首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spotlight surveys for white-tailed deer (Odocoileus virginianus) can yield large presence-only datasets applicable to a variety of resource selection modeling procedures. By understanding how populations distribute according to a given resource for a reference area, density and abundance can be predicted across new areas assuming the relationship between habitat quality (measured by an index of selection) and species distribution are equivalent. Habitat-based density estimators have been applied to wildlife species and are useful for addressing conservation and management concerns. Although achieving reliable population estimates is a primary goal for spotlighting studies, presence-only models have yet to be applied to spotlight data for estimating habitat selection and abundance for deer. From 2012 to 2017, we conducted spring spotlight surveys in each of 99 counties in Iowa, USA, and collected spatial locations for 20,149 groups of deer (n = 71,323 individuals). We used a resource selection function (RSF) based on deer locations to predict the relative probability of use for deer at the population level and to estimate statewide abundance. The number of deer observed statewide increased significantly with increasing RSF value for all years and the mean RSF value along survey transects explained 59% of the variability in county-level deer counts, indicating that a functional response between habitat quality and deer distribution existed at landscape scales. We applied our RSF to a habitat-based density estimator (extrapolation) and zero-inflated Poisson (ZIP) and negative binomial (ZINB) count models to predict statewide abundance from spotlight counts. Population estimates for 2012 were variable, indicating that atypical weather conditions may affect spotlight counts and population estimates in some years. For 2013–2017, we predicted a mean population of 439,129 (95% CI ∼ ± 55,926), 440,360 (∼ ± 43,676), and 465,959 (∼ ± 51,242) deer across years for extrapolation, ZIP, and ZINB models, respectively. Estimates from all models were not significantly different than estimates from an existing deer population accounting model in Iowa for 2013 and 2016, and differed by <76,000 deer for all models from 2013–2017. Extrapolation and ZIP models performed similarly and differed by <2,897 deer across all years, whereas ZINB models showed inconsistencies in model convergence and precision of estimates. Our results indicate that presence-only models are capable of producing reliable and precise estimates of resource selection and abundance for deer at broad landscape scales in Iowa and provide a tool for estimating deer abundance in a spatially explicit manner. © 2019 The Wildlife Society.  相似文献   

2.
Knowledge of how landscape features affect wildlife resource use is essential for informed management. Resource selection functions often are used to make and validate predictions about landscape use; however, resource selection functions are rarely validated with data from landscapes independent of those from which the models were built. This problem has severely limited the application of resource selection functions over larger geographic areas for widely distributed species. North American elk (Cervus elaphus) is an example of a widely-distributed species of keen interest to managers and for which validation of resource selection functions over large geographic areas is important. We evaluated the performance of resource selection functions developed for elk on one landscape in northeast Oregon with independent data from a different landscape in the same region. We compared predicted versus observed elk resource use for 9 monthly or seasonal periods across 3 yr. Results showed strong, positive agreement between predicted and observed use for 2 spring and 3 late summer-early fall models (3-yr r = 0.81–0.95). Predicted versus observed use was negatively or weakly positively correlated for 3 summer models and 1 mid-fall model (3-yr r = −0.57–0.14). Predicted and observed use correlated well when forage was limited (spring and late summer or early fall), corresponding to important biological stages for elk (parturition and breeding seasons). For these seasonal periods, model covariates such as rate of motorized traffic and canopy closure often were effective predictors of elk resource selection. The models we validated for spring and late summer-early fall may be used to evaluate management activities in areas with similar landscape characteristics. © 2010 The Wildlife Society.  相似文献   

