首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied survival and causes of mortality of radiocollared cougars (Puma concolor) on the Greater Yellowstone Northern Range (GYNR) prior to (1987–1994) and after wolf (Canis lupus) reintroduction (1998–2005) and evaluated temporal, spatial, and environmental factors that explain variation in adult, subadult, and kitten survival. Using Program MARK and multimodel inference, we modeled cougar survival based on demographic status, season, and landscape attributes. Our best models for adult and independent subadults indicated that females survived better than males and survival increased with age until cougars reached older ages. Lower elevations and increasing density of roads, particularly in areas open to cougar hunting north of Yellowstone National Park (YNP), increased mortality risks for cougars on the GYNR. Indices of ungulate biomass, cougar and wolf population size, winter severity, rainfall, and individual characteristics such as the presence of dependent young, age class, and use of Park or Wilderness were not important predictors of survival. Kitten survival increased with age, was lower during winter, increased with increasing minimum estimates of elk calf biomass, and increased with increasing density of adult male cougars. Using our best model, we mapped adult cougar survival on the GYNR landscape. Results of receiver operating characteristic (ROC) analysis indicated a good model fit for both female (area under the curve [AUC] = 0.81, 95%CI = 0.70–0.92, n = 35 locations) and male cougars (AUC = 0.84, 95%CI = 0.74–0.94, n = 49 locations) relative to hunter harvest locations in our study area. Using minimum estimates of survival necessary to sustain the study population, we developed a source-sink surface and we identify several measures that resource management agencies can take to enhance cougar population management based on a source-sink strategy. © 2011 The Wildlife Society.  相似文献   

2.
Estimates of cougar (Puma concolor) density are among the least available of any big game species in North America because of monetary and logistical challenges. Thus, wildlife managers identify cougar density estimates as a high priority need for population estimation, developing harvest guidelines, and evaluating management objectives. Cougar densities range from <1 to almost 7 cougars/100 km2; however, the magnitude of spatial and temporal variation associated with these estimates is difficult to assess because this range of densities could potentially be reported for any given population using different demographic, temporal, durational, and analytical approaches. We used long-term global positioning system (GPS) data from collared cougars across 5 diverse study areas in Washington, USA, as the basis for calculating multiple annual independent-aged (≥18 months) cougar densities, using consistent methods, and conducted a meta-analysis to assist with statewide harvest guidelines. To generate specific harvest guidelines for unobserved populations at the management unit scale, we employed a Bayesian decision-theoretic approach that minimizes statistical risk of failing to achieve a defined harvest rate. For the 16-year field effort, we calculated 24 annual densities for independent-aged cougars. Average annual densities ranged from 1.55 ± 0.44 (SD) cougars/100 km2 (n = 5 years) to 2.79 ± 0.35 cougars/100 km2 (n = 5 years) among the 5 study areas. Explicit delineation of the cougar population demonstrated that contribution to density can vary considerably by sex and age class. Application of a 12–16% harvest rate within the risk analysis framework yielded a potential annual harvest of 249 cougars over 91,000 km2 of cougar habitat in Washington. Given the importance of density for establishing harvest guidelines, and the degree of uncertainty in projecting derived densities to future years and unstudied management units, our approach may lessen the ambiguity of extrapolations and increase the longevity of research results. Our risk analysis can be used for a diverse array of species and management objectives and be incorporated into an adaptive management framework for minimizing management risk. Our recommendations can improve standardization in reporting and interpretation of cougar density comparisons and bring clarity to the sources of variability observed in cougar populations. © 2021 The Wildlife Society.  相似文献   

