首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Old living oaks (Quercus robur) are known as a very species‐rich habitat for saproxylic beetles, but it is less clear to what extent such veteran trees differ from an even rarer feature: downed trunks of large oaks. In this study, we set out to sample this habitat, using window traps, with two aims: (1) to describe the variation of assemblages among downed trunks of different type and (2) to compare beetles on downed oaks with data from veteran standing trees. The results showed that trunk volume and sun exposure better explained assemblages as well as species numbers on downed trunks than did decay stage. Furthermore, species classified as facultative saproxylic species showed weak or no differentiation among downed trunks. Species with different feeding habits showed no apparent differentiation among downed trunks. Furthermore, species composition on dead, downed oak trunks differed sharply from that of living, veteran oaks. Wood or bark feeders were more common on veterans than downed trunks, but there was no difference for those species feeding on fungi or those feeding on insects and their remains. In conclusion, for a successful conservation of the saproxylic beetle fauna it is important to keep downed oak trunks, and particularly large ones, in forest and pastures as they constitute a saproxylic habitat that differs from that of living trees.  相似文献   

2.
3.
Examination and measurement of many of the trunks attributed to Araucarioxylon arizonicum Knowlton eroded from the Late Triassic Chinle Formation in the Petrified Forest National Park, Arizona demonstrate that the living tree did not closely resemble any of the present-day Araucaria trees of the southern hemisphere as postulated in past reconstructions. The research indicates that it was a tall monopodial tree with branches occurring in a disordered manner on the trunk from the base to the crown. Calculations using the allometric method of Niklas indicate that the trees were of considerable size. The largest recorded trunk has a basal diameter of nearly 3 m and may represent a tree 59 m high, when living. The root system of the A. arizonicum tree consisted of a ring of four to six steeply inclined lateral roots and a massive, vertically directed tap root. Many of the trunks still have their root systems attached, a circumstance that indicates their felling by the cut-bank operations of the local river system. The massive roots of these trunks, particularly the large tap root, are consistent with growth in soft, deep, alluvial soil, and the thin scale bark is to be expected in a tropical climate free from frost.  相似文献   

4.
Invasive species may have negative impacts on many narrow range endemics and species restricted to oceanic islands. Predicting recent impacts of invasive species on long-lived trees is difficult because the presence of adult plants may mask population changes. We examined the impact of introduced black rats (Rattus rattus) on two palm species restricted to cloud forests and endemic to Lord Howe Island, a small oceanic island in the southern Pacific. We combined estimates of the standing size distribution of these palms with the proximal impacts of rats on fruit survival in areas baited to control rats and in unbaited areas. The size distribution of palms with trunks was comparable across baited and unbaited sites. Small juvenile palms lacking a trunk (<50 cm tall) were abundant in baited areas, but rare in unbaited sites for Lepidorrhachis mooreana, and rare or absent in 3 out of 4 unbaited Hedyscepe canterburyana sites. All ripe fruits were lost to rats in the small fruited L. mooreana. Fruit removal was widespread but less (20–54%) in H. canterburyana. Both palms showed evidence of a reduced capacity to maintain a juvenile bank of palms through regular recruitment as a consequence of over 90 years of rat impact. This will limit the ability of these species to take advantage of episodic canopy gaps. Baiting for rat control reduced fruit losses and resulted in the re-establishment of a juvenile palm bank. Conservation of both endemic palms necessitates control (or eradication) of rat populations on the unique cloud forest summits of the island.  相似文献   

5.
Size-dependent Allometry of Tree Height, Diameter and Trunk-taper   总被引:5,自引:1,他引:5  
Niklas  Karl J. 《Annals of botany》1995,75(3):217-227
The allometry of tree height with respect to trunk diameterand the allometry of trunk diameter with respect to distancefrom the top of the tree (i.e. trunk taper) were determinedfor 27 Robinia pseudoacacia trees differing in age and sizegrowing in an open field. The allometric (scaling) exponentfor height was > 1 for small and young trees and decreasedto 2/3 and then 1/2 as tree size and age increased. Similarly,the exponent for taper was > 1 near the tips of young andold trunks and converged onto values of 2/3 and 1/2 toward thebase of mature tree trunks. These observations indicate thata single 'optimal mechanical design principle' (i.e. elastic,stress or geometric self-similarity) neither holds true throughoutthe lifetime of R. pseudoacacia trees, nor does a single designprinciple govern the taper of a trunk throughout its entirelength. Rather, over the course of growth and development, theallometry of R. pseudoacacia tree height and trunk taper progressivelychanges, complying with geometric self-similarity for youngplants (and young portions of old plants) and subsequently givingthe appearance of elastic or stress self-similarity as plants(or portions of plants) get older and therefore larger. Analysesof published (and new) data suggest that the conclusions drawnfor R. pseudoacacia trees are likely to hold true for othertree species because stem growth in diameter is 'indeterminate'whereas growth in overall tree height is asymptotic and thereforeessentially 'determinate'.Copyright 1995, 1999 Academic Press Scaling, woody plants, Robinia pseudoacacia  相似文献   

