area during the mid‐20th century, when the establishment of pine was suppressed by two significant droughts. The past sensitivity of establishment of ponderosa pine to drought suggests that woodland expansion will be negatively affected by predicted increases in temperature and drought in the Great Plains. 相似文献
5.
When using bivariate line transect methods to estimate the biomass density of a tightly clustered biological population, it is generally assumed that both the perpendicular distance from the trackline to the cluster and the cluster size, or biomass, are measured without error. This is unlikely to be the case in practice. In this article, assuming additive mean zero errors in distance and multiplicative errors in size, we develop an estimator of density that corrects for these errors. We use the method of moments for the case of gamma cluster size, randomly placed transect lines, and the generalized exponential detection function. We derive results that show that it may not be necessary to correct for errors in distance or size when the distance and size estimates are not biased. When the size estimates are biased, the biomass density estimate has approximately the same bias as the size estimates. The work is illustrated in the context of annual aerial surveys for juvenile southern bluefin tuna in the Great Australian Bight. 相似文献
6.
Sharon M. Hood Daniel R. Cluck Bobette E. Jones Sean Pinnell 《Restoration Ecology》2018,26(5):813-819
Restoration efforts to improve vigor of large, old trees and decrease risk to high‐intensity wildland fire and drought‐mediated insect mortality often include reductions in stand density. We examined 15‐year growth response of old ponderosa pine (Pinus ponderosa) and Jeffrey pine (Pinus jeffreyi) trees in northeastern California, U.S.A. to two levels of thinning treatments compared to an untreated (control) area. Density reductions involved radial thinning (thinning 9.1 m around individual trees) and stand thinning. Annual tree growth in the stand thinning increased immediately following treatment and was sustained over the 15 years. In contrast, radial thinning did not increase growth, but slowed decline compared to control trees. Available soil moisture was higher in the stand thinning than the control for 5 years post‐treatment and likely extended seasonal tree growth. Our results show that large, old trees can respond to restoration thinning treatments, but that the level of thinning impacts this response. Stand thinning must be sufficiently intensive to improve old tree growth and health, in part due to increasing available soil moisture. Importantly, focusing stand density reductions around the immediate neighborhood of legacy trees was insufficient to elicit a growth response, calling into question treatments attempting to increase vigor of legacy trees while still maintaining closed canopies in dry, coniferous forest types. Although radial thinning did not affect tree growth rates, this treatment may still achieve other resource objectives not studied here, such as protecting wildlife habitat, reducing the risk of severe fire injury, and decreasing susceptibility to bark beetle attacks. 相似文献
7.
In a meta-analysis of randomized trials of the effects of dietary sodium interventions on blood pressure, we found substantial heterogeneity among the studies. We were interested in evaluating whether measurement error, known to be a problem for dietary sodium measures, publication bias, or confounding factors could be responsible for the heterogeneity. A measurement error correction was developed that corrects both the slope and the intercept and takes into account the sample size of each study and the number of measurements taken on an individual. The measurement error correction had a minimal effect on the estimates, although it performed well in simulated data. A smoothed scatter plot was used to assess publication bias. Metaregressions provide a convenient way to jointly assess the effects of several factors, but care must be taken to fit an appropriate model. 相似文献
8.
William L. Baker Thomas T. Veblen Rosemary L. Sherriff † 《Journal of Biogeography》2007,34(2):251-269
Aim Forest restoration in ponderosa pine and mixed ponderosa pine–Douglas fir forests in the US Rocky Mountains has been highly influenced by a historical model of frequent, low‐severity surface fires developed for the ponderosa pine forests of the Southwestern USA. A restoration model, based on this low‐severity fire model, focuses on thinning and prescribed burning to restore historical forest structure. However, in the US Rocky Mountains, research on fire history and forest structure, and early historical reports, suggest the low‐severity model may only apply in limited geographical areas. The aim of this article is to elaborate a new variable‐severity fire model and evaluate the applicability of this model, along with the low‐severity model, for the ponderosa pine–Douglas fir forests of the Rocky Mountains. Location Rocky Mountains, USA. Methods The geographical applicability of the two fire models is evaluated using historical records, fire histories and forest age‐structure analyses. Results Historical sources and tree‐ring reconstructions document that, near or before ad 1900, the low‐severity model may apply in dry, low‐elevation settings, but that fires naturally varied in severity in most of these forests. Low‐severity fires were common, but high‐severity fires also burned thousands of hectares. Tree regeneration increased after these high‐severity fires, and often attained densities much greater than those reconstructed for Southwestern ponderosa pine forests. Main conclusions Exclusion of fire has not clearly and uniformly increased fuels or shifted the fire type from low‐ to high‐severity fires. However, logging and livestock grazing have increased tree densities and risk of high‐severity fires in some areas. Restoration is likely to be most effective which seeks to (1) restore variability of fire, (2) reverse changes brought about by livestock grazing and logging, and (3) modify these land uses so that degradation is not repeated. 相似文献
9.