3.
The effects of increased mortality on the spatial dynamics of solitary carnivores are not well understood. We examined the spatial ecology of two cougar populations that differed in hunting intensity to test whether increased mortality affected home range size and overlap. The stability hypothesis predicts that home range size and overlap will be similar for both sexes among the two areas. The instability hypothesis predicts that home range size and overlap will be greater in the heavily hunted population, although may differ for males versus females due to behavior strategies. We marked 22 adult resident cougars in the lightly hunted population and 20 in the heavily hunted population with GPS collars from 2002 to 2008. Cougar densities and predation rates were similar among areas, suggesting no difference in per capita resources. We compared home range size, two‐dimensional home range overlap, and three‐dimensional utilization distribution overlap index (UDOI) among annual home ranges for male and female cougars. Male cougars in the heavily hunted area had larger sized home ranges and greater two‐dimensional and three‐dimensional UDOI overlap than those in the lightly hunted area. Females showed no difference in size and overlap of home range areas between study populations – further suggesting that differences in prey quantity and distribution between study areas did not explain differences in male spatial organization. We reject the spatial stability hypothesis and provide evidence to support the spatial instability hypothesis. Increased hunting and ensuing increased male home range size and overlap may result in negative demographic effects for cougars and potential unintended consequences for managers.  相似文献   

4.
The geography of the Black Hills region of South Dakota and Wyoming may limit connectivity for many species. For species with large energetic demands and large home ranges or species at low densities this can create viability concerns. Carnivores in this region, such as cougars (Puma concolor), have the additive effect of natural and human-induced mortality; this may act to decrease long-term viability. In this study we set out to explore genetic diversity among cougar populations in the Black Hills and surrounding areas. Specifically, our objectives were to first compare genetic variation and effective number of breeders of cougars in the Black Hills during three harvest regimes: pre (2003–2006), moderate (2007–2010), and heavy (2011–2013), to determine if harvest impacted genetic variation. Second, we compared genetic structure of the Black Hills cougar population with cougar populations in neighboring eastern Wyoming and North Dakota. Using 20 microsatellite loci, we conducted genetic analysis on DNA samples from cougars in the Black Hills (n = 675), North Dakota (n = 113), and eastern Wyoming (n = 62) collected from 2001–2013. Here we report that the Black Hills cougar population maintained genetic variation over the three time periods. Our substructure analysis suggests that the maintenance of genetic variation was due to immigration from eastern Wyoming and possibly North Dakota.  相似文献   

5.
Emerging diseases and expanding carnivore populations may have profound implications for ungulate harvest management and population regulation. To better understand effects of chronic wasting disease (CWD) and cougar (Puma concolor) predation, we studied mortality and recruitment of elk (Cervus elaphus) at Wind Cave National Park (WICA) during 2005–2009. We marked 202 elk (83 subadult M and 119 subadult and ad F) with Global Positioning System (GPS) collars, observed 28 deaths during 74,220 days of monitoring, and investigated 42 additional deaths of unmarked elk found dead. Survival rates were similar for males and females and averaged 0.863 (SE = 0.025) annually. Leading causes of mortality included hunting (0.065, SE = 0.019), CWD (0.034, SE = 0.012), and cougar predation (0.029, SE = 0.012). Marked elk killed by hunters and cougars typically were in good physical condition and not infected with CWD. Effects of mortality on population growth were exacerbated by low rates of pregnancy (subadults = 9.5%, SE = 6.6%; ad = 76.9%, SE = 4.2%) and perinatal survival (0.49, SE = 0.085 from 1 Feb to 1 Sep). Chronic wasting disease, increased predation, and reduced recruitment reduced the rate of increase for elk at WICA to approximately λ = 1.00 (SE = 0.027) during the past decade. Lower rates of increase are mitigating effects of elk on park vegetation, other wildlife, and neighboring lands and will facilitate population control, but may reduce opportunities for elk hunting outside the park. © 2011 The Wildlife Society  相似文献   

