首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: In western Canada it is illegal to trap or snare cougars (Puma concolor), but cougars are sometimes caught accidentally in snares placed near carrion baits, a technique commonly used by trappers to harvest wolves (Canis lupus). We studied cougar foraging ecology and survival in west-central Alberta to estimate the propensity for cougars to scavenge, their susceptibility to snaring at trapper bait stations, and the implications these have for managing cougar populations. During 2005–2008, we used data from visits to 3,407 Global Positioning System (GPS) location clusters and >400 km of snow tracking of 44 cougars to locate foraging events and calculate scavenging rates. We identified 83 instances of scavenging, and 64% of monitored cougars scavenged at least once. Scavenging rates were higher in winter (0.12 events/week) than in summer (0.04 events/week), reflecting seasonal variation in carrion availability. Individual cougars scavenged at different rates, and winter feeding on carrion occupied up to 50% of total carcass handling time for some cougars. Based on these results we conclude that cougars are facultative scavengers. A propensity to scavenge made cougars susceptible to snaring causing high annual mortality in radiocollared cougars (0.11, 95% CI = 0.03–0.21). Provincial cougar mortality data demonstrate that snaring has increased dramatically as a mortality source in Alberta over the last 2 decades. Mortalities of radiocollared cougars during our study were 100% human caused and the addition of snaring mortality to already high hunting mortality resulted in low annual survival (0.67, 95% CI = 0.53–0.81). Our study is one of the first to identify population-level consequences for nontarget animals killed unintentionally by indiscriminate harvest techniques in a terrestrial ecosystem. Maintaining sustainable cougar harvest where snaring at carrion baits is permitted may require flexible hunting quotas capable of accommodating high cougar snaring mortalities in some years.  相似文献   

2.
Understanding the social dynamics of large carnivores is critical to effective conservation and management planning. We made the first attempt to delineate both paternity and relatedness for a population of cougar (Puma concolor) using microsatellite data. We analyzed a long-term genetic dataset collected from a hunted population in the Garnet Mountains of western Montana. We assigned paternity for 62.5% of litters sampled using both exclusion and likelihood analyses. Attempts at reconstructing unsampled paternal genotypes resulted in delineating possible sires for 8 more litters. Sires were on average younger than reported for males involved in pairings assessed via field data in other cougar populations. Although most mating pairs were unrelated, 5 of 17 pairings involved cougars with levels of relatedness corresponding to half-sibling and full-sibling or parent offspring relationship (r = 0.215–0.575). Relatedness among adult and subadult males was higher than relatedness levels among adult and subadult females. Relatedness among males in the Garnet population differed from patterns hypothesized to occur under male-biased dispersal theories for cougars. The long-term impact of the turnover of resident cougars in hunted populations is still unclear and warrants additional research. Our results highlight the utility of monitoring cougar demographic parameters using a combination of genetic and field data that in turn may assist managers with determining cougar harvest quotas or strategies, harvest seasons, sustainable harvest, and the appropriate management level of cougar populations. © 2011 The Wildlife Society.  相似文献   

3.
Although cougars (Puma concolor) appear to be recolonizing the midwestern United States, there is concern that hunting in source populations (primarily the Black Hills, SD and WY, USA) may prevent cougars from dispersing eastward. We use carcass data of cougars (n =147 carcasses at known locations, of which 111 were of known sex) in the Midwest collected during 1990–2015 to quantify whether cougar hunting in the Black Hills affected cougar distribution and presence in the Midwest. We separated carcass data into 2 time periods: before hunting in the Black Hills (i.e., pre-hunt; 1990–2004) and after hunting (i.e., post-hunt; 2005–2015). We hypothesized that if hunting prevented dispersal into the Midwest, cougar distribution would be random and their presence less, relative to the pre-hunt period. We also were interested in sex ratios of carcasses over time, given the importance of that demographic metric to the potential establishment of viable populations. During the pre-hunt period, 25 carcasses were dispersed randomly in the Midwest. During the post-hunt period, we found nearly 4 times the number of carcasses in the Midwest (n = 86), carcasses were significantly clustered, and a greater percentage of carcasses were female (pre-hunt n = 6 [24%]; post-hunt n = 27 [31%]). Relative to the pre-hunt period, we observed a 460-km northward shift in the directional distribution of carcass locations during the post-hunt period. These findings do not support the idea that hunting in the Black Hills has prevented cougar presence from increasing in the Midwest. Alternatively, we suggest the potential for immigration from cougar populations farther to the west as an explanation for the increase in cougar presence (particularly females) confirmed after the initiation of cougar hunting in the Black Hills. © 2019 The Wildlife Society.  相似文献   