马尾松林恢复为常绿阔叶林的研究 总被引:15,自引:0,他引:15
我国东部地区的自然植被破坏后 ,水土流失严重 ,山地土壤很快变得非常瘠薄。过去人们认为马尾松 (Pinusmassoniana)是唯一可以在这种生境条件下很好生长的林木 ,于是广泛种植马尾松林 ,使大面积荒山得到绿化 ,并且解决了村民的烧材问题。目前我国东部低山丘陵区大部分为马尾松林覆盖 ,除少量为自然林及演替阶段群落外 ,绝大部分为人工林 ,马尾松人工林分布面积占全国人工林面积的14% [1] 。近年来马尾松病虫害 ,特别是松材线虫的爆发流行 ,严重威胁着它的生存。在日本 ,由于松材线虫的危害 ,松林的面积大幅度减少 ,几乎完全… 相似文献
10.
A network of permanent plots established between 1909 and 1913 (the Woolsey plots) contains the oldest measured data in northern Arizona ponderosa pine forests. These forest inventory data offer a unique opportunity to reconstruct pre-settlement reference conditions, as well as detect and quantify changes in southwestern forest structure and composition. However, the selection of plot locations in the early 1900s followed a subjective nonrandom approach. To assess the applicability, or inference space, of results obtained from these historical plots, we compared their environmental characteristics (terrestrial ecosystem unit [TEU, based on a U.S. Forest Service (USFS) ecological classification system], site index, elevation, insolation index, and soil parent material) as well as contemporary forest structure (trees per hectare, basal area, and quadratic mean diameter) with two large inventory samples: USFS Forest Inventory and Analysis (FSFIA) and Arizona State Land Department Continuous Forest Inventory (AZCFI). Analytical methods included multivariate permutation tests, ratios of variance, and Kolmogorov–Smirnov two-sample tests. Results indicated that the Woolsey plots (1) were neither historically nor contemporarily representative of the entire study area because of environmental and current forest structural differences with respect to the FSFIA and AZCFI and (2) may be considered historically representative of their corresponding TEUs. Our study supports the use of TEUs for defining the applicability of information obtained from the Woolsey plots. 相似文献
11.
12.
Is inconsistent reporting of self-assessed health persistent and systematic? Evidence from the UKHLS
In this paper, we investigate whether individuals provide consistent responses to self-assessed health (SAH) questions in the UK Household Longitudinal Study (UKHLS), and the potential implications for empirical research in case of inconsistent reporting behaviour. We capitalise on an opportunity in the UKHLS, asking respondents the same SAH question twice: with a self-completion and an open interview mode, within the same household interview over four waves. We estimate multivariate models to explore which individual characteristics are systematically relevant for the likelihood and frequency of inconsistent reporting. About 11–24% of those reported a particular SAH category in the self-completion reported inconsistently in the open interview. The probability of inconsistency is systematically associated with individual’s demographics, education, income, employment status, cognitive and non-cognitive skills. The same characteristics also predict the frequency of inconsistent reporting across four UKHLS waves. Analysis of the implications of reporting inconsistencies shows no impact of SAH measurement on the association between income and health. A set of dimensions of people’s physiological and biological health, captured using biomarkers, is associated equally with both SAH measures, suggesting that the interview mode does not play a role in the relationship between SAH and more objective health measures. 相似文献
13.