6.
Abstract: In western Canada it is illegal to trap or snare cougars (Puma concolor), but cougars are sometimes caught accidentally in snares placed near carrion baits, a technique commonly used by trappers to harvest wolves (Canis lupus). We studied cougar foraging ecology and survival in west-central Alberta to estimate the propensity for cougars to scavenge, their susceptibility to snaring at trapper bait stations, and the implications these have for managing cougar populations. During 2005–2008, we used data from visits to 3,407 Global Positioning System (GPS) location clusters and >400 km of snow tracking of 44 cougars to locate foraging events and calculate scavenging rates. We identified 83 instances of scavenging, and 64% of monitored cougars scavenged at least once. Scavenging rates were higher in winter (0.12 events/week) than in summer (0.04 events/week), reflecting seasonal variation in carrion availability. Individual cougars scavenged at different rates, and winter feeding on carrion occupied up to 50% of total carcass handling time for some cougars. Based on these results we conclude that cougars are facultative scavengers. A propensity to scavenge made cougars susceptible to snaring causing high annual mortality in radiocollared cougars (0.11, 95% CI = 0.03–0.21). Provincial cougar mortality data demonstrate that snaring has increased dramatically as a mortality source in Alberta over the last 2 decades. Mortalities of radiocollared cougars during our study were 100% human caused and the addition of snaring mortality to already high hunting mortality resulted in low annual survival (0.67, 95% CI = 0.53–0.81). Our study is one of the first to identify population-level consequences for nontarget animals killed unintentionally by indiscriminate harvest techniques in a terrestrial ecosystem. Maintaining sustainable cougar harvest where snaring at carrion baits is permitted may require flexible hunting quotas capable of accommodating high cougar snaring mortalities in some years.  相似文献   

7.
Remedial sport hunting of predators is often used to reduce predator populations and associated complaints and livestock depredations. We assessed the effects of remedial sport hunting on reducing cougar complaints and livestock depredations in Washington from 2005 to 2010 (6 years). The number of complaints, livestock depredations, cougars harvested, estimated cougar populations, human population and livestock populations were calculated for all 39 counties and 136 GMUs (game management units) in Washington. The data was then analyzed using a negative binomial generalized linear model to test for the expected negative relationship between the number of complaints and depredations in the current year with the number of cougars harvested the previous year. As expected, we found that complaints and depredations were positively associated with human population, livestock population, and cougar population. However, contrary to expectations we found that complaints and depredations were most strongly associated with cougars harvested the previous year. The odds of increased complaints and livestock depredations increased dramatically (36 to 240%) with increased cougar harvest. We suggest that increased young male immigration, social disruption of cougar populations, and associated changes in space use by cougars - caused by increased hunting resulted in the increased complaints and livestock depredations. Widespread indiscriminate hunting does not appear to be an effective preventative and remedial method for reducing predator complaints and livestock depredations.  相似文献   

8.
Abstract: Assessing the impact of large carnivores on ungulate prey has been challenging in part because even basic components of predation are difficult to measure. For cougars (Puma concolor), limited field data are available concerning fundamental aspects of predation, such as kill rate, or the influence of season, cougar demography, or prey vulnerability on predation, leading to uncertainty over how best to predict or interpret cougar-ungulate dynamics. Global Positioning System (GPS) telemetry used to locate predation events in the field is an efficient way to monitor large numbers of cougars over long periods in all seasons. We applied GPS telemetry techniques combined with occasional snow-tracking to locate 1,509 predation events for 53 marked and an unknown number of unmarked cougars and amassed 9,543 days of continuous predation monitoring for a subset of 42 GPS-collared cougars in west-central Alberta, Canada. Cougars killed ungulates at rates near the upper end of the previously recorded range, and demography substantially influenced annual kill rate in terms of both number of ungulates (subad F [SAF] = 24, subad M [SAM] = 31, ad M = 35, ad F = 42, ad F with kittens <6 months = 47, ad F with kittens <6 months = 67) and kg of prey (SAF = 1,441, SAM = 2,051, ad M = 4,708, ad F = 2,423, ad F with kittens <6 months = 2,794, ad F with kittens >6 months = 4,280). Demography also influenced prey composition; adult females subsisted primarily on deer (Odocoileus spp.), whereas adult males killed more large ungulates (e.g., moose [Alces alces]), and subadults incorporated the highest proportion of nonungulate prey. Predation patterns varied by season and cougars killed ungulates 1.5 times more frequently in summer when juveniles dominated the diet. Higher kill rate in summer appeared to be driven primarily by greater vulnerability of juvenile prey and secondarily by reduced handling time for smaller prey. Moreover, in accordance with predictions of the reproductive vulnerability hypothesis, female ungulates made up a higher proportion of cougar diet in spring just prior to and during the birthing period, whereas the proportion of males increased dramatically in autumn during the rut, supporting the notion that prey vulnerability influences cougar predation. Our results have implications for the impact cougars have on ungulate populations and have application for using cougar harvest to manage ungulates.  相似文献   