6.
An organism is the most basic unit of independent life. The tree-ring record is defined by organismal processes. Dendrochronology contributes to investigations far removed from organismal biology, e.g., archeology, climatology, disturbance ecology, etc. The increasing integration of dendrochronology into a diverse research community suggests an opportunity for a brief review of the organismal basis of tree rings.Trees are dynamic, competitive, and opportunistic organisms with diverse strategies for survival. As with all green plants, trees capture the energy in sunlight to make and break chemical bonds with the elements essential for life. These essential elements are taken from the atmosphere, water, and soil. The long tree-ring series of special interest to dendrochronology result from long-lived trees containing relatively little decayed wood. Both of those features result from organismal biology. While the tree-ring record tells us many things about local, regional, and even global environmental history, tree rings are first a record of tree survival.  相似文献   

7.
Many beetles associated with old trees are on national red lists, but pseudoscorpions living in similar habitats have received little attention. This study reports the habitat and occurrence patterns of two species of pseudoscorpions living in hollow trees. Their occurrence has been assessed by sieving wood mould from 274 oaks in southeastern Sweden and from museum specimens collected in Sweden. Larca lata is confined to hollow oaks with a large girth and a plentiful supply of wood mould. Allochernes wideri is much less particular about wood mould volume, trunk diameter and tree species. Larca lata inhabits hollow trunks with characteristics that are typical of very old trees, whereas A. wideri predominantly occurs in trunks in an earlier stage of hollow formation. Larca lata was almost exclusively found in larger assemblages of hollow oaks, which suggests long-term survival may be difficult when the network of suitable hollow trees is too sparse. Larca lata is a rare species in Europe and probably vulnerable to extinction, since it is dependent on a habitat which has declined severely in the last few centuries.  相似文献   

8.
The leaves, inflorescences, and fruit bunches of date palm trees develop at the crown, which is the apex of a single trunk that can be up to 25 m tall. Because palm trees are monocots, the leaves and inflorescences are generated deep within the trunk from a single meristem—the palm heart—and are inaccessible for direct bioregulator treatments. We followed the effects of two growth regulators, paclobutrazol and uniconazole-P, on the vegetative growth of young date palm seedlings. Both growth regulators constrained the elongation rate of the leaves and reduced the leaf length. Microscopic analysis of dissected palm hearts revealed that the growth retardants did not affect the generation of new leaves. However, the treatments did change the dimensions of the developing embryonic leaves as well as the shape of the apical meristem. The results suggest the possible future use of growth retardants to reduce trunk height, enabling cheaper, safer, and more efficient management of date palm trees.  相似文献   

9.
Cell walls are at the basis of a structural, four-dimensional framework of plant form and growth time. Recent rapid progress of cell wall research has led to the situation where the old, long-lasting juxtaposition: "living" protoplast--"dead" cell wall, had to be dropped. Various attempts of re-interpretation cast, however, some doubts over the very nature of plant cell and the status of the walls within such a cell. Following a comparison of exocellular matrices of plants and animals, their position in relation to cells and organisms is analysed. A multitude of perspectives of the biological organisation of living beings is presented with particular attention paid to the cellular and organismal theories. Basic tenets and resulting corollaries of both theories are compared, and evolutionary and developmental implications are considered. Based on these data, "The Plant Body"--an organismal concept of plants and plant cells is described.  相似文献   

10.
It is shown that an inclined regular growth of tree trunks under the action of prevailing winds may be explained as a response of the plant to the mechanical action of the wind, in conformity with the Schwendener theory of shape of plants based on the concept of maximum strength. A possible mechanism of such response is suggested. The condition of maximum strength determines the inclination of the tree trunk on the basis of purely mechanical considerations. A numerical example computed for a palm agrees with observational data.  相似文献   

11.
Desmaria mutabilis is unique inLoranthaceae in having dimorphic shoots, the short shoots producing a terminal inflorescence. Other unusual features in the family are well differentiated bud scales and deciduousness. The normal position of mature plants on the trunks of large trees is shown to be a consequence of profuse vegetative reproduction from the epicortical roots, the predominant growth direction of the latter towards the trunk from the original site of establishment on a lateral branch, and the ability of epicortical roots to generate haustorial contacts through heavy host bark. The seedling is heterocotylar, one cotyledon being phanerocotylar, the other cryptocotylar and functioning as a haustorial organ in the endosperm. It is suggested thatDesmaria is a member of the primitive complex of loranthaceous genera which includesGaiadendron.  相似文献   

