首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The correlation between vegetation patterns (species distribution and richness) and altitudinal variation has been widely reported for tropical forests, thereby providing theoretical basis for biodiversity conservation. However, this relationship may have been oversimplified, as many other factors may influence vegetation patterns, such as disturbances, topography and geographic distance. Considering these other factors, our primary question was: is there a vegetation pattern associated with substantial altitudinal variation (10–1,093 m a.s.l.) in the Atlantic Rainforest—a top hotspot for biodiversity conservation—and, if so, what are the main factors driving this pattern? We addressed this question by sampling 11 1-ha plots, applying multivariate methods, correlations and variance partitioning. The Restinga (forest on sandbanks along the coastal plains of Brazil) and a lowland area that was selectively logged 40 years ago were floristically isolated from the other plots. The maximum species richness (>200 spp. per hectare) occurred at approximately 350 m a.s.l. (submontane forest). Gaps, multiple stemmed trees, average elevation and the standard deviation of the slope significantly affected the vegetation pattern. Spatial proximity also influenced the vegetation pattern as a structuring environmental variable or via dispersal constraints. Our results clarify, for the first time, the key variables that drive species distribution and richness across a large altitudinal range within the Atlantic Rainforest.  相似文献   

2.
Abstract The Atlantic Rainforest originally covered much of the Brazilian coast and is now reduced to approximately only 7% of its original area. Data on abundance distribution and microhabitat characteristics of anuran amphibians living on the forest floor leaf litter in the Atlantic Rainforest are scarce. In this study, we analysed the effect of litter depth and structure on the abundance and species richness of leaf‐litter frogs in an area of Atlantic Rainforest at Ilha Grande, Rio de Janeiro State, south‐eastern Brazil. We performed monthly samples (nocturnal and diurnal) from August 1996 to October 1997 using small (2 m × 1 m) plots. We sampled 234 plots, totalling 468 m2 of forest leaf litter. We estimated leaf‐litter depth and the proportion of leaves in the plot and tested their effect on the total abundance of frogs and species richness using multiple regression analysis. We found 185 frogs from eight species: Brachycephalus (=Psyllophryne) didactylus (Izecksohn, 1971) (Brachycephalidae), Dendrophryniscus brevipollicatus Jiménez de la Espada 1871 (Bufonidae), Adenomera marmorata Steindachner 1867, Eleutherodactylus parvus (Girard 1853), Eleutherodactylus guentheri (Steindachner 1864), Eleutherodactylus binotatus (Spix 1824) and Zachaenus parvulus (Girard 1853) (Leptodactylidae), and Chiasmocleis sp. (Microhylidae). Brachycephalus didactylus was the most abundant species, with 91 individuals, whereas Dendrophryniscus brevipollicatus was the rarest, with two individuals. Mean litter depth and the proportion of leaves in the leaf litter were significantly related to frog abundance (R2 = 0.17; F2,107 = 10.779; P = 0.0001) and species richness (R2 = 0.11; F2,107 = 6.375; P = 0.002) indicating that microhabitat characteristics may affect local distribution and abundance of frogs in the forest floor.  相似文献   

3.
The global decline of biodiversity makes it important to find affordable ways to conserve and restore habitats. Restoration is useful for conserving native grasslands, with passive restoration defined as either natural colonization or unassisted recovery. Grasslands in southeastern South America have been transformed into croplands and impacted by other human activities. We describe the first assessment of passive restoration as a management tool to conserve birds in the Pampa grasslands of Brazil. We compared bird species richness using coverage‐based rarefaction and extrapolation, applying PERMANOVA for composition, and the abundance of bird communities between sites undergoing passive restoration (PR) and sites with native grasslands (NG). We employed fitted generalized linear mixed models (GLMM) to quantify relationships between bird occurrence and vegetation structure and cover. We recorded 61 species of birds during our study (45 in PR and 46 in NG) and 762 individuals (333 in PR and 429 in NG). Of these species, 15 were restricted to PR and 16 to NG. Grassland specialists and threatened species were found in both PR and NG, and only vegetation height differed between PR and NG. We detected eight species of conservation concern, including three recorded only in PR, three only in NG, and two in both PR and NG. The absence of marked differences in species richness and composition of bird communities between passive‐restoration and native grasslands in our study suggests that grasslands in the process of passive restoration can provide habitat for many species of grassland birds and that passive restoration is an appropriate management tool for biodiversity conservation in Brazilian grasslands.  相似文献   