9.
Although cougars (Puma concolor) were extirpated from much of midwestern North America around 1900, hard evidence of cougar presence has increased and populations have become established in the upper portions of the Midwest during the past 20 years. Recent occurrences of cougars in the Midwest are likely due to dispersal of subadult cougars into the region from established western populations, and may be indicative of further recolonization and range expansion. We compiled confirmed locations of cougars (i.e., via carcasses, tracks, photos, video, and DNA evidence) collected during 1990–2008 in 14 states and provinces of midwestern North America. We separated our study area into 2 regions (east and west), calculated number and types of confirmations, and assessed trends in confirmations during the study period. We recorded 178 cougar confirmations in the Midwest and the number of confirmations increased during the study period (r = 0.79, P ≤ 0.001). Confirmations by state or province ranged from 1 (Kansas, Michigan, and Ontario) to 67 (Nebraska). Carcasses were the most prevalent confirmation type (n = 56). Seventy-six percent of known-sex carcass confirmations were males, consistent with predominantly male-biased dispersal in cougars. More confirmations (P = 0.05) were recorded in the western region than the eastern region . Seventy-nine percent of cougar confirmations occurred within 50 km of highly suitable habitat (i.e., forest areas with steep terrain and low road and human densities). Given the number of cougar confirmations, the increasing frequency of occurrences, and that long-distance dispersal has been documented via radiocollared individuals, our research suggests that cougars are continuing to recolonize midwestern North America. © 2012 The Wildlife Society.  相似文献   

10.
We investigated patterns of relatedness and reproduction in a population of striped hyenas in which individuals are behaviourally solitary but form polyandrous spatial groups consisting of one adult female and multiple adult males. Group-mate males were often close relatives, but were unrelated or distantly related in some cases, indicating that male coalitions are not strictly a result of philopatry or dispersal with cohorts of relatives. Most male-female pairs within spatial groups were unrelated or only distantly related. Considering patterns of relatedness between groups, relatedness was significantly higher among adult males living in non-neighbouring ranges than among neighbouring males. Mean relatedness among male-female dyads was highest for group-mates, but relatedness among non-neighbouring males and females was also significantly higher than among dyads of opposite-sex neighbours. Female-female relatedness also increased significantly with increasing geographic separation. These unusual and unexpected patterns may reflect selection to settle in a nonadjacent manner to reduce inbreeding and/or competition among relatives for resources (both sexes), or mates (males). Finally, resident males fathered the majority of the resident female's cubs, but extra-group paternity was likely in 31% of the cases examined, and multiple paternity was likely in half of the sampled litters.  相似文献   

