首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using different chromatographic techniques, eight cellulolytic enzymes were isolated from the culture broth of a mutant strain of Chrysosporium lucknowense: six endoglucanases (EG: 25 kD, pI 4.0; 28 kD, pI 5.7; 44 kD, pI 6.0; 47 kD, pI 5.7; 51 kD, pI 4.8; 60 kD, pI 3.7) and two cellobiohydrolases (CBH I, 65 kD, pI 4.5; CBH II, 42 kD, pI 4.2). Some of the isolated cellulases were classified into known families of glycoside hydrolases: Cel6A (CBH II), Cel7A (CBH I), Cel12A (EG28), Cel45A (EG25). It was shown that EG44 and EG51 are two different forms of one enzyme. EG44 seems to be a catalytic module of an intact EG51 without a cellulose-binding module. All the enzymes had pH optimum of activity in the acidic range (at pH 4.5-6.0), whereas EG25 and EG47 retained 55-60% of the maximum activity at pH 8.5. Substrate specificity of the purified cellulases against carboxymethylcellulose (CMC), beta-glucan, Avicel, xylan, xyloglucan, laminarin, and p-nitrophenyl-beta-D-cellobioside was studied. EG44 and EG51 were characterized by the highest CMCase activity (59 and 52 U/mg protein). EG28 had the lowest CMCase activity (11 U/mg) amongst the endoglucanases; however, this enzyme displayed the highest activity against beta-glucan (125 U/mg). Only EG51 and CBH I were characterized by high adsorption ability on Avicel cellulose (98-99%). Kinetics of Avicel hydrolysis by the isolated cellulases in the presence of purified beta-glucosidase from Aspergillus japonicus was studied. The hydrolytic efficiency of cellulases (estimated as glucose yield after a 7-day reaction) decreased in the following order: CBH I, EG60, CBH II, EG51, EG47, EG25, EG28, EG44.  相似文献   

2.
A new mutant strain of fungus Trichoderma viride T 100-14 was cultivated on 1% microcrystalline cellulose (Avicel) for 120h and the resulting culture filtrate was prepared for protein identification and purification. To identify the predominant catalytic components, cellulases were separated by an adapted two-dimensional electrophoresis technique. The apparent major spots were identified by high performance liquid chromatography electrospray ionization mass (HPLC-ESI-MS). Seven of the components were previously known, i.e., the endoglucanases Cel7B (EG I), Cel12A (EG III), Cel61A (EG IV), the cellobiohydrolases Cel7A (CBH I), Cel6A (CBH II), Cel6B (CBH IIb) and the beta-glucosidase. The seven major components in the fermentation broth of T. viride T 100-14 probably constitute the essential enzymes for crystalline cellulose hydrolysis and they were further purified to electrophoretic homogeneity by a series of chromatography column. Hydrolysis studies of the purified elements revealed that three of the cellulases were classified as cellobiohydrolases due to their main activities on p-nitrophenyl-beta-d-cellobioside (pNPC). Three of the cellulases, with the abilities of hydrolyzing both carboxymethyl-cellulose (CMC) and Avicel indicate their endoglucanase activities. It deserved noting that the beta-glucosidase from the T 100-14 displayed an extremely high activity on p-nitrophenyl-beta-D-glycopyranoside (pNPG), which suggested it was a good candidate for the conversion of cellobiose to glucose.  相似文献   

3.
Cellobiohydrolase CBH I (Cel7A) from the filamentous fungus Trichoderma reesei (TrCBHI), which is a member of glycoside hydrolase family (GHF) 7, was expressed in Aspergillus oryzae. We found that the recombinant enzyme showed significant chitosanase activity, as well as cellulase activity, and acted in an endo-type manner on soluble polymeric substrate. Furthermore, another GHF7 CBH I from Aspergillus aculeatus (AaCBHI) expressed in A. oryzae also had chitosanase activity, while endoglucanase EG I (Cel7B) from T. reesei had no activity towards chitosan. To our knowledge, this is the first report of GHF7 enzymes possessing chitosanase activity.  相似文献   