4.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

5.
Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7‐ to 8‐year‐old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50‐m plots in four former pasture sites in southern Costa Rica: plantation – trees planted throughout the plot; applied nucleation/islands – trees planted in patches of different sizes; and natural regeneration – no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource‐intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.  相似文献   

6.
During the mid‐1900s, most of the island of Puerto Rico was deforested, but a shift in the economy from agriculture to small industry beginning in the 1950s resulted in the abandonment of agricultural lands and recovery of secondary forest. This unique history provides an excellent opportunity to study secondary forest succession and suggest strategies for tropical forest restoration. To determine the pattern of secondary succession, we describe the woody vegetation in 71 abandoned pastures and forest sites in four regions of Puerto Rico. The density, basal area, aboveground biomass, and species richness of the secondary forest sites were similar to those of the old growth forest sites (>80 yr) after approximately 40 years. The dominant species that colonized recently abandoned pastures occurred over a broad elevational range and are widespread in the neotropics. The species richness of Puerto Rican secondary forests recovered rapidly, but the species composition was quite different in comparison with old growth forest sites, suggesting that enrichment planting will be necessary to restore the original composition. Exotic species were some of the most abundant species in the secondary forest, but their long‐term impact depended on life history characteristics of each species. These data demonstrate that one restoration strategy for tropical forest in abandoned pastures is simply to protect the areas from fire, and allow natural regeneration to produce secondary forest. This strategy will be most effective if remnant forest (i.e., seed sources) still exist in the landscape and soils have not been highly degraded. Patterns of forest recovery also suggest strategies for accelerating natural recovery by planting a suite of generalist species that are common in recently abandoned pastures in Puerto Rico and throughout much of the neotropics.  相似文献   

7.
Recovery of Bird Species in Minimally Restored Indonesian Tin Strip Mines   总被引:1,自引:0,他引:1  
Bird species richness and individual abundances were recorded in old, unrestored tin strip mine plots, in mined plots restored 1, 2, and 3 years before the study, and in adjacent, unmined, natural secondary forest plots on the 11,340‐km2 Indonesian island of Bangka (2°S, 106°E). The objective was to assess the ecological recovery of unrestored and minimally restored mine plots compared with surrounding reference forest. Unrestored mines had not been mined or used for any other purpose for 14–30 years; plots in their first, second, and third year since restoration were old mines planted with Acacia mangium (Leguminosae) at a density of 400 trees/ha. Natural secondary forest plots 20 or more years since the last disturbance were immediately adjacent to both unrestored and restored plots. Bird surveys on 4‐ha plots were performed during the 1995 breeding season. A comparison of data from unrestored plots of widely varying ages showed no significant differences among them for species richness, diversity (Shannon–Wiener index, H′), or individual abundance, indicating that little natural bird community recovery had occurred over time in the plots. However, increases did occur in restored sites over only 3 years for both species richness (r 2 = 0.29, p = 0.04) and diversity (r 2 = 0.45, p = 0.009). All values for third‐year restored plots, however, were still significantly lower than corresponding values for adjacent natural secondary forest plots. The quick return of bird activity on the plots after minimal efforts at restoration supports the idea that simple, inexpensive restoration can be effective for “jump starting” degraded systems at large scales. Such a restoration strategy might be of particular value for degraded land in developing nations, where scientific, professional, and financial resources might be in short supply. Using this strategy, a small number of restoration professionals could mobilize the labor of many local people in many areas, serving to both improve ecological systems and to educate and engage local populations in restoration and conservation projects.  相似文献   