4.
The geography of the Black Hills region of South Dakota and Wyoming may limit connectivity for many species. For species with large energetic demands and large home ranges or species at low densities this can create viability concerns. Carnivores in this region, such as cougars (Puma concolor), have the additive effect of natural and human-induced mortality; this may act to decrease long-term viability. In this study we set out to explore genetic diversity among cougar populations in the Black Hills and surrounding areas. Specifically, our objectives were to first compare genetic variation and effective number of breeders of cougars in the Black Hills during three harvest regimes: pre (2003–2006), moderate (2007–2010), and heavy (2011–2013), to determine if harvest impacted genetic variation. Second, we compared genetic structure of the Black Hills cougar population with cougar populations in neighboring eastern Wyoming and North Dakota. Using 20 microsatellite loci, we conducted genetic analysis on DNA samples from cougars in the Black Hills (n = 675), North Dakota (n = 113), and eastern Wyoming (n = 62) collected from 2001–2013. Here we report that the Black Hills cougar population maintained genetic variation over the three time periods. Our substructure analysis suggests that the maintenance of genetic variation was due to immigration from eastern Wyoming and possibly North Dakota.  相似文献   

5.
We studied survival and causes of mortality of radiocollared cougars (Puma concolor) on the Greater Yellowstone Northern Range (GYNR) prior to (1987–1994) and after wolf (Canis lupus) reintroduction (1998–2005) and evaluated temporal, spatial, and environmental factors that explain variation in adult, subadult, and kitten survival. Using Program MARK and multimodel inference, we modeled cougar survival based on demographic status, season, and landscape attributes. Our best models for adult and independent subadults indicated that females survived better than males and survival increased with age until cougars reached older ages. Lower elevations and increasing density of roads, particularly in areas open to cougar hunting north of Yellowstone National Park (YNP), increased mortality risks for cougars on the GYNR. Indices of ungulate biomass, cougar and wolf population size, winter severity, rainfall, and individual characteristics such as the presence of dependent young, age class, and use of Park or Wilderness were not important predictors of survival. Kitten survival increased with age, was lower during winter, increased with increasing minimum estimates of elk calf biomass, and increased with increasing density of adult male cougars. Using our best model, we mapped adult cougar survival on the GYNR landscape. Results of receiver operating characteristic (ROC) analysis indicated a good model fit for both female (area under the curve [AUC] = 0.81, 95%CI = 0.70–0.92, n = 35 locations) and male cougars (AUC = 0.84, 95%CI = 0.74–0.94, n = 49 locations) relative to hunter harvest locations in our study area. Using minimum estimates of survival necessary to sustain the study population, we developed a source-sink surface and we identify several measures that resource management agencies can take to enhance cougar population management based on a source-sink strategy. © 2011 The Wildlife Society.  相似文献   