Eryn E. Schneider Andrew J. Sánchez Meador William W. Covington 《Restoration Ecology》2016,24(2):212-221
Much of the previous research on spatial reference conditions in dry frequent fire pine forests have come from stand‐level patterns under regionally average ecosystem conditions (e.g. soil type and precipitation). We evaluated the 1883 reference conditions of an uncut ponderosa pine stand representing a far end of the range of variability in terms of regionally unusual environmental conditions. Using a forest reconstruction model, univariate and bivariate Ripley's K functions, and regression analysis, we determined 1883 structural and spatial reference conditions, and compared those to the contemporary (2010) stand. Historical stand density was 77 trees/ha with a basal area of 8.0 m2/ha. Reference spatial patterns were significantly aggregated from 1 to 2 m and randomly distributed at distances greater than 2 m. Nearly 40% of the reconstructed trees were individuals, the average patch size was 2.9 trees, and the largest patch had 7 members. The contemporary stand had considerably greater densities and basal area than historical conditions and showed aggregation at all distances. Bivariate spatial analysis indicated attraction of post‐settlement recruitment to live pre‐settlement trees from 1 to 6 m and no association at distances greater than 6 m. We speculate that the historically random tree pattern is the product of a variety of factors including soil parent material, climate, and more homogeneous resource partitioning. 相似文献
14.
15.
Chris B. Zou David D. Breshears Brent D. Newman Bradford P. Wilcox Marvin O. Gard Paul M. Rich 《Ecohydrology》2008,1(4):309-315
Soil water dynamics reflect the integrated effects of climate conditions, soil hydrological properties and vegetation at a site. Consequently, changes in tree density can have important ecohydrological implications. Notably, stand density in many semi‐arid forests has increased greatly because of fire suppression, such as that in the extensive ponderosa pine (Pinus ponderosa Laws.) forests that span much of western USA. Few studies have quantified how soil water content varies in low‐ versus high‐density stands both by depth and years, or the inter‐relationships between water content, stand density, and ecohydrological processes. Over a 4‐year period, we measured the soil water content throughout the soil profiles in both low‐density (250 trees/ha) and high‐density (2710 trees/ha) ponderosa pine stands. Our results document significantly greater soil water contents in the low‐density stands over a wide range of conditions (wet, dry, winter, summer). We observed substantial differences in water contents at depths greater than are typically measured. Our results also show that differences in monthly average soil water contents between the low‐ and high‐density stands fluctuated between 0·02 and 0·08 m3 m−3 depending on the time of year, and reflect a dynamic coupling between infiltration and stand evapotranspiration processes. The difference in soil water availability between low‐ and high‐density stands is substantially amplified when expressed as plant‐available water on a per tree, per biomass or per leaf area basis. Our findings highlight important ecohydrological couplings and suggest that restoration and monitoring plans for semi‐arid forests could benefit from adopting a more ecohydrological focus that explicitly considers soil water content as a determinant of the ecosystem process. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
16.
Restoration of ponderosa pine ecosystems results in altered stand structure, potentially affecting microclimatic conditions and habitat quality for forest organisms. This research focuses on microclimatic changes resulting from forest and landscape structural alterations caused by restoration treatments in southwestern ponderosa pine forests. Three microclimate variables—light intensity, air temperature, and vapor pressure deficit (VPD)—were monitored over two field seasons. Differences in microclimate between the treated forest and the surrounding untreated forest were measured, and microclimatic gradients across the structural edge between these two forest types were quantified. Restoration treatments increased sunlight penetration to the forest floor but did not significantly impact ambient air temperature or VPD. Mean values for air temperature and VPD did not differ significantly between treatments, although temperature and vapor pressure deficit did exhibit a trend in the morning; both variables were higher at the structural edge and in the treated forest during morning hours. Significant edge gradients were detected for air temperature and VPD in the morning and evening, increasing from the structural edge into the untreated forest. Our results show that microclimatic effects of these restoration treatments are generally modest, but the changes are more prominent at specific locations and during certain times of day. Because even modest changes in microclimate have the potential to impact a range of key ecological processes, microclimatic effects should be considered when forest restoration treatments at the landscape scale are being planned and implemented. 相似文献
17.