8.
The aim of our study was to compare the shrew community diversity and structure in gradients of tropical forest degradation and restoration. Four plots within each of six habitats of the Ziama Biosphere Reserve were surveyed, including primary forest, secondary forest, cultivated fields, recently (less than 3 years) abandoned fields, young (10–12 years) forest restoration plots, and old (34 years) restoration plots. From August to November 2003, we pitfall-trapped 2,509 shrews representing 11 species. Shrew species richness and composition was similar in the six habitat surveyed, while shrew species abundance varied between habitats. Canopy height and cover, density of stems and trees and understorey density were shown to constitute important parameters influencing the abundance of several shrew species. After clear-cutting, restoration of key attributes of the forest vegetation structure was possible in 10–34 years, either by natural regeneration or by planting of seedlings. The relative abundance of most shrew species was similar between restoring forest (i.e., young restoration plots or fallows) and primary forest. Considering the advantages and disadvantages of these two methods of forest restoration, one of the most suitable management practices to restore forest while preserving shrew biodiversity could be to perform an alternation of native seedling plantation lines and fallows.  相似文献   

9.
Restoration of native vegetation often focuses on the canopy layer species, with the assumption that regeneration of the understory elements will occur as a consequence. The goal of this study was to assess the influence of canopy restoration on the composition and abundance of understory plant species assemblages along riparian margins in the Hunter Valley, NSW, Australia. We compared the floristic composition (richness, abundance, and diversity) of understory species between nonrevegetated (open) and canopy revegetated plots across five sites. A number of other factors that may also influence understory vegetation, including soil nutrients, proximity to main channel, and light availability, were also measured. We found that sites where the canopy had been restored had lower exotic species richness and abundance, as well as higher native species cover, but not native species richness, compared with open sites. Multivariate analysis of plots based on plant community composition showed that revegetated sites were associated with lower total species diversity, light availability, and exotic cover. This study has found that the restoration of the canopy layer does result in lower exotic species richness and cover, and higher native species cover and diversity in the understory, a desirable restoration outcome. Our results provide evidence that restoration of native canopy species may facilitate restoration of native understory species; however, other interventions to increase native species richness of the understory should also be considered as part of management practice.  相似文献   

10.
Slash-and-burn agriculture is an important driver of deforestation and ecosystem degradation, with large effects on biodiversity and carbon sequestration. This study was conducted in a forest in Madagascar, which consists of fragments of slash-and-burn patches, within a matrix of secondary and primary forest. By recording species richness, abundance, and composition of trees, shrubs, and herbs in fallows of various age and slash-and-burn history, and in the secondary and primary forest, we show how slash-and-burn intensity (number of cycles, duration of abandonment), years since last abandonment, and environmental factors (distance to primary forest and topography) affect the natural succession and recovery of the forest ecosystem. We used ordination analyses to examine how the species composition varied between the different successions stages, and to examine tree recruitment. Our results show shrub dominance the first years after abandonment. Thereafter, a subsequent increase in species richness and abundance of tree seedlings and saplings suggests a succession towards the diversity and composition of the secondary and primary forest, although a big gap between the oldest fallows and the secondary forest shows that this will take much more than 30 years. A high number and frequency of slash-and-burn cycles decreased tree seedling and sapling richness and abundance, suggesting that reducing slash-and-burn intensity will increase the speed of tree recruitment and fallow recovery. Trees can be planted into fallows to speed up vegetation and soil recovery, such that fallows can be usable within needed time and thus the extension of cultivated areas reduced. We recommend further testing of six potential species for restoration based on their early colonization of the fallows and their survival through vegetation succession.  相似文献   