6.
Remedial sport hunting of predators is often used to reduce predator populations and associated complaints and livestock depredations. We assessed the effects of remedial sport hunting on reducing cougar complaints and livestock depredations in Washington from 2005 to 2010 (6 years). The number of complaints, livestock depredations, cougars harvested, estimated cougar populations, human population and livestock populations were calculated for all 39 counties and 136 GMUs (game management units) in Washington. The data was then analyzed using a negative binomial generalized linear model to test for the expected negative relationship between the number of complaints and depredations in the current year with the number of cougars harvested the previous year. As expected, we found that complaints and depredations were positively associated with human population, livestock population, and cougar population. However, contrary to expectations we found that complaints and depredations were most strongly associated with cougars harvested the previous year. The odds of increased complaints and livestock depredations increased dramatically (36 to 240%) with increased cougar harvest. We suggest that increased young male immigration, social disruption of cougar populations, and associated changes in space use by cougars - caused by increased hunting resulted in the increased complaints and livestock depredations. Widespread indiscriminate hunting does not appear to be an effective preventative and remedial method for reducing predator complaints and livestock depredations.  相似文献   

7.
Estimates of cougar (Puma concolor) density are among the least available of any big game species in North America because of monetary and logistical challenges. Thus, wildlife managers identify cougar density estimates as a high priority need for population estimation, developing harvest guidelines, and evaluating management objectives. Cougar densities range from <1 to almost 7 cougars/100 km2; however, the magnitude of spatial and temporal variation associated with these estimates is difficult to assess because this range of densities could potentially be reported for any given population using different demographic, temporal, durational, and analytical approaches. We used long-term global positioning system (GPS) data from collared cougars across 5 diverse study areas in Washington, USA, as the basis for calculating multiple annual independent-aged (≥18 months) cougar densities, using consistent methods, and conducted a meta-analysis to assist with statewide harvest guidelines. To generate specific harvest guidelines for unobserved populations at the management unit scale, we employed a Bayesian decision-theoretic approach that minimizes statistical risk of failing to achieve a defined harvest rate. For the 16-year field effort, we calculated 24 annual densities for independent-aged cougars. Average annual densities ranged from 1.55 ± 0.44 (SD) cougars/100 km2 (n = 5 years) to 2.79 ± 0.35 cougars/100 km2 (n = 5 years) among the 5 study areas. Explicit delineation of the cougar population demonstrated that contribution to density can vary considerably by sex and age class. Application of a 12–16% harvest rate within the risk analysis framework yielded a potential annual harvest of 249 cougars over 91,000 km2 of cougar habitat in Washington. Given the importance of density for establishing harvest guidelines, and the degree of uncertainty in projecting derived densities to future years and unstudied management units, our approach may lessen the ambiguity of extrapolations and increase the longevity of research results. Our risk analysis can be used for a diverse array of species and management objectives and be incorporated into an adaptive management framework for minimizing management risk. Our recommendations can improve standardization in reporting and interpretation of cougar density comparisons and bring clarity to the sources of variability observed in cougar populations. © 2021 The Wildlife Society.  相似文献   

8.
As human populations continue to expand across the world, the need to understand and manage wildlife populations within the wildland – urban interface is becoming commonplace. This is especially true for large carnivores as these species are not always tolerated by the public and can pose a risk to human safety. Unfortunately, information on wildlife species within the wildland – urban interface is sparse, and knowledge from wildland ecosystems does not always translate well to human‐dominated systems. Across western North America, cougars (Puma concolor) are routinely utilizing wildland – urban habitats while human use of these areas for homes and recreation is increasing. From 2007 to 2015, we studied cougar resource selection, human–cougar interaction, and cougar conflict management within the wildland – urban landscape of the northern Front Range in Colorado, USA. Resource selection of cougars within this landscape was typical of cougars in more remote settings but cougar interactions with humans tended to occur in locations cougars typically selected against, especially those in proximity to human structures. Within higher housing density areas, 83% of cougar use occurred at night, suggesting cougars generally avoided human activity by partitioning time. Only 24% of monitored cougars were reported for some type of conflict behavior but 39% of cougars sampled during feeding site investigations of GPS collar data were found to consume domestic prey items. Aversive conditioning was difficult to implement and generally ineffective for altering cougar behaviors but was thought to potentially have long‐term benefits of reinforcing fear of humans in cougars within human‐dominated areas experiencing little cougar hunting pressure. Cougars are able to exploit wildland – urban landscapes effectively, and conflict is relatively uncommon compared with the proportion of cougar use. Individual characteristics and behaviors of cougars within these areas are highly varied; therefore, conflict management is unique to each situation and should target individual behaviors. The ability of individual cougars to learn to exploit these environments with minimal human–cougar interactions suggests that maintaining older age structures, especially females, and providing a matrix of habitats, including large connected open‐space areas, would be beneficial to cougars and effectively reduce the potential for conflict.  相似文献   