4.
Recycling of enzymes during biomass conversion is one potential strategy to reduce the cost of the hydrolysis step of cellulosic ethanol production. Devising an efficient enzyme recycling strategy requires a good understanding of how the enzymes adsorb, distribute, and interact with the substrate during hydrolysis. We investigated the interaction of individual Trichoderma reesei enzymes present in a commercial cellulase mixture during the hydrolysis of steam-pretreated corn stover (SPCS). The enzyme profiles were followed using zymograms, gel electrophoresis, enzyme activity assays and mass spectrometry. The adsorption and activity profiles of 6 specific enzymes Cel7A (CBH I), Cel7B (EG I), Cel5A (EG II), Xyn 10 (endo-1,4-β-xylanase III), Xyn 11 (endo-xylanase II), and β-glucosidase were characterized. Initially, each of the enzymes rapidly adsorbed onto the SPCS. However, this was followed by partial desorption to an adsorption equilibrium where the Cel7A, Cel7B, Xyn 10, and β-glucosidase were partially adsorbed to the SPCS and also found free in solution throughout the course of hydrolysis. In contrast, the Cel5A and Xyn 11 components remained primarily free in the supernatant. The Cel7A component also exhibited a partial desorption when the rate of hydrolysis leveled off as evidenced by MUC zymogram and SDS-PAGE. Those cellulase components that did not bind to the substrate were generally less stable and lost their activities within the first 24h when compared to enzymes that were distributed in both the liquid and solid phases. Therefore, to ensure maximum enzyme activity recovery, enzyme recycling seems to be most effective when short-term rounds of hydrolysis are combined with the recovery of enzymes from both the liquid and the solid phases and potentially enzyme supplementation to replenish lost activity.  相似文献   

5.
The presence of lignin has shown to play an important role in the enzymatic degradation of softwood. The adsorption of enzymes, and their constituent functional domains on the lignocellulosic material is of key importance to fundamental knowledge of enzymatic hydrolysis. In this study, we compared the adsorption of two purified cellulases from Trichoderma reesei, CBH I (Cel7A) and EG II (Cel5A) and their catalytic domains on steam pretreated softwood (SPS) and lignin using tritium labeled enzymes. Both CBH I and its catalytic domain exhibited a higher affinity to SPS than EG II or its catalytic domain. Removal of cellulose binding domain decreased markedly the binding efficiency. Significant amounts of CBH I and EG II also bound to isolated lignin. Surprisingly, the catalytic domains of the two enzymes of T. reesei differed essentially in the adsorption to isolated lignin. The catalytic domain of EG II was able to adsorb to alkaline isolated lignin with a high affinity, whereas the catalytic domain of CBH I did not adsorb to any of the lignins tested. The results indicate that the cellulose binding domain has a significant role in the unspecific binding of cellulases to lignin.  相似文献   

6.
Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products formed during pretreatment impede accurate quantification of individual glycosyl hydrolases (GH) binding to pretreated cell walls. A high-throughput fast protein liquid chromatography (HT-FPLC)-based method has been developed to quantify cellobiohydrolase I (CBH I or Cel7A), cellobiohydrolase II (CBH II or Cel6A), and endoglucanase I (EG I or Cel7B) present in hydrolyzates of untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated corn stover (CS). This method can accurately quantify individual enzymes present in complex binary and ternary protein mixtures without interference from plant cell wall-derived components. The binding isotherms for CBH I, CBH II, and EG I were obtained after incubation for 2 h at 4 °C. Both AFEX and dilute acid pretreatment resulted in increased cellulase binding compared with untreated CS. Cooperative binding of CBH I and/or CBH II in the presence of EG I was observed only for AFEX treated CS. Competitive binding between enzymes was found for certain other enzyme-substrate combinations over the protein loading range tested (i.e., 25-450 mg/g glucan). Langmuir single-site adsorption model was fitted to the binding isotherm data to estimate total available binding sites E(bm) (mg/g glucan) and association constant K(a) (L/mg). Our results clearly demonstrate that the characteristics of cellulase binding depend not only on the enzyme GH family but also on the type of pretreatment method employed.  相似文献   