3.
Scale for resource selection functions   总被引:3,自引:0,他引:3  
Resource selection functions (RSFs) are statistical models defined to be proportional to the probability of use of a resource unit. My objective with this review is to identify how RSFs can be used to unravel the influence of scale in habitat selection. In wildlife habitat studies, including radiotelemetry, RSFs can be estimated using a variety of statistical methods, all of which can be used to explore the role of scale. All RSFs are bounded by the resolution of data and the spatial extent of the study area, but also allow predictor covariates to be measured at a variety of scales. Conditional logistic regression permits designs (e.g. matched case) that relate the process of habitat selection to a limited domain of resource units that might better characterize what is truly ‘available’ to the animal. Scale influences the process of habitat selection, e.g. food resources are often selected at fine spatial scales, whereas landscape patterns at much larger scales typically influence the location of home ranges. Scale also influences appropriate sampling in many ways: (1) heterogeneity might be obliterated (transmutation) if resolution or grain size is too large, (2) variance of habitat characteristics might be undersampled if extent or domain is too small, (3) timing and duration of observations can influence RSF models, and (d) both spatial and temporal autocorrelations can vary directly with the intensity of sampling. Using RSFs, researchers can examine habitat selection at multiple scales, and predictive models that bridge scales can be estimated. Using Geographical Information Systems, predictor covariates in RSF models can be measured at different scales easily so that the predictive ability of models at alternative spatial and temporal domains can be explored by the investigator. Identification of the scale that best explains the data can be evaluated by comparing alternative models using information‐theoretic metrics such as Akaike Information Criteria, and predictive capability of the models can be assessed using k‐fold cross validation.  相似文献   

4.
Resource selection functions (RSFs) are tremendously valuable for ecologists and resource managers because they quantify spatial patterns in resource utilization by wildlife, thereby facilitating identification of critical habitat areas and characterizing specific habitat features that are selected or avoided. RSFs discriminate between known‐use resource units (e.g., telemetry locations) and available (or randomly selected) resource units based on an array of environmental features, and in their standard form are performed using logistic regression. As generalized linear models, standard RSFs have some notable limitations, such as difficulties in accommodating nonlinear (e.g., humped or threshold) relationships and complex interactions. Increasingly, ecologists are using flexible machine‐learning methods (e.g., random forests, neural networks) to overcome these limitations. Herein, we investigate the seasonal resource selection patterns of mule deer (Odocoileus hemionus) by comparing a logistic regression framework with random forest (RF), a popular machine‐learning algorithm. Random forest (RF) models detected nonlinear relationships (e.g., optimal ranges for slope and elevation) and complex interactions which would have been very challenging to discover and characterize using standard model‐based approaches. Compared with standard RSF models, RF models exhibited improved predictive skill, provided novel insights about resource selection patterns of mule deer, and, when projected across a relevant geographic space, manifested notable differences in predicted habitat suitability. We recommend that wildlife researchers harness the strengths of machine‐learning tools like RF in addition to “classical” tools (e.g., mixed‐effects logistic regression) for evaluating resource selection, especially in cases where extensive telemetry data sets are available.  相似文献   

5.
6.
1.  Describing distribution and abundance is requisite to exploring interactions between organisms and their environment. Recently, the resource selection function (RSF) has emerged to replace many of the statistical procedures used to quantify resource selection by animals.
2.  A RSF is defined by characteristics measured on resource units such that its value for a unit is proportional to the probability of that unit being used by an organism. It is solved using a variety of techniques, particularly the binomial generalized linear model.
3.  Observing dynamics in a RSF – obtaining substantially different functions at different times or places for the same species – alerts us to the varying ecological processes that underlie resource selection.
4.  We believe that there is a need for us to reacquaint ourselves with ecological theory when interpreting RSF models. We outline a suite of factors likely to govern ecologically based variation in a RSF. In particular, we draw attention to competition and density-dependent habitat selection, the role of predation, longitudinal changes in resource availability and functional responses in resource use.
5.  How best to incorporate governing factors in a RSF is currently in a state of development; however, we see promise in the inclusion of random as well as fixed effects in resource selection models, and matched case–control logistic regression.
6.  Investigating the basis of ecological dynamics in a RSF will allow us to develop more robust models when applied to forecasting the spatial distribution of animals. It may also further our understanding of the relative importance of ecological interactions on the distribution and abundance of species.  相似文献   