11.
As human populations continue to expand across the world, the need to understand and manage wildlife populations within the wildland – urban interface is becoming commonplace. This is especially true for large carnivores as these species are not always tolerated by the public and can pose a risk to human safety. Unfortunately, information on wildlife species within the wildland – urban interface is sparse, and knowledge from wildland ecosystems does not always translate well to human‐dominated systems. Across western North America, cougars (Puma concolor) are routinely utilizing wildland – urban habitats while human use of these areas for homes and recreation is increasing. From 2007 to 2015, we studied cougar resource selection, human–cougar interaction, and cougar conflict management within the wildland – urban landscape of the northern Front Range in Colorado, USA. Resource selection of cougars within this landscape was typical of cougars in more remote settings but cougar interactions with humans tended to occur in locations cougars typically selected against, especially those in proximity to human structures. Within higher housing density areas, 83% of cougar use occurred at night, suggesting cougars generally avoided human activity by partitioning time. Only 24% of monitored cougars were reported for some type of conflict behavior but 39% of cougars sampled during feeding site investigations of GPS collar data were found to consume domestic prey items. Aversive conditioning was difficult to implement and generally ineffective for altering cougar behaviors but was thought to potentially have long‐term benefits of reinforcing fear of humans in cougars within human‐dominated areas experiencing little cougar hunting pressure. Cougars are able to exploit wildland – urban landscapes effectively, and conflict is relatively uncommon compared with the proportion of cougar use. Individual characteristics and behaviors of cougars within these areas are highly varied; therefore, conflict management is unique to each situation and should target individual behaviors. The ability of individual cougars to learn to exploit these environments with minimal human–cougar interactions suggests that maintaining older age structures, especially females, and providing a matrix of habitats, including large connected open‐space areas, would be beneficial to cougars and effectively reduce the potential for conflict.  相似文献   

12.
Wildlife agencies typically attempt to manage carnivore numbers in localized game management units through hunting, and do not always consider the potential influences of immigration and emigration on the outcome of those hunting practices. However, such a closed population structure may not be an appropriate model for management of carnivore populations where immigration and emigration are important population parameters. The closed population hypothesis predicts that high hunting mortality will reduce numbers and densities of carnivores and that low hunting mortality will increase numbers and densities. By contrast, the open population hypothesis predicts that high hunting mortality may not reduce carnivore densities because of compensatory immigration, and low hunting mortality may not result in more carnivores because of compensatory emigration. Previous research supported the open population hypothesis with high immigration rates in a heavily hunted (hunting mortality rate=0.24) cougar population in northern Washington. We test the open population hypothesis and high emigration rates in a lightly hunted (hunting mortality rate=0.11) cougar population in central Washington by monitoring demography from 2002 to 2007. We used a dual sex survival/fecundity Leslie matrix to estimate closed population growth and annual census counts to estimate open population growth. The observed open population growth rate of 0.98 was lower than the closed survival/fecundity growth rates of 1.13 (deterministic) and 1.10 (stochastic), and suggests a 12–15% annual emigration rate. Our data support the open population hypothesis for lightly hunted populations of carnivores. Low hunting mortality did not result in increased numbers and densities of cougars, as commonly believed because of compensatory emigration.  相似文献   

13.
Female promiscuity is common among mammals but its advantages, particularly for marsupials, remain unclear. Using microsatellite DNA from pouch young of known mothers, we identified the most likely fathers of 25 wild spotted-tailed quolls ( Dasyurus maculatus ) from six litters. We aimed to determine whether young within the same litter had different fathers, and whether breeding success of males was associated with large body mass (consistent with inter-male competition) or scrotal width (consistent with sperm competition). We also explored the possible influence of promiscuity on relatedness within litters. Finally, we used data on paternity and relatedness to make inferences regarding movement and dispersal.
Four litters were sired by more than one male, and three males sired offspring in more than one litter. Known fathers had higher body mass, but not scrotal width, than males of unknown paternity status, suggesting that males may compete for access to females. Sires were less related to dams than expected by chance, and litters with multiple paternity had lower relatedness than litters sired by a single male.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 1–7.  相似文献   

