首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper examines the relative importance of productive and adaptive traits in beef breeding systems based on Bos taurus and tropically adapted breeds across temperate and (sub)tropical environments. In the (sub)tropics, differences that exist between breeds in temperate environments are masked by the effects of environmental stressors. Hence in tropical environments, breeds are best categorised into breed types to compare their performance across environments. Because of the presence of environmental stressors, there are more sources of genetic variation in tropical breeding programmes. It is therefore necessary to examine the genetic basis of productive and adaptive traits for breeding programmes in those environments. This paper reviews the heritabilities and genetic relationships between economically important productive and adaptive traits relevant to (sub)tropical breeding programmes. It is concluded that it is possible to simultaneously genetically improve productive and adaptive traits in tropically adapted breeds of beef cattle grazed in tropical environments without serious detrimental consequences for either adaptation or production. However, breed-specific parameters are required for genetic evaluations. The paper also reviews the magnitude of genotype × environment (G × E) interactions impacting on production and adaptation of cattle, where 'genotype' is defined as breed (within a crossbreeding system), sire within breed (in a within-breed selection programme) or associations between economically important traits and single nucleotide polymorphisms (SNPs - within a marker-assisted selection programme). It is concluded that re-ranking of breeds across environments is best managed by the use of the breed type(s) best suited to the particular production environment. Re-ranking of sires across environments is apparent in poorly adapted breed types across extreme tropical and temperate environments or where breeding animals are selected in a temperate environment for use in the (sub)tropics. However, G × E interactions are unlikely to be of major importance in tropically adapted beef cattle grazed in either temperate or (sub)tropical environments, although sex × environment interactions may provide new opportunities for differentially selecting to simultaneously improve steer performance in benign environments and female performance in harsher environments. Early evidence suggests that re-ranking of SNPs occurs across temperate and tropical environments, although their magnitude is still to be confirmed in well-designed experiments. The major limitation to genetic improvement of beef cattle over the next decade is likely to be a deficiency of large numbers of accurately recorded phenotypes for most productive and adaptive traits and, in particular, for difficult-to-measure adaptive traits such as resistance to disease and environmental stressors.  相似文献   

2.
We describe satellite DNA variation that detects hybridization of Bos indicus (zebu or indicine cattle) and Bos taurus (taurine cattle) in African cattle populations. On Southern blots hybridized to a satellite III probe, relative intensities of Hinfl fragments correlated with the taurine-zebu composition in hybrid animals as deduced from AFLP genotyping of the same animals and previous data on microsatellite allele frequencies. Similar results were obtained by PCR-RFLP analysis of a zebu-specific mutation in the repeat unit of satellite 1.711b. Analysis of individuals from 20 African cattle breeds indicate that the centromeric satellites of the sanga breeds are of the taurine type and that several East-African zebu breeds are hybrids between taurine and zebu. These satellite RFLP, or SFLP, markers provide a fast method to screen the genetic makeup of African cattle.  相似文献   

3.
Knowledge about genetic diversity and population structure is useful for designing effective strategies to improve the production, management and conservation of farm animal genetic resources. Here, we present a comprehensive genome-wide analysis of genetic diversity, population structure and admixture based on 244 animals sampled from 10 cattle populations in Asia and Africa and genotyped for 69 903 autosomal single-nucleotide polymorphisms (SNPs) mainly derived from the indicine breed. Principal component analysis, STRUCTURE and distance analysis from high-density SNP data clearly revealed that the largest genetic difference occurred between the two domestic lineages (taurine and indicine), whereas Ethiopian cattle populations represent a mosaic of the humped zebu and taurine. Estimation of the genetic influence of zebu and taurine revealed that Ethiopian cattle were characterized by considerable levels of introgression from South Asian zebu, whereas Bangladeshi populations shared very low taurine ancestry. The relationships among Ethiopian cattle populations reflect their history of origin and admixture rather than phenotype-based distinctions. The high within-individual genetic variability observed in Ethiopian cattle represents an untapped opportunity for adaptation to changing environments and for implementation of within-breed genetic improvement schemes. Our results provide a basis for future applications of genome-wide SNP data to exploit the unique genetic makeup of indigenous cattle breeds and to facilitate their improvement and conservation.  相似文献   