7.
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.  相似文献   

8.
Enzymatic hydrolysis of carboxymethyl cellulose (CMC) has been studied with purified endoglucanases Hi Cel5A (EG II), Hi Cel7B (EG I), and Hi Cel45A (EG V) from Humicola insolens, and Tr Cel7B (EG I), Tr Cel12A (EG III), and Tr Cel45Acore (EG V) from Trichoderma reesei. The CMC, with a degree of substitution (DS) of 0.7, was hydrolyzed with a single enzyme until no further hydrolysis was observed. The hydrolysates were analyzed for production of substituted and non-substituted oligosaccharides with size exclusion chromatography (SEC) and with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS). Production of reducing ends and of nonsubstituted oligosaccharides was determined as well. The two most effective endoglucanases for CMC hydrolysis were Hi Cel5A and Tr Cel7B. These enzymes degraded CMC to lower molar mass fragments compared with the other endoglucanases. The products had the highest DS determined by MALDI-TOF-MS. Thus, Hi Cel5A and Tr Cel7B were less inhibited by the substituents than the other endoglucanases. The endoglucanase with clearly the lowest activity on CMC was Tr Cel45Acore. It produced less than half of the amount of reducing ends compared to Tr Cel7B; furthermore, the products had significantly lower DS. By MALDI-TOF-MS, oligosaccharides with different degree of polymerization (DP) and with different number of substituents could be separated and identified. The average oligosaccharide DS as function of DP could be measured for each enzyme after hydrolysis. The combination of techniques for analysis of product formation gave information on average length of unsubstituted blocks of CMC.  相似文献   

9.
Six xylan-hydrolyzing enzymes have been isolated from the preparations Celloviridin G20x and Xybeten-Xyl, obtained previously based on the strain Trichoderma longibrachiatum (Trichoderma reesei) TW-1. The enzymes isolated were represented by three xylanases (XYLs), XYL I (20 kDa, pi 5.5), XYL II (21 kDa, pI 9.5), XYL III (30 kDa, pI 9.1); endoglucanase I (EG I), an enzyme exhibiting xylanase activity (57 kDa, pI 4.6); and two exodepolymerases, beta-xylosidase (beta-XYL; 80 kDa, pI 4.5) and alpha-L-arabinofuranosidase I (alpha-L-AF I; 55 kDa, pI 7.4). The substrate specificity of the enzymes isolated was determined. XYL II exhibited maximum specific xylanase activity (190 U/mg). The content of the enzymes in the preparation was assessed. Maximum contributions to the total xylanase activities of the preparations Celloviridin G20x and Xy-beten-Xyl were made by EG I and XYL II, respectively. Effects of temperature and pH on the enzyme activities, their stabilities under various conditions, and the kinetics of exhaustive hydrolysis of glucuronoxylan and arabinoxylan were studied. Combinations of endodepolymerases (XYL I, XYL II, XYL III, or EG I) and exodepolymerases (alpha-L-AF I or beta-XYL) produced synergistic effects on arabinoxylan cleavage. The reverse was the case when endodepolymerases, such as XYL I or EG I, were combined with alpha-L-AF I.  相似文献   