14.
We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.  相似文献   

15.
Although monitoring population trends is an essential component of game species management, wildlife managers rarely have complete counts of abundance. Often, they rely on population models to monitor population trends. As imperfect representations of real-world populations, models must be rigorously evaluated to be applied appropriately. Previous research has evaluated population models for white-tailed deer (Odocoileus virginianus); however, the precision and reliability of these models when tested against empirical measures of variability and bias largely is untested. We were able to statistically evaluate the Pennsylvania sex-age-kill (PASAK) population model using realistic error measured using data from 1,131 radiocollared white-tailed deer in Pennsylvania from 2002 to 2008. We used these data and harvest data (number killed, age-sex structure, etc.) to estimate precision of abundance estimates, identify the most efficient harvest data collection with respect to precision of parameter estimates, and evaluate PASAK model robustness to violation of assumptions. Median coefficient of variation (CV) estimates by Wildlife Management Unit, 13.2% in the most recent year, were slightly above benchmarks recommended for managing game species populations. Doubling reporting rates by hunters or doubling the number of deer checked by personnel in the field reduced median CVs to recommended levels. The PASAK model was robust to errors in estimates for adult male harvest rates but was sensitive to errors in subadult male harvest rates, especially in populations with lower harvest rates. In particular, an error in subadult (1.5-yr-old) male harvest rates resulted in the opposite error in subadult male, adult female, and juvenile population estimates. Also, evidence of a greater harvest probability for subadult female deer when compared with adult (≥2.5-yr-old) female deer resulted in a 9.5% underestimate of the population using the PASAK model. Because obtaining appropriate sample sizes, by management unit, to estimate harvest rate parameters each year may be too expensive, assumptions of constant annual harvest rates may be necessary. However, if changes in harvest regulations or hunter behavior influence subadult male harvest rates, the PASAK model could provide an unreliable index to population changes. © 2012 The Wildlife Society.  相似文献   

16.
Male and female predators are often assumed to have the same effects on prey. Because of differences in body size and behavior, however, male and female predators may use different species, sexes, and ages of prey, which could have important implications for wildlife conservation and management. We tested for differential prey use by male and female cougars (Puma concolor) from 2003 to 2008 in Washington State. We predicted that male cougars would kill a greater proportion of larger and older prey (i.e., adult elk [Cervus elaphus]), whereas females would kill smaller and younger prey (i.e., elk calves, mule deer [Odocoileus hemionus]). We marked cougars with Global Positioning System (GPS) radio collars and investigated 436 predation sites. We located prey remains at 345 sites from 9 male and 9 female cougars. We detected 184 mule deer, 142 elk, and 17 remains from 4 other species. We used log-linear modeling to detect differences in species and age of prey killed among cougar reproductive classes. Solitary females and females with dependent offspring killed more mule deer than elk (143 vs. 83, P < 0.01), whereas males killed more elk than mule deer (59 vs. 41, P < 0.01). Proportionately, males killed 4 times more adult elk than did females (24% vs. 6% of kills) and females killed 2 times more adult mule deer than did males (26% vs. 15% of kills). Managers should consider the effects of sex of predator in conservation and management of ungulates, particularly when managing for sensitive species. © 2011 The Wildlife Society.  相似文献   

17.
Although cougars (Puma concolor) appear to be recolonizing the midwestern United States, there is concern that hunting in source populations (primarily the Black Hills, SD and WY, USA) may prevent cougars from dispersing eastward. We use carcass data of cougars (n =147 carcasses at known locations, of which 111 were of known sex) in the Midwest collected during 1990–2015 to quantify whether cougar hunting in the Black Hills affected cougar distribution and presence in the Midwest. We separated carcass data into 2 time periods: before hunting in the Black Hills (i.e., pre-hunt; 1990–2004) and after hunting (i.e., post-hunt; 2005–2015). We hypothesized that if hunting prevented dispersal into the Midwest, cougar distribution would be random and their presence less, relative to the pre-hunt period. We also were interested in sex ratios of carcasses over time, given the importance of that demographic metric to the potential establishment of viable populations. During the pre-hunt period, 25 carcasses were dispersed randomly in the Midwest. During the post-hunt period, we found nearly 4 times the number of carcasses in the Midwest (n = 86), carcasses were significantly clustered, and a greater percentage of carcasses were female (pre-hunt n = 6 [24%]; post-hunt n = 27 [31%]). Relative to the pre-hunt period, we observed a 460-km northward shift in the directional distribution of carcass locations during the post-hunt period. These findings do not support the idea that hunting in the Black Hills has prevented cougar presence from increasing in the Midwest. Alternatively, we suggest the potential for immigration from cougar populations farther to the west as an explanation for the increase in cougar presence (particularly females) confirmed after the initiation of cougar hunting in the Black Hills. © 2019 The Wildlife Society.  相似文献   