4.
We report for the first time, and for the whole of sub-Saharan Africa, the geographical distribution and the frequency of an indicine and a taurine Y specific allele amongst African cattle breeds. A total of 984 males from 69 indigenous African populations from 22 countries were analysed at the microsatellite locus INRA 124. The taurine allele is probably the oldest one on the continent. However, the taurine and the indicine alleles were present in 291 males (30%), and 693 males (70%), respectively. More particularly, 96% of zebu males (n = 470), 50% of taurine males (n = 263), 29% of sanga males (crossbreed Bos taurus x Bos indicus, n = 263) and 95% of zebu x sanga crossbred males (n = 56) had the indicine allele. The Borgou, a breed classified as zebu x taurine cross showed only the zebu allele (n = 12). The indicine allele dominates today in the Abyssinian region, a large part of the Lake Victoria region and the sahelian belt of West Africa. All the sanga males (n = 64) but only one from the Abyssinian region had the indicine allele. The taurine allele is the commonest only among the sanga breeds of the southern African region and the trypanotolerant taurine breeds of West Africa. In West Africa and in the southern Africa regions, zones of introgression were detected with breeds showing both Y chromosome alleles. Our data also reveal a pattern of male zebu introgression in Mozambique and Zimbabwe, probably originating from the Mozambique coast. The sanga cattle from the Lake Victoria region and the Kuri cattle of Lake Chad, cattle populations surrounded by zebu breeds were, surprisingly, completely devoid of the indicine allele. Human migration, phenotypic preferences by the pastoralists, adaptation to specific habitats and to specific diseases are the main factors explaining the present-day distribution of the alleles in sub-Saharan Africa.  相似文献   

5.
Genetic diversity, introgression and relationships were studied in 521 individuals from 9 African Bos indicus and 3 Bos taurus cattle breeds in Cameroon and Nigeria using genotype information on 28 markers (16 microsatellite, 7 milk protein and 5 blood protein markers). The genotypes of 13 of the 16 microsatellite markers studied on three European (German Angus, German Simmental and German Yellow) and two Indian (Nelore and Ongole) breeds were used to assess the relationships between them and the African breeds. Diversity levels at microsatellite loci were higher in the zebu than in the taurine breeds and were generally similar for protein loci in the breeds in each group. Microsatellite allelic distribution displayed groups of alleles specific to the Indian zebu, African taurine and European taurine. The level of the Indian zebu genetic admixture proportions in the African zebus was higher than the African taurine and European taurine admixture proportions, and ranged from 58.1% to 74.0%. The African taurine breed, Muturu was free of Indian zebu genes while its counter Namchi was highly introgressed (30.2%). Phylogenic reconstruction and principal component analysis indicate close relationships among the zebu breeds in Cameroon and Nigeria and a large genetic divergence between the main cattle groups – African taurine, European taurine and Indian zebu, and a central position for the African zebus. The study presents the first comprehensive information on the hybrid composition of the individual cattle breeds of Cameroon and Nigeria and the genetic relationships existing among them and other breeds outside of Africa. Strong evidence supporting separate domestication events for the Bos species is also provided.  相似文献   

6.
The International Society of Animal Genetics (ISAG) has chosen nine microsatellites (international marker set) as a standard that should be included in all cattle parentage studies. They are BM1824, BM2113, INRA023, SPS115, TGLA122, TGLA126, TGLA227, ETH10, and ETH225. We decided to ascertain whether this microsatellite set could be used to determine ancestral proportions in individual animals of synthetic breeds produced by crossing zebu and taurine cattle. Since the genotypes of these markers are routinely available, this would constitute a practical and cost-free method to estimate the ancestry of synthetic breed animals. Genotypes of 100 Gir and 100 Holstein animals were examined for this ISAG marker set. As expected, there were very significant allele frequency differences between the two breeds at most loci. We also typed 20 Girolando animals for which there was complete genealogical information. "Structure" software easily distinguished Holstein and Gir animals based on their microsatellite genotypes; it also attributed the genomic proportion of zebu and taurine of each of the 20 Girolando animals. The proportion of Holstein ancestry was then regressed on the genealogical data; there was a highly significant correlation (r = 0.84, P < 0.0001). The nine microsatellites that compose the ISAG international marker set were capable of estimating the ancestral Gir and Holstein genomic proportions in individual Girolando animals within narrow confidence limits. This microsatellite set might also be useful for estimating the proportions of taurine and zebu origins in commercial meat products.  相似文献   