7.
8.
Ecological relationships of animals and their environments are known to vary spatially and temporally across scales. However, common approaches for evaluating resource selection by animals assume that the processes of habitat selection are stationary across space. The assumption that habitat selection is spatially homogeneous may lead to biased inference and ineffective management. We present the first application of geographically weighted logistic regression to habitat selection by a wildlife species. As a case study, we examined nest site selection by greater prairie-chickens at 3 sites with different ecological conditions in Kansas to assess whether the relative importance of habitat features varied across space. We found that 1) nest sites were associated with habitat conditions at multiple spatial scales, 2) habitat associations across spatial scales were correlated, and 3) the influence of habitat conditions on nest site selection was spatially explicit. Post hoc analyses revealed that much of the spatial variability in habitat selection processes was explained at a regional scale. Moreover, habitat features at local spatial scales were more strongly associated with nest site selection in unfragmented grasslands managed intensively for cattle production than they were in fragmented grasslands within a matrix of farmland. Female prairie-chickens exhibited spatial variability in nest site selection at multiple spatial scales, suggesting plasticity in habitat selection behavior. Our results highlight the importance of accounting for spatial heterogeneity when evaluating the ecological effects of habitat components. © 2013 The Wildlife Society.  相似文献   

9.
Resource selection and space use are important aspects of an animal's ecology and understanding these behaviors is necessary for proper wildlife management. We used mixed-effect integrated step-selection models to evaluate seasonal variation in resource selection between male and female elk (Cervus canadensis) and diel periods in central Pennsylvania, USA. Resource selection varied seasonally, between sexes, and across diel periods. These results demonstrate strong seasonal sexual segregation in resource use, and movements between habitats throughout the day, highlighting the dynamic nature of resource selection by elk and underscoring the importance of considering sexual variation at multiple temporal scales when designing ungulate management strategies. Finally, we developed habitat suitability maps for male and female elk in the Pennsylvania Elk Management Area. Wildlife ecologists and managers must consider multiple sources of variation in habitat use and resource selection, particularly for large mobile species such as elk.  相似文献   

10.
Resource selection functions (RSFs) are typically estimated by comparing covariates at a discrete set of “used” locations to those from an “available” set of locations. This RSF approach treats the response as binary and does not account for intensity of use among habitat units where locations were recorded. Advances in global positioning system (GPS) technology allow animal location data to be collected at fine spatiotemporal scales and have increased the size and correlation of data used in RSF analyses. We suggest that a more contemporary approach to analyzing such data is to model intensity of use, which can be estimated for one or more animals by relating the relative frequency of locations in a set of sampling units to the habitat characteristics of those units with count‐based regression and, in particular, negative binomial (NB) regression. We demonstrate this NB RSF approach with location data collected from 10 GPS‐collared Rocky Mountain elk (Cervus elaphus) in the Starkey Experimental Forest and Range enclosure. We discuss modeling assumptions and show how RSF estimation with NB regression can easily accommodate contemporary research needs, including: analysis of large GPS data sets, computational ease, accounting for among‐animal variation, and interpretation of model covariates. We recommend the NB approach because of its conceptual and computational simplicity, and the fact that estimates of intensity of use are unbiased in the face of temporally correlated animal location data.  相似文献   

11.
Increasing interest in the complexity, variation and drivers of movement‐related behaviours promise new insight into fundamental components of ecology. Resolving the multidimensionality of spatially explicit behaviour remains a challenge for investigating tactics and their relation to niche construction, but high‐resolution movement data are providing unprecedented understanding of the diversity of spatially explicit behaviours. We introduce a framework for investigating individual variation in movement‐defined resource selection that integrates the behavioural and ecological niche concepts. We apply it to long‐term tracking data of 115 African elephants (Loxodonta africana), illustrating how a behavioural hypervolume can be defined based on differences between individuals and their ecological settings, and applied to explore population heterogeneity. While normative movement behaviour is frequently used to characterise population behaviour, we demonstrate the value of leveraging heterogeneity in the behaviour to gain greater insight into population structure and the mechanisms driving space‐use tactics.  相似文献   