18.
The performance of 2 popular methods that use age-at-harvest data to estimate abundance of white-tailed deer is contingent on assumptions about variation in estimates of subadult (1.5 yr old) and adult (≥2.5 yr old) male harvest rates. Auxiliary data (e.g., estimates of survival or harvest rates from radiocollared animals) can be used to relax some assumptions, but unless these population parameters exhibit limited temporal or spatial variation, these auxiliary data may not improve accuracy. Unfortunately maintaining sufficient sample sizes of radiocollared deer for parameter estimation in every wildlife management unit (WMU) is not feasible for most state agencies. We monitored the fates of 397 subadult and 225 adult male white-tailed deer across 4 WMUs from 2002 to 2008 using radio telemetry. We investigated spatial and temporal variation in harvest rates and investigated covariates related to the patterns observed. We found that most variation in harvest rates was explained spatially and that adult harvest rates (0.36–0.69) were more variable among study areas than subadult harvest rates (0.26–0.42). We found that hunter effort during the archery and firearms season best explained variation in harvest rates of adult males among WMUs, whereas hunter effort during only the firearms season best explained harvest rates for subadult males. From a population estimation perspective, it is advantageous that most variation was spatial and explained by a readily obtained covariate (hunter effort). However, harvest rates may vary if hunting regulations or hunter behavior change, requiring additional field studies to obtain accurate estimates of harvest rates. © 2011 The Wildlife Society.  相似文献   

19.
We describe the patterns of paternity success from laboratory mating experiments conducted in Antechinus agilis, a small size dimorphic carnivorous marsupial (males are larger than females). A previous study found last‐male sperm precedence in this species, but they were unable to sample complete litters, and did not take male size and relatedness into account. We tested whether last‐male sperm precedence regardless of male size still holds for complete litters. We explored the relationship between male mating order, male size, timing of mating and relatedness on paternity success. Females were mated with two males of different size with either the large or the small male first, with 1 day rest between the matings. Matings continued for 6 h. In these controlled conditions male size did not have a strong effect on paternity success, but mating order did. Males mating second sired 69.5% of the offspring. Within first mated males, males that mated closer to ovulation sired more offspring. To a lesser degree, variation appeared also to be caused by differences in genetic compatibility of the female and the male, where high levels of allele‐sharing resulted in lower paternity success.  相似文献   

20.
Conventional methods for monitoring cougar, Puma concolor, populations involve capture, tagging, and radio-collaring, but these methods are time-consuming, expensive, and logistically challenging. For difficult-to-study species such as cougars, noninvasive genetic sampling (NGS) may be a useful alternative. The ability to identify individuals from samples collected through NGS methods provides many opportunities for developing population-monitoring tools, but the utility of these survey methods is dependent upon collection of samples and accurate genotyping of those samples. In January 2003, we initiated a 3-yr evaluation of NGS methods for cougars using a radio-collared population in Yellowstone National Park (YNP), USA. Our goals were to: 1) determine which DNA collection method, hair snares or snow tracking, provided a better method for obtaining samples for genetic analysis, 2) evaluate reliability of the genetic data derived from hair samples collected in the field, and 3) evaluate the potential of NGS for demographic monitoring of cougar populations. Snow tracking yielded more hair samples and was more cost effective than snagging hair with rub pads. Samples collected from bed sites and natural hair snags (e.g., branch tips, thorn bushes) while snow tracking accurately identified and sexed 22 individuals (9 F, 13 M). The ratio of the count from snow tracking to the count from radio-telemetry was 15:24 in winter 2004, 13:12 in 2005, and 22:29 for both years combined. Annual capture probabilities for obtaining DNA from snow tracking varied considerably between years for females (0.42 in 2004 and 0.88 in 2005) but were more consistent for males (0.77 in 2004 and 0.88 in 2005). Our results indicate that snow tracking can be an efficient, reliable NGS method for cougars in YNP and has potential for estimating demographic and genetic parameters of other carnivore populations in similar climates. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号