10.
Dispersed cellulose ribbons from bacterial cellulose were subjected to digestion with cloned Cel7A (cellobiohydrolase [CBH] I) and Cel6A (CBH II) from Humicola insolens either alone or in a mixture and in the presence of an excess of beta-glucosidase. Both Cel7A and Cel6A were effective in partially converting the ribbons into soluble sugars, Cel7A being more active than Cel6A. In combination, these enzymes showed substantial synergy culminating with a molar ratio of approximately two-thirds Cel6A and one-third Cel7A. Ultrastructural transmission electron microscopy (TEM) observations indicated that Cel7A induced a thinning of the cellulose ribbons, whereas Cel6A cut the ribbons into shorter elements, indicating an endo type of action. These observations, together with the examination of the digestion kinetics, indicate that Cel6A can be classified as an endo-processive enzyme, whereas Cel7A is essentially a processive enzyme. Thus, the synergy resulting from the mixing of Cel6A and Cel7A can be explained by the partial endo character of Cel6A. A preparation of bacterial cellulose ribbons appears to be an appropriate substrate, superior to Valonia or bacterial cellulose microcrystals, to visualize directly by TEM the endo-processivity of an enzyme such as Cel6A.  相似文献   

11.
Trichoderma reesei produces five known endoglucanases. The most studied are Cel7B (EG I) and Cel5A (EG II) which are the most abundant of the endoglucanases. We have performed a characterisation of the enzymatic properties of the less well-studied endoglucanases Cel12A (EG III), Cel45A (EG V) and the catalytic core of Cel45A. For comparison, Cel5A and Cel7B were included in the study. Adsorption studies on microcrystalline cellulose (Avicel) and phosphoric acid swollen cellulose (PASC) showed that Cel5A, Cel7B, Cel45A and Cel45Acore adsorbed to these substrates. In contrast, Cel12A adsorbed weakly to both Avicel and PASC. The products formed on Avicel, PASC and carboxymethylcellulose (CMC) were analysed. Cel7B produced glucose and cellobiose from all substrates. Cel5A and Cel12A also produced cellotriose, in addition to glucose and cellobiose, on the substrates. Cel45A showed a clearly different product pattern by having cellotetraose as the main product, with practically no glucose and cellobiose formation. The kinetic constants were determined on cellotriose, cellotetraose and cellopentaose for the enzymes. Cel12A did not hydrolyse cellotriose. The k(Cat) values for Cel12A on cellotetraose and cellopentaose were significantly lower compared with Cel5A and Cel7B. Cel7B was the only endoglucanase which rapidly hydrolysed cellotriose. Cel45Acore did not show activity on any of the three studied cello-oligosaccharides. The four endoglucanases' capacity to hydrolyse beta-glucan and glucomannan were studied. Cel12A hydrolysed beta-glucan and glucomannan slightly less compared with Cel5A and Cel7B. Cel45A was able to hydrolyse glucomannan significantly more compared with beta-glucan. The capability of Cel45A to hydrolyse glucomannan was higher than that observed for Cel12A, Cel5A and Cel7B. The results indicate that Cel45A is a glucomannanase rather than a strict endoglucanase.  相似文献   

12.
To gain further insight into the difference in substrate specificity between endoglucanase and cellobiohydrolase, the intrinsic fluorescence properties of cellobiohydrolase I (CBH I) and endoglucanase I (EG I) from Trichoderma pseudokiningii S-38 were investigated. The results for the spectral characteristics, ligand binding and fluorescence quenching suggest that the fluorescence of two enzymes comes from tryptophan residues, and that tryptophan residue(s) may be involved in the function of the two enzymes. The results also suggest that the binding tryptophan in EG I may be more exposed to solvent than that in CBH I. This interpretation is supported by the observations that the effects of pH upon the fluorescence of EG I are greater than that of CBH I; spectral shifts are different in EG I and CBH I under various conditions, and fluorescence lifetime changes caused by cellobiose binding are larger for EG I than for CBH I.  相似文献   