7.
The POLL locus has been mapped to the centromeric region of bovine chromosome 1 (BTA1) in both taurine breeds and taurine–indicine crosses in an interval of approximately 1 Mb. It has not yet been mapped in pure‐bred zebu cattle. Despite several efforts, neither causative mutations in candidate genes nor a singular diagnostic DNA marker has been identified. In this study, we genotyped a total of 68 Brahman cattle and 20 Hereford cattle informative for the POLL locus for 33 DNA microsatellites, 16 of which we identified de novo from the bovine genome sequence, mapping the POLL locus to the region of the genes IFNAR2 and SYNJ1. The 303‐bp allele of the new microsatellite, CSAFG29, showed strong association with the POLL allele. We then genotyped 855 Brahman cattle for CSAFG29 and confirmed the association between the 303‐bp allele and POLL. To determine whether the same association was found in taurine breeds, we genotyped 334 animals of the Angus, Hereford and Limousin breeds and 376 animals of the Brangus, Droughtmaster and Santa Gertrudis composite taurine–zebu breeds. The association between the 303‐bp allele and POLL was confirmed in these breeds; however, an additional allele (305 bp) was also associated but not fully predictive of POLL. Across the data, CSAFG29 was in sufficient linkage disequilibrium to the POLL allele in Australian Brahman cattle that it could potentially be used as a diagnostic marker in that breed, but this may not be the case in other breeds. Further, we provide confirmatory evidence that the scur phenotype generally occurs in animals that are heterozygous for the POLL allele.  相似文献   

8.
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species – taurine cattle, zebu and yak – and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.  相似文献   

9.
Eight humpless cattle breeds from the Near East, three from Europe, one from West Africa and two zebu breeds from India were screened with 20 microsatellite loci. Breeds from the Near East revealed considerable levels of introgression from zebu cattle, which was apparent most in populations from the East and which declined in populations further West. This nonrandom pattern is suggestive of the introduction of zebu cattle from the East. Notwithstanding the overlay of zebu alleles, it was possible to demonstrate that Near Eastern cattle exhibited significantly higher levels of allelic diversity than breeds from other regions, which is consistent with the view that this region represents a primary domestication centre for Bos taurus cattle. The hypothesis that B. taurus and B. indicus cattle have separate domestic origins is also supported by the survey, a large genetic divergence being apparent between the nonhybrid taurine and zebu groups.  相似文献   

10.
Butana and Kenana breeds from Sudan are part of the East African zebu Bos indicus type of cattle. Unlike other indigenous zebu cattle in Africa, they are unique due to their reputation for high milk production and are regarded as dairy cattle, the only ones of their kind on the African continent. In this study, we sequenced the complete mitochondrial DNA (mtDNA) D‐loop of 70 animals to understand the maternal genetic variation, demographic profiles and history of the two breeds in relation to the history of cattle pastoralism on the African continent. Only taurine mtDNA sequences were identified. We found very high mtDNA diversity but low level of maternal genetic structure within and between the two breeds. Bayesian coalescent‐based analysis revealed different historical and demographic profiles for the two breeds, with an earlier population expansion in the Butana vis a vis the Kenana. The maternal ancestral populations of the two breeds may have diverged prior to their introduction into the African continent, with first the arrival of the ancestral Butana population. We also reveal distinct demographic history between the two breeds with the Butana showing a decline in its effective population size (Ne) in the recent past ~590 years. Our results provide new insights on the early history of cattle pastoralism in Sudan indicative of a large ancient effective population size.  相似文献   