Abstract Patch or island area is one of the most frequently used variables for inference in conservation biology and biogeography, and is often used in ecological applications. Given that all of these disciplines deal with large spatial scales, exhaustive censusing is not often possible, especially when there are large numbers of patches (e.g. for replication and control purposes). Therefore, data for patches or islands are usually collected by sampling. We argue that if area is to be used as an inferential factor, then the objects under study (i.e. the patches) must be characterized on an areal basis. This necessarily means that fixed‐area sampling is inadequate (e.g. a single standard quadrat or transect set within patches irrespective of the patch area) and that some form of area‐proportionate sampling is needed (e.g. a fixed areal proportion of each patch is surveyed by random allocation of standard quadrats across each patch). However, use of area‐proportionate sampling is not usually dissociated from the increased temporal intensity of sampling that arises from using this approach. The dilemma we see is deciding how much of the area‐specificity of variables such as species richness, rare‐species indices or probabilities of occurrence of individual species is related to the area‐proportionate survey protocol and how much is due to the temporal intensity of surveys. We undertook a study in which we balanced temporal and spatial effects by increasing the time spent surveying smaller patches of vegetation to account for the area‐ratio difference. The estimated species richness of birds of the box–ironbark system of central Victoria, Australia, was found to depend strongly upon area when area‐proportionate sampling alone was performed. When time‐balancing was imposed upon area‐proportionate sampling, the differences between smaller (10‐ha) and larger (40‐ha) areas were much reduced or effectively disappeared. We show that species found in the additional surveys used to conduct the time‐balancing were significantly less abundant than species recorded in area‐proportionate sampling. This effect is probably most severe for mobile animals, but may emerge in other forms of sampling. 相似文献
18.
Marques TA 《Biometrics》2004,60(3):757-763
Line transect sampling is one of the most widely used methods for animal abundance assessment. Standard estimation methods assume certain detection on the transect, no animal movement, and no measurement errors. Failure of the assumptions can cause substantial bias. In this work, the effect of error measurement on line transect estimators is investigated. Based on considerations of the process generating the errors, a multiplicative error model is presented and a simple way of correcting estimates based on knowledge of the error distribution is proposed. Using beta models for the error distribution, the effect of errors and of the proposed correction is assessed by simulation. Adequate confidence intervals for the corrected estimates are obtained using a bootstrap variance estimate for the correction and the delta method. As noted by Chen (1998, Biometrics 54, 899-908), even unbiased estimators of the distances might lead to biased density estimators, depending on the actual error distribution. In contrast with the findings of Chen, who used an additive model, unbiased estimation of distances, given a multiplicative model, lead to overestimation of density. Some error distributions result in observed distance distributions that make efficient estimation impossible, by removing the shoulder present in the original detection function. This indicates the need to improve field methods to reduce measurement error. An application of the new methods to a real data set is presented. 相似文献
19.
Questions: What influence does mechanical mastication and other fuel treatments have on: (1) canopy and forest floor response variables that influence understory plant development; (2) initial understory vegetation cover, diversity, and composition; and (3) shrub and non‐native species density in a second‐growth ponderosa pine forest. Location: Challenge Experimental Forest, northern Sierra Nevada, California, USA. Methods: We compared the effects of mastication only, mastication with supplemental treatments (tilling and prescribed fire), hand removal, and a control on initial understory vegetation response using a randomized complete block experimental design. Each block (n=4) contained all five treatments and understory vegetation was surveyed within 0.04‐ha plots for each treatment. Results: While mastication alone and hand removal dramatically reduced the midstory vegetation, these treatments had little effect on understory richness compared with control. Prescribed fire after mastication increased native species richness by 150% (+6.0 species m2) compared with control. However, this also increased non‐native species richness (+0.8 species m2) and shrub seedling density (+24.7 stems m2). Mastication followed by tilling resulted in increased non‐native forb density (+0.7 stems m2). Conclusions: Mechanical mastication and hand removal treatments aided in reducing midstory fuels but did not increase understory plant diversity. The subsequent treatment of prescribed burning not only further reduced fire hazard, but also exposed mineral soil, which likely promoted native plant diversity. Some potential drawbacks to this treatment include an increase of non‐native species and stimulation of shrub seed germination, which could alter ecosystem functions and compromise fire hazard reduction in the long‐term. 相似文献