13.
Abstract Three clostridial cellulases viz. a hydrophilic cellobiohydrolase (CBH3), a hydrophobic endoglucanase (EG1), and an aggregate-forming hydrophilic endoglucanase (EG5), all purified from recombinant strains of Escherichia coli , were used in different combinations to reconstitute the synergistic effect during cellulose hydrolysis. EG1 and EG5 were weakly active on crystalline cellulose, if added separately or together in the reaction mixture. However, when CBH3 was added to the reaction mixture, its hydrolytic activity was increased to 1.8-fold in the presence of EG1 and EG5. A further increase in the activity from 1.8 to 2.2-fold was observed when calcium and dithiothreitol were added to the reaction mixture containing all three enzymes and filter paper as substrate. The synergistic effect remained unaffected even when EG1 was replaced by its 33-amino acid C-terminal deleted variant BL35. BL35 was less active compared to EG1, but was equally hydrophobic as EG1. These results suggest that the hydrophobic interaction between cellulolytic components and/or with the crystalline substrate is important for positive synergistic effect.  相似文献   

14.
To gain further insight into the difference in substrate specificity between endoglucanase and cellobiohydrolase, the intrinsic fluorescence properties of cellobiohydrolase I (CBH I) and endoglucanase I (EG I) from Trichoderma pseudokiningii S-38 were investigated. The results for the spectral characteristics, ligand binding and fluorescence quenching suggest that the fluorescence of two enzymes comes from tryptophan residues, and that tryptophan residue(s) may be involved in the function of the two enzymes. The results also suggest that the binding tryptophan in EG I may be more exposed to solvent than that in CBH I. This interpretation is supported by the observations that the effects of pH upon the fluorescence of EG I are greater than that of CBH I; spectral shifts are different in EG I and CBH I under various conditions, and fluorescence lifetime changes caused by cellobiose binding are larger for EG I than for CBH I.  相似文献   

15.
A method for analysis of the component composition of multienzyme complexes secreted by the filamentous fungus Trichoderma reesei was developed. The method is based on chromatofocusing followed by further identification of protein fractions according to their substrate specificity and molecular characteristics of the proteins. The method allows identifying practically all known cellulases and hemicellulases of T. reesei: endoglucanase I (EG I), EG II, EG III, cellobiohydrolase I (CBH I), CBH II, xylanase I (XYL I), XYL II, beta-xylosidase, alpha-L-arabinofuranosidase, acetyl xylan esterase, mannanase, alpha-galactosidase, xyloglucanase, polygalacturonase, and exo-beta-1,3-glucosidase. The component composition of several laboratory and commercial T. reesei preparations was studied and the content of the individual enzymes in these preparations was quantified. The influence of fermentation conditions on the component composition of secreted enzyme complexes was revealed. The characteristic features of enzyme preparations obtained in "cellulase" and "xylanase" fermentation conditions are shown.  相似文献   

16.
A rational four-step strategy to identify novel bacterial glycosyl hydrolases (GH), in combination with various fungal enzymes, was applied in order to develop tailored enzyme cocktails to efficiently hydrolyze pretreated lignocellulosic biomass. The fungal cellulases include cellobiohydrolase I (CBH I; GH family 7A), cellobiohydrolase II (CBH II; GH family 6A), endoglucanase I (EG I; GH family 7B), and β-glucosidase (βG; GH family 3). Bacterial endocellulases (LC1 and LC2; GH family 5), β-glucosidase (LβG; GH family 1), endoxylanases (LX1 and LX2; GH family 10), and β-xylosidase (LβX; GH family 52) from multiple sources were cloned, expressed, and purified. Enzymatic hydrolysis for varying enzyme combinations was carried out on ammonia fiber expansion (AFEX)-treated corn stover at three total protein loadings (i.e., 33, 16.5, and 11 mg enzyme/g glucan). The optimal mass ratio of enzymes necessary to maximize both glucan and xylan yields was determined using a suitable design of experiments. The optimal hybrid enzyme mixtures contained fungal cellulases (78% of total protein loading), which included CBH I (loading ranging between 9-51% of total enzyme), CBH II (9-51%), EG I (10-50%), and bacterial hemicellulases (22% of total protein loading) comprising of LX1 (13%) and LβX (9%). The hybrid mixture was effective at 50°C, pH 4.5 to maximize saccharification of AFEX-treated corn stover resulting in 95% glucan and 65% xylan conversion. This strategy of screening novel enzyme mixtures on pretreated lignocellulose would ultimately lead to the development of tailored enzyme cocktails that can hydrolyze plant cell walls efficiently and economically to produce cellulosic ethanol.  相似文献   