9.
Serological and genetic material collected over 15 years (1990-2004) from 207 cougars (Puma concolor) in four populations in the Rocky Mountains were examined for evidence of current or prior exposure to feline immunodeficiency virus (FIV), feline parvovirus (FPV), feline coronavirus (FCoV), feline calicivirus (FCV), canine distemper virus (CDV), feline herpesvirus (FHV), and Yersinia pestis. Serologic data were analyzed for annual variation in seroconversions to assess whether these pathogens are epidemic or endemic in cougars, and to determine whether family membership, age, sex, or location influence risk of exposure. FIV and FPV were clearly endemic in the studied populations, whereas exposure to FCoV, FCV, CDV, and Y. pestis was more sporadic. No evidence was found for FHV. Age was the most consistent predictor of increased exposure risk, often with no other important factors emerging. Evidence for transmission within family groups was limited to FIV and FCoV, whereas some indication for host sex affecting exposure probability was found for FIV and Y. pestis. Overall, cougar populations exhibited few differences in terms of pathogen presence and prevalence, suggesting the presence of similar risk factors throughout the study region.  相似文献   

10.
Successful conservation and management of rare and elusive species requires reliable estimates of population size, but acquisition of such data is often challenging. We compare the two most frequently used methods of assessing abundance of Eurasian otter (Lutra lutra) populations, noninvasive genetic sampling (NGS) based on genotyping of faeces and field surveys using snow tracking. In a 100-km2 oligotrophic otter habitat with linear water bodies, both methods yielded very similar estimates (10–12 individuals). However, in a 100-km2 fishpond area, consisting of a complex network of rivers, fishponds, channels and marshes, genotyping of faeces revealed the presence of a higher number of individuals (46–50 genotypes) than the snow survey (38 individuals). NGS data analysed by capture-mark-recapture (CMR)-based software CAPWIRE provided even higher estimates, being twice the number assessed through snow tracking (76–81 individuals, CI95% = 49–96 and 55–89). Our results suggest that the performance of both NGS and snow tracking is comparable in simple linear habitats, but in complex habitats with very high otter density a combination of genetic and field methods, or CMR analysis using genetic data, is recommended. We emphasise that to obtain reliable estimates using NGS it is necessary to follow strict protocols for detection and elimination of genotyping errors. Based on a literature review and our experience, we suggest improvements that may increase the success rate and efficiency of NGS for otters.  相似文献   