11.
In the present report, the polymorphisms from 9 microsatellites were used to assess genetic diversity and relationships in 4 Creole cattle breeds from Argentina and Bolivia, 4 European taurine breeds, and 2 American zebu populations. The Creole populations display a relatively high level of genetic variation as estimated by allelic diversity and heterozygosity, whereas the British breeds displayed reduced levels of genetic diversity. The analysis of molecular variance indicated that 7.8% of variance can be explained by differences among taurine and zebu breeds. Consistent with these results, the first principal component (PC), which comprised the 40% of the total variance, clearly distinguishes these 2 groups. In addition, all constructed phylogenetic trees cluster together Nelore and Brahman breeds with robust bootstrap values. Only 1% of variance was due to difference between American Creole and European taurine cattle. Although this secondary split was supported by the classical genetic distance and the second PC (15%), the topology of trees is not particularly robust. The presence of zebu-specific alleles in Creole cattle allowed estimating a moderate degree of zebu admixture. When these data were compared with mitochondrial and Y chromosomal studies, a clear pattern of male-mediated introgression was revealed. The results presented here contribute to the understanding of origin and history of the American Creole cattle.  相似文献   

12.
中国黄牛品种资源丰富,尚有28个地方固有品种.为了进一步深入了解这些宝贵遗传资源,本研究通过mtDNA变异特征与多态性分析揭示这些来自中国不同地域地方黄牛的母系起源与分子系统学特征.在17个品种84个体的mtDNA D-loop全序列中,一共检测到了102个核苷酸替代突变位.由此定义的53个单倍型被类聚为2个明显的单倍群:普通牛和瘤牛.mtDNA D-loop全序列变异的第一个特征是转换发生的频率远高于颠换;第二个特征是缺失与替代突变共存;第三个特征是缺失突变率比较高.所有D-loop全序列的核苷酸多样性和单倍型多样性分别为0.026 78±0.000 50和0.919±0.027.普通牛D-loop单倍型在北方牛种群中占有优势(80%~100%),而瘤牛单倍型在南方牛种群中占有优势(42.9%~100%),2种不同单倍型在中原牛种群中的分布也存在差异.2种不同单倍型在中国不同地域17个黄牛品种中的差异性分布揭示出了瘤牛mtDNA基因在中国黄牛中自南而北、由高到低的流动模式,这种基因流动模式的形成可能是由历史事件、地理隔离以及气候环境差异等造成的.  相似文献   

13.
A total of 350 samples were analyzed to estimate zebu gene proportions into two different taurine cattle breeds of Burkina Faso (Lobi and N’Dama) using 38 microsatellites and various statistical methodologies. West African and East African zebu samples were sequentially used as reference parental populations. Furthermore, N’Dama cattle from Congo, the composite South African Bonsmara cattle breed and a pool of European cattle were used successively as second parental populations. Independently of the methodology applied: (a) the use of West African zebu samples gave higher admixture coefficients than the East African zebu; (b) the higher zebu proportions were estimated when the European cattle was used as parental population 2; and (c) the use of the N’Dama population from Congo as parental population 2 gave the more consistent zebu proportion estimates for both the Lobi and the N’Dama breeds. In any case, the zebu admixture proportions estimated were not negligible and were always higher in the N’Dama cattle than in the Lobi cattle of Burkina Faso. This suggested that the introgression of Sahelian zebu genes into the taurine cattle of Southern West Africa can follow a complex pattern that can depend on local agro-ecological features. The current research pointed out that the estimation of admixture coefficients is highly dependent on both the assumptions underlying the methodologies applied and the selection of parental populations. Our analyses suggest that either too high or nil genetic identity between the parental and the expectedly derived populations must be avoided.  相似文献   

14.
Cai X  Chen H  Lei C  Wang S  Xue K  Zhang B 《Genetica》2007,131(2):175-183
In order to clarify the origin and genetic diversity of indigenous cattle breeds in China, we carried out phylogenetic analysis of representatives of those breeds by employing mitochondrial gene polymorphism. Complete cyt b gene sequences, 1140 bp in length, were determined for a total of 136 individuals from 18 different breeds and these sequences were clustered into two distinct genetic lineages: taurine (Bos taurus) and zebu (Bos indicus). In analysis of the cyt b gene diversity, Chinese cattle showed higher nucleotide (0.00923) and haplotype diversity (0.848) than the reports from other studies, and the animals from the taurine lineage indicated higher nucleotide diversity (0.00330) and haplotype diversity (0.746) than the ones from the zebu lineage (0.00136; 0.661). The zebu mtDNA dominated in the southern breeds (63.3–100%), while the taurine dominated in the northern breeds (81.8–100%). Six cattle breeds from the central area of China exhibited intermediate frequencies of zebu mtDNA (25–71.4%). This polymorphism revealed a declining south-to-north gradient of female zebu introgression and a geographical hybrid zone of Bos taurus and Bos indicus in China.  相似文献   