17.
Cel9B from Paenibacillus barcinonensis is a modular endoglucanase with a novel molecular architecture among family 9 enzymes that comprises a catalytic domain (GH9), a family 3c cellulose-binding domain (CBM3c), a fibronectin III-like domain repeat (Fn31,2), and a C-terminal family 3b cellulose-binding domain (CBM3b). A series of truncated derivatives of endoglucanase Cel9B have been constructed and characterized. Deletion of CBM3c produced a notable reduction in hydrolytic activity, while it did not affect the cellulose-binding properties as CBM3c did not show the ability to bind to cellulose. On the contrary, CBM3b exhibited binding to cellulose. The truncated forms devoid of CBM3b lost cellulose-binding ability and showed a reduced activity on crystalline cellulose, although activity on amorphous celluloses was not affected. Endoglucanase Cel9B produced only a small ratio of insoluble products from filter paper, while most of the reducing ends produced by the enzyme were released as soluble sugars (91%), indicating that it is a processive enzyme. Processivity of Cel9B resides in traits contained in the tandem of domains GH9–CBM3c, although the slightly reduced processivity of truncated form GH9–CBM3c suggests a minor contribution of domains Fn31,2 or CBM3b, not contained in it, on processivity of endoglucanase Cel9B.  相似文献   

18.

Background

Enzymes for plant cell wall deconstruction are a major cost in the production of ethanol from lignocellulosic biomass. The goal of this research was to develop optimized synthetic mixtures of enzymes for multiple pretreatment/substrate combinations using our high-throughput biomass digestion platform, GENPLAT, which combines robotic liquid handling, statistical experimental design and automated Glc and Xyl assays. Proportions of six core fungal enzymes (CBH1, CBH2, EG1, β-glucosidase, a GH10 endo-β1,4-xylanase, and β-xylosidase) were optimized at a fixed enzyme loading of 15 mg/g glucan for release of Glc and Xyl from all combinations of five biomass feedstocks (corn stover, switchgrass, Miscanthus, dried distillers' grains plus solubles [DDGS] and poplar) subjected to three alkaline pretreatments (AFEX, dilute base [0.25% NaOH] and alkaline peroxide [AP]). A 16-component mixture comprising the core set plus 10 accessory enzymes was optimized for three pretreatment/substrate combinations. Results were compared to the performance of two commercial enzymes (Accellerase 1000 and Spezyme CP) at the same protein loadings.

Results

When analyzed with GENPLAT, corn stover gave the highest yields of Glc with commercial enzymes and with the core set with all pretreatments, whereas corn stover, switchgrass and Miscanthus gave comparable Xyl yields. With commercial enzymes and with the core set, yields of Glc and Xyl were highest for grass stovers pretreated by AP compared to AFEX or dilute base. Corn stover, switchgrass and DDGS pretreated with AFEX and digested with the core set required a higher proportion of endo-β1,4-xylanase (EX3) and a lower proportion of endo-β1,4-glucanase (EG1) compared to the same materials pretreated with dilute base or AP. An optimized enzyme mixture containing 16 components (by addition of α-glucuronidase, a GH11 endoxylanase [EX2], Cel5A, Cel61A, Cip1, Cip2, β-mannanase, amyloglucosidase, α-arabinosidase, and Cel12A to the core set) was determined for AFEX-pretreated corn stover, DDGS, and AP-pretreated corn stover. The optimized mixture for AP-corn stover contained more exo-β1,4-glucanase (i.e., the sum of CBH1 + CBH2) and less endo-β1,4-glucanase (EG1 + Cel5A) than the optimal mixture for AFEX-corn stover. Amyloglucosidase and β-mannanase were the two most important enzymes for release of Glc from DDGS but were not required (i.e., 0% optimum) for corn stover subjected to AP or AFEX. As a function of enzyme loading over the range 0 to 30 mg/g glucan, Glc release from AP-corn stover reached a plateau of 60-70% Glc yield at a lower enzyme loading (5-10 mg/g glucan) than AFEX-corn stover. Accellerase 1000 was superior to Spezyme CP, the core set or the 16-component mixture for Glc yield at 12 h, but the 16-component set was as effective as the commercial enzyme mixtures at 48 h.