12.
To rapidly estimate pine sawyer, Monochamus alternatus Hope, population densities in forests, the vertical distributions of M. alternatus oviposition sites and larvae on infested Masson pines (Pinus massoniana Lamb.) were studied. Results showed that the number of oviposition sites on sections of trunks between 0 and 2 m above ground was significantly greater than on sections of trunk above 2 m, and the vertical distribution had a significant logarithmic relationship with trunk height. The larval number of M. alternatus on dead infested trees had a significant difference among heights of trunks. Sections on trunks at 2–4 m usually contained the largest number of M. alternatus larvae, while the number of larvae on trunks above 10 m declined significantly, as well as in the 1 m section of trunk at the base. The vertical distribution of M. alternatus larvae on dead infested pines showed a distinct parabolic relationship with trunk height. The number of oviposition sites of M. alternatus on infested Masson pine trunks revealed a significant exponential relationship with the diameter at breast height (DBH) of trees. A significant positive linear relationship also was observed between M. alternatus larval number and DBH on the host pine trees, as well as between the numbers of larvae and oviposition sites on an individual tree. The total number of larvae in an infested tree could be calculated easily using an established equation, through counting the number of oviposition sites at 3–4 m of trunk aboveground. This study developed a practical method for rapid estimation of M. alternatus populations.  相似文献   

13.
As with other plants having a relatively simple morphology, solitary palms are useful biological models for studying the life histories of long-lived plants. In the first study to investigate the life history of Borassus aethiopum, a widespread dioecious palm growing in African savannas, we found that: (1) the number of leaves increased up to reproductive maturity and then decreased during the reproductive period, while height increased throughout life; (2) female fecundity, measured as the number of seedlings within a few meters under the female canopies, decreased markedly in old individuals with few leaves; and (3) height distribution was strongly bimodal. This bimodality was due to variations in the stem elongation rate during the life of the palm and the accumulation of adults with low mortality rates in the taller height classes. The observed pattern of fecundity and number of leaves in relation to height clearly suggests a senescence period that began just after sexual maturity and appeared to be protracted. Comparisons between the life history of B. aethiopum and the life histories of some forest palms showed that environmental conditions cannot in themselves explain the various palm life histories.  相似文献   

14.
Habitat selection by spiders may be strongly influenced by biotic, climatic, and physical factors. However, it has been shown that the selection of habitats by generalist predators (like spiders) is regulated more by the physical structure of the habitat than by prey availability. Yet, the preferences of spiders in relation to plants or plant traits remain poorly explored. In a remnant of the Atlantic forest in Brazil, the spider Selenops cocheleti is frequently detected on the trunks of plants from the Myrtaceae family. Here, we investigated quantitatively and experimentally whether the colonization of trees by S. cocheleti is related to plant species or the presence of specific structures on trunks. We found that S. cocheleti preferentially occurred on plants of the family Myrtaceae. This spider was also strongly associated with trees that have smooth trunks and/or exfoliating bark. Non-Myrtaceae plants that were occupied by this species have exfoliating bark (e.g., Piptadenia gonoacantha) or deep fissures on the trunk (e.g., the exotic species Pinus elliottii). Our results indicate that the selection of host plants by S. cocheleti is not species-specific, but based on the structural characteristics of plants. Trunks with exfoliating bark may benefit spiders by providing shelter against predators and harsh climatic conditions. Smooth surfaces might allow rapid movements, facilitating both attacks on preys and escape from predators. Our study emphasizes the importance of the physical structure of the habitat on spider's distribution. Future studies investigating how specific plant characteristics influence prey acquisition and predator avoidance would improve our understanding of habitat selection by these animals.  相似文献   

15.
Tree dimensions: Maximizing the rate of height growth in dense stands   总被引:6,自引:0,他引:6  
David King 《Oecologia》1981,51(3):351-356
Summary To determine the effect of tree dimensions on the rate of height growth a model was constructed relating tree weight to total height and R, the ratio of crown weight to trunk weight. The model is based on the assumption that the trunk buckling safety factor is constant. If trees also maintain a constant R as they grow then the rate of height growth is maximized by R=0.17. In addition, the height growth rate increases as the buckling safety factor decreases. These predictions of optimal form for height growth are appropriate for shade intolerant, successional species growing in dense stands. Dimensional measurements of self thinning Populus tremuloides indicate near optimal dimensions for height growth. Trees ranging from 7 to 19 m in height had trunks which were only 50% thicker than the minimum required to prevent them from buckling under their own weight, and had a mean R of 0.13. This ratio of crown weight to trunk weight is significantly lower than the optimal value, but the predicted height growth rate for R=0.13 is 99% of that predicted for R=0.17.  相似文献   