11.
To combat global warming and biodiversity loss, we require effective forest restoration that encourages recovery of species diversity and ecosystem function to deliver essential ecosystem services, such as biomass accumulation. Further, understanding how and where to undertake restoration to achieve carbon sequestration and biodiversity conservation would provide an opportunity to finance ecosystem restoration under carbon markets. We surveyed 30 native mixed‐species plantings in subtropical forests and woodlands in Australia and used structural equation modeling to determine vegetation, soil, and climate variables most likely driving aboveground biomass accrual and bird richness and investigate the relationships between plant diversity, aboveground biomass accrual, and bird diversity. We focussed on woodland and forest‐dependent birds, and functional groups at risk of decline (insectivorous, understorey‐nesting, and small‐bodied birds). We found that mean moisture availability strongly limits aboveground biomass accrual and bird richness in restoration plantings, indicating potential synergies in choosing sites for carbon and biodiversity purposes. Counter to theory, woody plant richness was a poor direct predictor of aboveground biomass accrual, but was indirectly related via significant, positive effects of stand density. We also found no direct relationship between aboveground biomass accrual and bird richness, likely because of the strong effects of moisture availability on both variables. Instead, moisture availability and patch size strongly and positively influenced the richness of woodland and forest‐dependent birds. For understorey‐nesting birds, however, shrub cover and patch size predicted richness. Stand age or area of native vegetation surrounding the patch did not influence bird richness. Our results suggest that in subtropical biomes, planting larger patches to higher densities, ideally using a diversity of trees and shrubs (characteristics of ecological plantings) in more mesic locations will enhance the provision of carbon and biodiversity cobenefits. Further, ecological plantings will aid the rapid recovery of woodland and forest bird richness, with comparable aboveground biomass accrual to less diverse forestry plantations.  相似文献   

12.
The clearing of natural vegetation for agriculture has reduced the capacity of natural systems to provide ecosystem functions. Ecological restoration can restore desirable ecosystem functions, such as creating habitat for animal conservation and carbon sequestration as woody biomass. In order to maintain these beneficial ecosystem functions, restoration projects need to mature into self‐perpetuating communities. Here we compared the ecological attributes of two types of restoration, “active” tree plantings with “passive” natural forest regeneration (“natural regrowth”) to existing remnant vegetation in a cleared agricultural landscape. Specifically, we measured differences between forest categories in factors that may predict future restoration failure or ecosystem collapse: aboveground plant biomass and biomass accrual over time (for regrowing stands), plant density and size class distributions, and diversity of functional groups based on seed dispersal and growth strategy traits. We found that natural regrowth and planted forests were similar in many ecological characteristics, including biomass accrual. Despite this, planted stands contained fewer tree recruit and shrub individuals, which may be due to limited recruitment in plantings. If this continues, these forests may be at risk of collapsing into nonforest states after mature trees senesce. Lower shrub density and richness of mid‐story trees may lead to lower structural complexity in planting plots, and alongside lower richness of fleshy‐fruited plant species may reduce animal resources and animal use of the restored stand. In our study region, natural regrowth may result in restored woodland communities with greater conservation and carbon mitigation value.  相似文献   

13.
14.
Since tropical rain forests are widely threatened by conversion to agriculture, even within protected areas, an understanding of recovery processes is important for restoration of forest ecosystems and thus conservation of their biodiversity. Secondary succession following land clearance and crop cultivation was studied in a lower montane rain forest in a protected area of the Venezuelan Cordillera de la Costa Central. Forest recovery was studied using a chronosequence of eight 20 × 20 m plots which represented four forest types ca.10 year-old Secondary Forest, ca. 20 year-old Secondary Forest, ca. 35 year-old (uncultivated) secondary forest and mature forest. Species richness and structural complexity increased during succession, with the oldest secondary forest having a physiognomy comparable to the mature forest. Species diversity was lower in the secondary forests than the mature forest, and their floristic composition was distinct. Four phases are hypothesized to occur in the succession process, each with a distinctive species assemblage: initial colonisation by non-woody vegetation; establishment and canopy closure by short-lived small-seeded woody pioneer species; replacement by longer-lived secondary species; and gradual replacement by mature forest large-seeded climax species. Full recovery of the forests in the protected area is likely to take many years, although it may be assisted through conservation management measures.  相似文献   