11.
Although cougars (Puma concolor) were extirpated from much of midwestern North America around 1900, hard evidence of cougar presence has increased and populations have become established in the upper portions of the Midwest during the past 20 years. Recent occurrences of cougars in the Midwest are likely due to dispersal of subadult cougars into the region from established western populations, and may be indicative of further recolonization and range expansion. We compiled confirmed locations of cougars (i.e., via carcasses, tracks, photos, video, and DNA evidence) collected during 1990–2008 in 14 states and provinces of midwestern North America. We separated our study area into 2 regions (east and west), calculated number and types of confirmations, and assessed trends in confirmations during the study period. We recorded 178 cougar confirmations in the Midwest and the number of confirmations increased during the study period (r = 0.79, P ≤ 0.001). Confirmations by state or province ranged from 1 (Kansas, Michigan, and Ontario) to 67 (Nebraska). Carcasses were the most prevalent confirmation type (n = 56). Seventy-six percent of known-sex carcass confirmations were males, consistent with predominantly male-biased dispersal in cougars. More confirmations (P = 0.05) were recorded in the western region than the eastern region . Seventy-nine percent of cougar confirmations occurred within 50 km of highly suitable habitat (i.e., forest areas with steep terrain and low road and human densities). Given the number of cougar confirmations, the increasing frequency of occurrences, and that long-distance dispersal has been documented via radiocollared individuals, our research suggests that cougars are continuing to recolonize midwestern North America. © 2012 The Wildlife Society.  相似文献   

12.
Researchers consider predation rates by terrestrial animals to be lower in the case of arboreal primates, particularly among large-bodied species. We recorded the consumption of black-and-gold howlers (Alouatta caraya) by cougars (Puma concolor) as evidence of predation on an island of the upper Paraná River. We collected and processed fecal samples of the felid in 2004 and 2005. We identified items in the laboratory by comparison with museum specimens. We considered each species in a fecal sample as a single occurrence. Based on analysis of the cuticle scale pattern, we identified the felid as cougar. Howlers occurred in 4 out of the 8 fecal samples (40% of the occurrences). In addition to howlers, we also recorded 5 occurrences of agouti (Dasyprocta azarae; 50%) and a small unidentified sigmodontine rodent (10%). The abundance of howlers and the low forest canopy in a successional vegetation might have facilitated the predation of the large primates by a primarily terrestrial predator. The versatility of cougars is corroborated by the consumption of prey species that were abundant in the region and that were available in different forest strata, such as howlers and agoutis.  相似文献   

13.
Abstract: Assessing the impact of large carnivores on ungulate prey has been challenging in part because even basic components of predation are difficult to measure. For cougars (Puma concolor), limited field data are available concerning fundamental aspects of predation, such as kill rate, or the influence of season, cougar demography, or prey vulnerability on predation, leading to uncertainty over how best to predict or interpret cougar-ungulate dynamics. Global Positioning System (GPS) telemetry used to locate predation events in the field is an efficient way to monitor large numbers of cougars over long periods in all seasons. We applied GPS telemetry techniques combined with occasional snow-tracking to locate 1,509 predation events for 53 marked and an unknown number of unmarked cougars and amassed 9,543 days of continuous predation monitoring for a subset of 42 GPS-collared cougars in west-central Alberta, Canada. Cougars killed ungulates at rates near the upper end of the previously recorded range, and demography substantially influenced annual kill rate in terms of both number of ungulates (subad F [SAF] = 24, subad M [SAM] = 31, ad M = 35, ad F = 42, ad F with kittens <6 months = 47, ad F with kittens <6 months = 67) and kg of prey (SAF = 1,441, SAM = 2,051, ad M = 4,708, ad F = 2,423, ad F with kittens <6 months = 2,794, ad F with kittens >6 months = 4,280). Demography also influenced prey composition; adult females subsisted primarily on deer (Odocoileus spp.), whereas adult males killed more large ungulates (e.g., moose [Alces alces]), and subadults incorporated the highest proportion of nonungulate prey. Predation patterns varied by season and cougars killed ungulates 1.5 times more frequently in summer when juveniles dominated the diet. Higher kill rate in summer appeared to be driven primarily by greater vulnerability of juvenile prey and secondarily by reduced handling time for smaller prey. Moreover, in accordance with predictions of the reproductive vulnerability hypothesis, female ungulates made up a higher proportion of cougar diet in spring just prior to and during the birthing period, whereas the proportion of males increased dramatically in autumn during the rut, supporting the notion that prey vulnerability influences cougar predation. Our results have implications for the impact cougars have on ungulate populations and have application for using cougar harvest to manage ungulates.  相似文献   