12.
Ungulates often alter behavior and space use in response to interspecific competition. Despite observable changes in behavior caused by competitive interactions, research describing the effects of competition on survival or growth is lacking. We used spatial modeling to determine if habitat use by female mule deer (Odocoileus hemionus) was affected by other ungulate species prior to, during, and after parturition. We conducted our study in the Book Cliffs region of eastern Utah, USA, during 2019 and 2020. We used resource selection function (RSF) analysis to model space use of 4 ungulate species that potentially competed with mule deer: bison (Bos bison), cattle, elk (Cervus canadensis), and feral horses. We incorporated RSF models for competing species into a random forest analysis to determine if space use by mule deer was influenced by these other ungulate species. We used survival and growth data from neonate mule deer to directly assess potential negative effects of other ungulates. Habitat use by elk was an important variable in predicting use locations of mule deer during birthing and rearing. The relationship was positive, suggesting interference competition was not occurring. Survival of neonate mule deer increased as the probability of use by elk increased (hazard ratio = 0.185 ± 0.497 [SE]). Further, probability of use by elk in rearing habitat had no influence on growth of neonate mule deer from birth to 6 months of age, suggesting that exploitative competition was not occurring.  相似文献   

13.
Habitat‐selection analysis lacks an appropriate measure of the ecological significance of the statistical estimates—a practical interpretation of the magnitude of the selection coefficients. There is a need for a standard approach that allows relating the strength of selection to a change in habitat conditions across space, a quantification of the estimated effect size that can be compared both within and across studies. We offer a solution, based on the epidemiological risk ratio, which we term the relative selection strength (RSS ). For a “used‐available” design with an exponential selection function, the RSS provides an appropriate interpretation of the magnitude of the estimated selection coefficients, conditional on all other covariates being fixed. This is similar to the interpretation of the regression coefficients in any multivariable regression analysis. Although technically correct, the conditional interpretation may be inappropriate when attempting to predict habitat use across a given landscape. Hence, we also provide a simple graphical tool that communicates both the conditional and average effect of the change in one covariate. The average‐effect plot answers the question: What is the average change in the space use probability as we change the covariate of interest, while averaging over possible values of other covariates? We illustrate an application of the average‐effect plot for the average effect of distance to road on space use for elk (Cervus elaphus ) during the hunting season. We provide a list of potentially useful RSS expressions and discuss the utility of the RSS in the context of common ecological applications.  相似文献   

14.
15.
Wildfire activity across the western United States has increased in recent decades, with wildfires burning at a higher severity and larger scale. The effect of wildfires on forest structure and wildlife habitat is largely influenced by wildfire severity; however, few studies have evaluated the effects of wildfire severity on resource selection of ungulates, particularly during hunting seasons, when knowledge of resource selection is essential for making informed management decisions. To fill this knowledge gap, we fit resource selection probability functions for female elk (Cervus canadensis) in years 2 and 3 post-wildfire to evaluate the effects of wildfire severity and other environmental and anthropogenic factors on elk resource selection during 4 autumn periods with varying levels of hunter pressure (prehunt, archery-only, backcountry rifle, and rifle). The probability of female elk selecting low-severity burned forests during the prehunt, archery-only, backcountry rifle, and rifle periods was 0.99 (95% credible interval [CrI] = 0.98–1.00), 0.99 (CrI = 0.97–1.00), 0.99 (CrI = 0.99–1.00), and 0.0010 (CrI = 0.00067–0.0015]), respectively, and did not strongly differ from the probability of selecting high-severity burned forests. During the prehunt period, elk also selected areas with greater forage quality and areas farther from open roads. Elk selected similar resources during the archery period, and selected areas with higher hunter pressure. Elk started leaving hunting districts that had higher snowpack (i.e., snow water equivalent; β = −0.84, CrI = −0.96–−0.72) and allowed rifle hunting (β = −5.39, CrI = −5.80–−4.97) but still selected areas with higher hunter pressure (β = 0.92, CrI = 0.78–1.07) during the backcountry rifle period. During the rifle period, elk continued avoiding areas with high snowpack (β = −3.96, CrI = −4.22–−3.71) and started selecting areas with lower hunter pressure (β = −1.71, CrI = −1.79–−1.64) and lower canopy cover. Overall, wildfire affected elk distributions in early autumn 2 and 3 years after fire in our study area, with limited differences in resource selection between wildfire severity categories. By late autumn, hunter pressure and snowpack were the primary factors influencing elk distribution, and wildfire had little influence on selection. When estimating wildfire effects on elk movements during autumn and establishing appropriate hunting regulations, managers should consider the hunting season, hunter pressure, timing and amount of snowpack, location of traditional winter range, and the seasonal elk range burned, as all these factors may contribute to how elk use the landscape in autumn.  相似文献   