15.
When assessing fragmentation effects on species, not only habitat preferences on the landscape scale, but also microhabitat selection is an important factor to consider, as microhabitat is also affected by habitat disturbance, but nevertheless essential for species for foraging, nesting and sheltering. In the Atlantic Rainforest of Brazil we examined microhabitat selection of six Pyriglena leucoptera (white-shouldered fire-eye), 10 Sclerurus scansor (rufous-breasted leaftosser), and 30 Chiroxiphia caudata (blue manakin). We radio-tracked the individuals between May 2004 and February 2005 to gain home ranges based on individual fixed kernels. Vegetation structures in core plots and fringe plots were compared. In C. caudata, we additionally assessed the influence of behavioural traits on microhabitat selection. Further, we compared microhabitat structures in the fragmented forest with those in the contiguous, and contrasted the results with the birds' preferences. Pyriglena leucoptera preferred liana tangles that were more common in the fragmented forest, whereas S. scansor preferred woody debris, open forest floor (up to 0.5 m), and a thin closed leaf litter cover which all occurred significantly more often in the contiguous forest. Significant differences were detected in C. caudata for vegetation densities in the different strata; the distance of core plots to the nearest lek site was significantly influenced by sex and age. However, core sites of C. caudata in fragmented and contiguous forests showed no significant differences in structure. Exploring microhabitat selection and behavior may greatly support the understanding of habitat selection of species and their susceptibility to fragmentation on the landscape scale.  相似文献   

16.
Secondary forests are a vital part of the tropical landscape, and their worldwide extent and importance continues to increase. Here, we present the largest chronosequence data set on forest succession in the wet tropics that includes both secondary and old-growth sites. We performed 0.1 ha vegetation inventories in 30 sites in northeastern Costa Rica, including seven old-growth forests and 23 secondary forests on former pastures, ranging from 10 to 42 yr. The secondary forest sites were formerly pasture for intervals of <1–25 yr. Aboveground biomass in secondary forests recovered rapidly, with sites already exhibiting values comparable to old growth after 21–30 yr, and biomass accumulation was not impacted by the length of time that a site was in pasture. Species richness reached old-growth levels in as little as 30 yr, although sites that were in pasture for > 10 yr had significantly lower species richness. Forest cover near the sites at the time of forest establishment did not significantly impact biomass or species richness, and the species composition of older secondary forest sites (>30 yr) converged with that of old growth. These results emphasize the resilience of tropical ecosystems in this region and the high conservation value of secondary forests.
  相似文献   

17.
A widely accepted biodiversity crisis in the tropics has been recently challenged by claims that secondary forests will gradually restore biodiversity losses. This prediction was examined for the herpetofauna in Quintana Roo, Mexico. Quantitative sampling (108 transects) of reptiles was undertaken monthly (January–September 2004) along a vegetation gradient covering induced grasslands, and regrowth and primary rain forests. A total of 35 species was found, 14 being present in and five showing dependence on mature forests. Lizards contributed > 90 per cent of the individuals observed. Reptile abundance and snake species richness was highest in primary forests, even though the lower abundance and richness did not differ between regrowth forest and induced grasslands. Multivariate ordinations and ANOSIM tests displayed clear differences in assemblage structure among vegetation types, mainly caused by contrasting abundances of lizard species having distinctive arboreal or terrestrial habits. There was no evidence that snake assemblages differed between secondary forests and induced grasslands. Microhabitat availability had a key role in shaping species composition through the vegetation gradient. Our results dismiss the hypothesis that secondary forests can act as reservoirs of primary forest reptile diversity on the basis that many taxa depend largely on habitat quality and have specialized life‐history traits, and that biological succession does not guarantee the recovery of assemblage complexity.  相似文献   