14.
Within the large body of research on retroviruses, the distribution and evolution of endemic retroviruses in natural host populations have so far received little attention. In this study, the epidemiology, genetic diversity, and molecular evolution of feline immunodeficiency virus specific to cougars (FIVpco) was examined using blood samples collected over several years from a free-ranging cougar population in the western United States. The virus prevalence was 58% in this population (n = 52) and increased significantly with host age. Based on phylogenetic analysis of fragments of envelope (env) and polymerase (pol) genes, two genetically distinct lineages of FIVpco were found to cooccur in the population but not in the same individuals. Within each of the virus lineages, geographically nearby isolates formed monophyletic clusters of closely related viruses. Sequence diversity for env within a host rarely exceeded 1%, and the evolution of this gene was dominated by purifying selection. For both pol and env, our data indicate mean rates of molecular evolution of 1 to 3% per 10 years. These results support the premise that FIVpco is well adapted to its cougar host and provide a basis for comparing lentivirus evolution in endemic and epidemic infections in natural hosts.  相似文献   

15.
We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.  相似文献   

16.
The use of noninvasive genetic sampling (NGS) for surveying wild populations is increasing rapidly. Currently, only a limited number of studies have evaluated potential biases associated with NGS. This paper evaluates the potential errors associated with analysing mixed samples drawn from multiple animals. Most NGS studies assume that mixed samples will be identified and removed during the genotyping process. We evaluated this assumption by creating 128 mixed samples of extracted DNA from brown bear (Ursus arctos) hair samples. These mixed samples were genotyped and screened for errors at six microsatellite loci according to protocols consistent with those used in other NGS studies. Five mixed samples produced acceptable genotypes after the first screening. However, all mixed samples produced multiple alleles at one or more loci, amplified as only one of the source samples, or yielded inconsistent electropherograms by the final stage of the error-checking process. These processes could potentially reduce the number of individuals observed in NGS studies, but errors should be conservative within demographic estimates. Researchers should be aware of the potential for mixed samples and carefully design gel analysis criteria and error checking protocols to detect mixed samples.  相似文献   

17.
Population structure, connectivity, and dispersal success of individuals can be challenging to demonstrate for solitary carnivores with low population densities. Though the cougar (Puma concolor) is widely distributed throughout North America and is capable of dispersing long distances, populations can be geographically structured and genetic isolation has been documented in some small populations. We described genetic structure and explored the relationship between landscape resistance and genetic variation in cougars in Washington and southern British Columbia using allele frequencies of 17 microsatellite loci for felids. We evaluated population structure of cougars using the Geneland clustering algorithm and spatial principal components analysis. We then used Circuitscape to estimate the landscape resistance between pairs of individuals based on rescaled GIS layers for forest canopy cover, elevation, human population density and highways. We quantified the effect of landscape resistance on genetic distance using multiple regression on distance matrices and boosted regression tree analysis. Cluster analysis identified four populations in the study area. Multiple regression on distance matrices and boosted regression tree models indicated that only forest canopy cover and geographic distance between individuals had an effect on genetic distance. The boundaries between genetic clusters largely corresponded with breaks in forest cover, showing agreement between population structure and genetic gradient analyses. Our data indicate that forest cover promotes gene flow for cougars in the Pacific Northwest, which provides insight managers can use to preserve or enhance genetic connectivity.  相似文献   