15.
The MspI allelic variation in intron III of the bovine growth hormone (bGH) gene was explored using PCR-RFLP in 750 animals belonging to 17 well-recognized breeds of Indian zebu cattle (Bos indicus) reared in different geographic locations of the country. Restriction digestion analysis of a 329-bp PCR fragment of the bGH intron III region with MspI restriction enzyme revealed two alleles (MspI− and MspI+) and two genotypes (−/− and +/−) across the 17 cattle breeds studied. The allelic frequency varied from 0.67 to 0.94 for MspI (−) and from 0.06 to 0.33 for MspI (+) across the 17 breeds, with a combined average frequency of 0.87 and 0.13, respectively. No animal with +/+ genotype was detected across the samples analyzed. The chi-square test showed that the difference in MspI allelic frequency was not significant (p > 0.05), regardless of the geographic origin, coat color, or utility of the cattle breed. The high MspI (−) allele frequencies obtained for Indian zebu cattle in this study are in sharp contrast to those reported for taurine breeds from northern Europe, Mediterranean countries, and America. Findings of this study further substantiate the hypothesis that the MspI (−) allele has an Indian origin.  相似文献   

16.
Microsatellite variation was surveyed to determine the genetic diversity, population structure and admixture of seven North Ethiopian cattle breeds by combining multiple microsatellite data sets of Indian and West African zebu, and European, African and Near-Eastern taurine in genetic analyses. Based on allelic distribution, we identified four diagnostic alleles (HEL1-123 bp, CSSM66-201 bp, BM2113-150 bp and ILSTS6-285 bp) specific to the Near-Eastern taurine. Results of genetic relationship and population structure analyses confirmed the previously established marked genetic distinction between taurine and zebu, and indicated further divergence among the bio-geographical groupings of breeds such as North Ethiopian, Indian and West African zebu, and African, European and Near-Eastern taurine. Using the diagnostic alleles for bio-geographical groupings and a Bayesian method for population structure inference, we estimated the genetic influences of major historical introgressions in North Ethiopian cattle. The breeds have been heavily (>90%) influenced by zebu, followed by African, European and the Near-Eastern taurine. Overall, North Ethiopian cattle show a high level of within-population genetic variation (e.g. observed heterozygosity = 0.659-0.687), which is in the upper range of that reported for domestic cattle and indicates their potential for future breeding applications, even in a global context. Rather low but significant population differentiation (F(ST) = 1.1%, P < 0.05) was recorded as a result of multiple introgression events and strong genetic exchanges among the North Ethiopian breeds.  相似文献   

17.
Genetics has the potential to provide a novel layer of information pertaining to the origins and relationships of domestic cattle. While it is important not to overstate the power of archeological inference from genetic data, some previously widespread conjectures are inevitably contradicted with the addition of new information. Conjectures regarding domesticated cattle that fall into this category include a single domestication event with the development of Bos indicus breeds from earlier Bos taurus domesticates; the domestication of a third type of cattle in Africa having an intermediate morphology between the two taxa; and the special status of the Jersey breed as a European type with some exotic influences. In reality, a wideranging survey of the genetic variation of modern cattle reveals that they all derive from either zebu or taurine progenitors or are hybrids of the two. The quantitative divergence between Bos indicus and Bos taurus strongly supports a predomestic separation; that between African and European taurines also suggests genetic input from native aurochsen populations on each continent. Patterns of genetic variants assayed from paternally, maternally, and biparentally inherited genetic systems reveal that extensive hybridization of the two subspecies is part of the ancestry of Northern Indian, peripheral European, and almost all African cattle breeds. In Africa, which is the most extensive hybrid zone, the sexual asymmetry of the process of zebu introgression into native taurine breeds is strikingly evident. © 1998 Wiley-Liss, Inc.  相似文献   

18.