16.
Forest stands of Pinus yunnanensis Franch in southwestern China are seriously damaged by several bark living insect pests. These pests commonly exist in the same host tree and exploit limited phloem resources. In this study, we hypothesized that sympatric pests would occupy different ecological niches to reduce interspecific competition, and their coordinated attack would aggravate the tree vigor decline of P. yunnanensis. To quantify the ecological niches, we used a sampling method involving three dimensional divisions of tree resource states: (a) sample plot dimension (to evaluate the extent of pest colonization at plot scale), (b) trunk height dimension, and (c) tree vigor dimension. Those attacked pine canopies and colonized trunks were analysed in the field study. The results showed that Tomicus minor and Tomicus yunnanensis both widely and uniformly distributed in lightly, moderately and heavily damaged canopies while they aggregated on particular trunks of dying and withered trees. Lower and middle trunk sections (1–4 m) were mainly occupied by Monochamus alternatus and T. minor, yet T. yunnanensis dominated the upper parts (5–6 m). There was an overlap of the pine shoot beetles in the middle sections (2–4 m), whereas all three species were ecologically segregated in other trunk sections. During the shoot feeding phase, tree vigor declined with pine shoot beetles' increasing shoot feeding density. They coexisted in the same host tree, while M. alternatus only attacked dying and withered tree trunks, causing a greater infestation. Colonization of pine shoot beetle then followed by M. alternatus could be the major causes of tree mortality. This study highlights the resource utilization pattern of sympatric bark living insect pests corresponding with tree vitality. Those findings would help to understand the mechanisms of pest outbreak in P. yunnanensis ecosystem and provide potential guidance for developing an early monitoring pest warning system.  相似文献   

17.
Stem photosynthesis can contribute significantly to woody plant carbon balance, particularly in times when leaves are absent or in ‘open’ crowns with sufficient light penetration. We explored the significance of woody tissue (stem) photosynthesis for the carbon income in three California native plant species via measurements of chlorophyll concentrations, radial stem growth, bud biomass and stable carbon isotope composition of sugars in different plant organs. Young plants of Prunus ilicifolia, Umbellularia californica and Arctostaphylos manzanita were measured and subjected to manipulations at two levels: trunk light exclusion (100 and 50%) and complete defoliation. We found that long‐term light exclusion resulted in a reduction in chlorophyll concentration and radial growth, demonstrating that trunk assimilates contributed to trunk carbon income. In addition, bud biomass was lower in covered plants compared to uncovered plants. Excluding 100% of the ambient light from trunks on defoliated plants led to an enrichment in 13C of trunk phloem sugars. We attributed this effect to a reduction in photosynthetic carbon isotope discrimination against 13C that in turn resulted in an enrichment in 13C of bud sugars. Taken together our results reveal that stem photosynthesis contributes to the total carbon income of all species including the buds in defoliated plants.  相似文献   

18.
The main stems of three young Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirbel) Franco) trees were dissected to obtain samples of secondary xylem from internodes axially along the trunk and radially within each internode. From these samples, measurements were obtained of tracheid diameter, length, the number of inter-tracheid pits per tracheid, and the diameter of the pit membranes. In addition, samples were obtained along the trunks of three old growth trees and also a small sample of roots for measurement of tracheid diameter. A gradient was apparent in all measured anatomical characters vertically along a sequence among the outer growth rings. These gradients arose not because of a gradient vertically along the internodes, but because of the strong gradients present at each internode among growth rings out from the pith. Tracheid characteristics were correlated: wider and longer tracheids had more numerous pits and wider pits, such that total pit area was about 6% of tracheid wall area independent of tracheid size. A stem model combining growth rings in parallel and internodes in series allowed for estimates of whole trunk conductance as a function of tree age. Conductance of the stem (xylem area specific conductivity) declined during the early growth of the trees, but appeared to approach a stable value as the trees aged.  相似文献   

19.
Aquaporins (AQPs) are a family of channel proteins, which transport water and/or small solutes across cell membranes. AQPs are present in Bacteria, Eukarya, and Archaea. The classical AQP evolution paradigm explains the inconsistent phylogenetic trees by multiple transfer events and emphasizes that the assignment of orthologous AQPs is not possible, making it difficult to integrate functional information. Recently, a novel phylogenetic framework of eukaryotic AQP evolution showed congruence between eukaryotic AQPs and organismal trees identifying 32 orthologous clusters in plants and animals (Soto et al. Gene 503:165–176, 2012). In this article, we discuss in depth the methodological strength, the ability to predict functionality and the AQP community perception about the different paradigms of AQP evolution. Moreover, we show an updated review of AQPs transport functions in association with phylogenetic analyses. Finally, we discuss the possible effect of AQP data integration in the understanding of water and solute transport in eukaryotic cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号