18.
Estimating abundance of wildlife populations can be challenging and costly, especially for species that are difficult to detect and that live at low densities, such as cougars (Puma concolor). Remote, motion-sensitive cameras are a relatively efficient monitoring tool, but most abundance estimation techniques using remote cameras rely on some or all of the population being uniquely identifiable. Recently developed methods estimate abundance from encounter rates with remote cameras and do not require identifiable individuals. We used 2 methods, the time-to-event and space-to-event models, to estimate the density of 2 cougar populations in Idaho, USA, over 3 winters from 2016–2019. We concurrently estimated cougar density using the random encounter model (REM), an existing camera-based method for unmarked populations, and genetic spatial capture recapture (SCR), an established method for monitoring cougar populations. In surveys for which we successfully estimated density using the SCR model, the time-to-event estimates were more precise and showed comparable variation between survey years. The space-to-event estimates were less precise than the SCR estimates and were more variable between survey years. Compared to REM, time-to-event was more precise and consistent, and space-to-event was less precise and consistent. Low sample sizes made the space-to-event and SCR models inconsistent from survey to survey, and non-random camera placement may have biased both of the camera-based estimators high. We show that camera-based estimators can perform comparably to existing methods for estimating abundance in unmarked species that live at low densities. With the time- and space-to-event models, managers could use remote cameras to monitor populations of multiple species at broader spatial and temporal scales than existing methods allow. © 2020 The Wildlife Society.  相似文献   

19.
Conservation and management efforts have resulted in population increases and range expansions for some apex predators, potentially changing trophic cascades and foraging behavior. Changes in sympatric carnivore and dominant scavenger populations provide opportunities to assess how carnivores affect one another. Cougars (Puma concolor) were the apex predator in the Great Basin of Nevada, USA, for over 80 years. Black bears (Ursus americanus) have recently recolonized the area and are known to heavily scavenge on cougar kills. To evaluate the impacts of sympatric, recolonizing bears on cougar foraging behavior in the Great Basin, we investigated kill sites of 31 cougars between 2009 and 2017 across a range of bear densities. We modeled the variation in feeding bout duration (number of nights spent feeding on a prey item) and the proportion of primary prey, mule deer (Odocoileus hemionus), in cougar diets using mixed‐effects models. We found that feeding bout duration was driven primarily by the size of the prey item being consumed, local bear density, and the presence of dependent kittens. The proportion of mule deer in cougar diet across all study areas declined over time, was lower for male cougars, increased with the presence of dependent kittens, and increased with higher bear densities. In sites with feral horses (Equus ferus), a novel large prey, cougar consumption of feral horses increased over time. Our results suggest that higher bear densities over time may reduce cougar feeding bout durations and influence the prey selection trade‐off for cougars when alternative, but more dangerous, large prey are available. Shifts in foraging behavior in multicarnivore systems can have cascading effects on prey selection. This study highlights the importance of measuring the impacts of sympatric apex predators and dominant scavengers on a shared resource base, providing a foundation for monitoring dynamic multipredator/scavenger systems.  相似文献   

20.

Background

Recent findings indicate that cougars (Puma concolor) are expanding their range into the midwestern United States. Confirmed reports of cougar in Michigan, Minnesota, and Wisconsin have increased dramatically in frequency during the last five years, leading to speculation that cougars may re-establish in the Upper Great Lakes (UGL) region, USA. Recent work showed favorable cougar habitat in northeastern Minnesota, suggesting that the northern forested regions of Michigan and Wisconsin may have similar potential. Recolonization of cougars in the UGL states would have important ecological, social, and political impacts that will require effective management.

Methodology/Principal Findings

Using Geographic Information Systems (GIS), we extended a cougar habitat model to Michigan and Wisconsin and incorporated primary prey densities to estimate the capacity of the region to support cougars. Results suggest that approximately 39% (>58,000 km2) of the study area could support cougars, and that there is potential for a population of approximately 500 or more animals. An exploratory validation of this habitat model revealed strong association with 58 verified cougar locations occurring in the study area between 2008 and 2013.

Conclusions/Significance

Spatially explicit information derived from this study could potentially lead to estimation of a viable population, delineation of possible cougar-human conflict areas, and the targeting of site locations for current monitoring. Understanding predator-prey interactions, interspecific competition, and human-wildlife relationships is becoming increasingly critical as top carnivores continue to recolonize the UGL region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号