Background

Natural selection has molded evolution across all taxa. At an arguable date of around 330,000 years ago there were already at least two different types of cattle that became ancestors of nearly all modern cattle, the Bos taurus taurus more adapted to temperate climates and the tropically adapted Bos taurus indicus. After domestication, human selection exponentially intensified these differences. To better understand the genetic differences between these subspecies and detect genomic regions potentially under divergent selection, animals from the International Bovine HapMap Experiment were genotyped for over 770,000 SNP across the genome and compared using smoothed FST. The taurine sample was represented by ten breeds and the contrasting zebu cohort by three breeds.

Results

Each cattle group evidenced similar numbers of polymorphic markers well distributed across the genome. Principal components analyses and unsupervised clustering confirmed the well-characterized main division of domestic cattle. The top 1% smoothed FST, potentially associated to positive selection, contained 48 genomic regions across 17 chromosomes. Nearly half of the top FST signals (n = 22) were previously detected using a lower density SNP assay. Amongst the strongest signals were the BTA7:~50 Mb and BTA14:~25 Mb; both regions harboring candidate genes and different patterns of linkage disequilibrium that potentially represent intrinsic differences between cattle types. The bottom 1% of the smoothed FST values, potentially associated to balancing selection, included 24 regions across 13 chromosomes. These regions often overlap with copy number variants, including the highly variable region at BTA23:~24 Mb that harbors a large number of MHC genes. Under these regions, 318 unique Ensembl genes are annotated with a significant overrepresentation of immune related pathways.

Conclusions

Genomic regions that are potentially linked to purifying or balancing selection processes in domestic cattle were identified. These regions are of particular interest to understand the natural and human selective pressures to which these subspecies were exposed to and how the genetic background of these populations evolved in response to environmental challenges and human manipulation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-876) contains supplementary material, which is available to authorized users.  相似文献   

19.
Genotype data from 20 microsatellites typed in 253 animals is used here to assess the genetic structure of seven European pedigree cattle breeds. Estimation of genetic subdivision using classical drift-based measures shows that the average proportion of genetic variation among breeds varies between 10 and 11% of the total, depending on the estimator used. We demonstrate that a simple allele-sharing genetic distance parameter can be used to construct a dendrogram of relationships among animals. This phylogenetic tree displays a remarkable degree of breed clustering and reflects an extensive underlying kinship structure, particularly for the Swiss Simmental breed and four breeds originating from the British Isles. Condensation of allele frequencies and individual genotypic compositions using principal component analysis is also used to investigate genetic structure among breeds and individual animals. In addition, the underlying genetic demarcation of European cattle breeds is emphasized in simulations of breed assignment using allele frequency distributions from samples of microsatellite loci. Correct breed designation can be inferred with accuracies approaching 100% using data from a panel of 10 microsatellite loci.  相似文献   

20.
We tested the use of biallelic Amplified fragment length polymorphism (AFLP) polymorphisms for the estimation of relative genetic distances of cattle individuals within or across breeds. An allele permutation procedure was developed to estimate the stochastic variation of the genetic distance that is inherent to a given dataset. In a panel of 47 Holstein-Friesian cattle analysed with 248 polymorphic markers, the average genetic distance of bulls selected for breeding was slightly lower than the distance of the cows. The observed standard deviation (SD) of the distance indicated genetic subdivision, which for the bulls was explained by variation in the additive relationship derived from herdbook data. Animals from three different breeds, the highly selected Holstein-Friesian, the Italian Brown and the historic Maremmana, were compared on the basis of 106 polymorphic markers. No breed-specific fragments were observed. The mean pair-wise genetic distance within breeds was 85% of the value across breeds, but principal coordinates analysis clustered the animals according to their breed of origin. Calculation of distances between the breeds indicated a relatively divergent position of the Maremmana, relative to the two other breeds. However, biallelic markers indicate that the process of breed formation had only a limited effect on the diversity at marker loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号