18.
The terrestrial lizard fauna of a regenerating mining path situated in open forest on coastal sand dunes was surveyed by pitfall trapping. The regeneration age of the series of chronosequence plots used ranged from 3.9 to 15.9 years. No lizards were recorded on plots less than 5.9 years old. Only four species of lizard were regularly found on the mining path. The skink Ctenotus robustus was the first colonizer and attained peak abundance and biomass after 9 years’ regeneration. Amphibolurus muricatus and Ctenotus taeniolatus were less abundant than C. robustus and did not appear on the mining path until 9 to 11 years’ regeneration. The abundance of C. taeniolatus continued to increase up to the oldest age class (16 years). Linear multiple regression analysis showed that sparse patchy vegetation in the 0–1 m layer and the amount of live shrub cover jointly accounted for 72% of the variance in abundance and 68% of variance in biomass for C. robustus. Fifty percent of the variance in C. taeniolatus abundance was explained by the proportion of plant species endemic to forest, regeneration age and the patchiness in understorey vegetation height. However, 67% of C. taeniolatus biomass was accounted for by plant species richness, plant species diversity, and the proportion of endemic forest and heath plant species. Some lizard species recorded from the surrounding forest were not found on the mining path. Lizards appear to recolonize revegetated areas more slowly than some other animal groups; this ‘sensitivity’ implies that they can act as important ‘indicator species’ of successful regeneration in disturbed areas. The non-linear response with time of some habitat variables makes it difficult to predict the time required for the complete rehabilitation of the mining path; however, it seems likely that a period well in excess of 20 years may be necessary before the lizard fauna on the mining path reaches premined levels.  相似文献   

19.
In the Taita Hills in southern Kenya, remnants of the original Afromontane forest vegetation are restricted to isolated mountain peaks. To assess the level of degradation and the need for forest restoration, we examined how forest plant communities and their indicator species vary between and within remnant patches of cloud forest. We used ordinal abundance data to compare plant communities in eight forest fragments. We also analyzed data on the diversity and abundance of trees in 57 0.1 ha plots to compare tree communities within and between the largest two of these fragments, Ngangao (120 ha) and Mbololo (220 ha). The extant vegetation of the Taita Hills at landscape scale consists of secondary moist montane to intermediate montane forest. There was a high species dissimilarity between fragments (69%). Variation in species composition coincided with an abiotic gradient related to elevation. At plot level, secondary successional species and species of forest edges were most abundant and most frequent. Inferred clusters of plots almost entirely coincided with the two forest fragments. Indicator species associated with forest margins and gaps were more frequent in the smaller of the two forest fragments, while indicators for the larger fragment were more typical for less disturbed moist forest. Abiotic site variability but also different levels of disturbance determine site-specific variants of the montane forest. Conservation efforts should not only focus on maintaining forest quantity (size), but also on forest quality (species composition). Late-successional rainforest species are underrepresented in the woody plant communities of the Taita Hills and assisting restoration of viable populations of cloud forest climax tree species is urgently needed.  相似文献   

20.
Although dipteran communities play a fundamental role in the ecosystem, little is known about their diversity, richness and abundance in different environments. In spite of the importance of Natural Protected Areas (NPAs) as reservoirs of biological diversity, information about community parameters of most insects, including Diptera, are practically unknown in these areas. In this study, we described and compared the composition and structure of Dipteran communities (considering Tabanidae, Asilidae and Syrphidae families) within six (NPAs) of Yucatan, Southeast Mexico, comprising four main vegetation types: seasonally flooded forest, tropical deciduous forest, semi-deciduous tropical forest and coastal dune. We used Malaise-traps to collect samples during a period of two days, twice a month, for one year (2006–2007) within each NPAs. A total of 6 910 specimens belonging to 33 genera and 78 species/morphospecies were recorded. Our results show that the four vegetation types host a vast diversity of dipterans. However, species richness, abundance, diversity and similarity were higher in the communities of tropical deciduous forests compared with those from semi-deciduous forests and coastal dune vegetation, probably as a result of microhabitat differences between sites. We highlight the role of tropical deciduous forests as a refuge for Diptera species and the importance of these forests for conservation of dipteran communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号