Conclusion

The results in this paper demonstrate that GENPLAT can be used to rapidly produce enzyme cocktails for specific pretreatment/biomass combinations. Pretreatment conditions and feedstock source both influence the Glc and Xyl yields as well as optimal enzyme proportions. It is predicted that it will be possible to improve synthetic enzyme mixtures further by the addition of additional accessory enzymes.  相似文献   

19.
Despite intensive research, the mechanism of the rapid retardation in the rates of cellobiohydrolase (CBH) catalyzed cellulose hydrolysis is still not clear. Interpretation of the hydrolysis data has been complicated by the inability to measure the catalytic constants for CBH‐s acting on cellulose. We developed a method for measuring the observed catalytic constant (kobs) for CBH catalyzed cellulose hydrolysis. It relies on in situ measurement of the concentration of CBH with the active site occupied by the cellulose chain. For that we followed the specific inhibition of the hydrolysis of para‐nitrophenyl‐β‐D ‐lactoside by cellulose. The method was applied to CBH‐s TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium and their isolated catalytic domains. Bacterial microcrystalline cellulose, Avicel, amorphous cellulose, and lignocellulose were used as substrates. A rapid decrease of kobs in time was observed on all substrates. The kobs values for PcCel7D were about 1.5 times higher than those for TrCel7A. In case of both TrCel7A and PcCel7D, the kobs values for catalytic domains were similar to those for intact enzymes. A model where CBH action is limited by the average length of obstacle‐free way on cellulose chain is proposed. Once formed, productive CBH–cellulose complex proceeds with a constant rate determined by the true catalytic constant. After encountering an obstacle CBH will “get stuck” and the rate of further cellulose hydrolysis will be governed by the dissociation rate constant (koff), which is low for processive CBH‐s. Biotechnol. Bioeng. 2010;106: 871–883. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
There are currently four proteins in family 61 of the glycoside hydrolases, from Trichoderma reesei, Agaricus bisporus, Cryptococcus neoformans and Neurospora crassa. The enzymatic activity of these proteins has not been studied thoroughly. We report here the homologous expression and purification of T. reesei Cel61A [previously named endoglucanase (EG) IV]. The enzyme was expressed in high amounts with a histidine tag on the C-terminus and purified by metal affinity chromatography. This is the first time that a histidine tag has been used as a purification aid in the T. reesei expression system. The enzyme activity was studied on a series of carbohydrate polymers. The only activity exhibited by Cel61A was an endoglucanase activity observed on substrates containing beta-1,4 glycosidic bonds, e.g. carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC) and beta-glucan. The endoglucanase activity on CMC and beta-glucan was determined by viscosity analysis, by measuring the production of reducing ends and by following the degradation of the polymer on a size exclusion chromatography system. The formation of soluble sugars by Cel61A from microcrystalline cellulose (Avicel; Merck), phosphoric acid swollen cellulose (PASC), and CMC were analysed on a HPLC system. Cel61A produced small amounts of oligosaccharides from these substrates. Furthermore, Cel61A showed activity against cellotetraose and cellopentaose. The activity of Cel61A was several orders of magnitude lower compared to Cel7B (previously EG I) of T. reesei on all substrates. One significant difference between Cel61A and Cel7B was that cellotriose was a poor substrate for Cel61A but was readily hydrolysed by Cel7B. The enzyme activity for Cel61A was further studied on a large number of carbohydrate substrates but the enzyme showed no activity towards any of these substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号