16.
17.
18.
Daniel R. Kowal 《Biometrics》2023,79(3):1853-1867
Linear mixed models (LMMs) are instrumental for regression analysis with structured dependence, such as grouped, clustered, or multilevel data. However, selection among the covariates—while accounting for this structured dependence—remains a challenge. We introduce a Bayesian decision analysis for subset selection with LMMs. Using a Mahalanobis loss function that incorporates the structured dependence, we derive optimal linear coefficients for (i) any given subset of variables and (ii) all subsets of variables that satisfy a cardinality constraint. Crucially, these estimates inherit shrinkage or regularization and uncertainty quantification from the underlying Bayesian model, and apply for any well-specified Bayesian LMM. More broadly, our decision analysis strategy deemphasizes the role of a single “best” subset, which is often unstable and limited in its information content, and instead favors a collection of near-optimal subsets. This collection is summarized by key member subsets and variable-specific importance metrics. Customized subset search and out-of-sample approximation algorithms are provided for more scalable computing. These tools are applied to simulated data and a longitudinal physical activity dataset, and demonstrate excellent prediction, estimation, and selection ability.  相似文献   

19.
Application of random effects to the study of resource selection by animals   总被引:5,自引:0,他引:5  
1. Resource selection estimated by logistic regression is used increasingly in studies to identify critical resources for animal populations and to predict species occurrence. 2. Most frequently, individual animals are monitored and pooled to estimate population-level effects without regard to group or individual-level variation. Pooling assumes that both observations and their errors are independent, and resource selection is constant given individual variation in resource availability. 3. Although researchers have identified ways to minimize autocorrelation, variation between individuals caused by differences in selection or available resources, including functional responses in resource selection, have not been well addressed. 4. Here we review random-effects models and their application to resource selection modelling to overcome these common limitations. We present a simple case study of an analysis of resource selection by grizzly bears in the foothills of the Canadian Rocky Mountains with and without random effects. 5. Both categorical and continuous variables in the grizzly bear model differed in interpretation, both in statistical significance and coefficient sign, depending on how a random effect was included. We used a simulation approach to clarify the application of random effects under three common situations for telemetry studies: (a) discrepancies in sample sizes among individuals; (b) differences among individuals in selection where availability is constant; and (c) differences in availability with and without a functional response in resource selection. 6. We found that random intercepts accounted for unbalanced sample designs, and models with random intercepts and coefficients improved model fit given the variation in selection among individuals and functional responses in selection. Our empirical example and simulations demonstrate how including random effects in resource selection models can aid interpretation and address difficult assumptions limiting their generality. This approach will allow researchers to appropriately estimate marginal (population) and conditional (individual) responses, and account for complex grouping, unbalanced sample designs and autocorrelation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号