首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive ant species have general diet and nest requirements, which facilitate their establishment in novel habitats and their dominance over many native ants. The Asian needle ant, Pachycondyla chinensis, native throughout Australasia was introduced to the southeastern US where it has become established in woodland habitats, nests in close proximity to and consumes subterranean termites (Rhinotermitidae). P. chinensis do not occur in habitats lacking Rhinotermitidae. We suggest that subterranean termites are critical for P. chinensis success in new habitats. We demonstrate that P. chinensis is a general termite feeder, retrieving Reticulitermes virginicus five times more often than other potential prey near P. chinensis colonies. Odors produced by R. virginicus workers, as well as other potential prey, attract P. chinensis. Furthermore, P. chinensis occupy R. virginicus nests in the lab and field and display behaviors that facilitate capture of R. virginicus workers and soldiers. Termites are an abundant, high quality, renewable food supply, in many ways similar to the hemipteran honeydew exploited by most other invasive ant species. We conclude that the behavior of P. chinensis in the presence of termites increases their competitive abilities in natural areas where they have been introduced.  相似文献   

2.
We have designed and utilized degenerate primers in the phylogenetic analysis of [FeFe] hydrogenase gene diversity in the gut ecosystems of roaches and lower termites. H2 is an important free intermediate in the breakdown of wood by termite gut microbial communities, reaching concentrations in some species exceeding those measured for any other biological system. The primers designed target with specificity the largest group of enzymatic H domain proteins previously identified in a termite gut metagenome. “Family 3” hydrogenase sequences were amplified from the guts of lower termites, Incisitermes minor, Zootermopsis nevadensis, and Reticulitermes hesperus, and two roaches, Cryptocercus punctulatus and Periplaneta americana. Subsequent analyses revealed that all termite and Cryptocercus sequences were phylogenetically distinct from non-termite-associated hydrogenases available from public databases. The abundance of unique sequence operational taxonomic units (as many as 21 from each species) underscores the previously demonstrated physiological importance of H2 to the gut ecosystems of these wood-feeding insects. The diversity of sequences observed might be reflective of multiple niches that the enzymes have been evolved to accommodate. Sequences cloned from Cryptocercus and the lower termite samples, all of which are wood feeding insects, clustered closely with one another in phylogenetic analyses to the exclusion of alleles from P. americana, an omnivorous cockroach, also cloned during this study. We present primers targeting a family of termite gut [FeFe] hydrogenases and provide results that are consistent with a pivotal role for hydrogen in the termite gut ecosystem and point toward unique evolutionary adaptations to the gut ecosystem.  相似文献   

3.
Cellulose baits containing 0.5% hexaflumuron were hermetically sealed in a closed cell polyethylene sheet envelope and placed in soil to test their durability and efficacy against field colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki, or the eastern subterranean termite, Reticulitermes flavipes (Kollar). The closed cell polyethylene sheet was readily tunneled through by termites, yet it was impervious to water and protected the cellulose baits and hexaflumuron from the environment. Only in a few incidents did the polyethylene envelope become infiltrated by plant roots, resulting in water intrusion and apparent degradation of cellulose baits. After consuming one to three sealed baits, three colonies each of both termite species were eliminated. The sealed baits may be placed in soil for months or years without the need of monitoring, and they are readily penetrated and fed upon by termites when they are present. Application of baits hermetically sealed in a protective sheet may save labor costs by bypassing the monitoring phase, circumvent the station avoidance by some termite species, and enable the use of baiting technologies in large areas such as agricultural fields in which the manual monitoring is impractical.  相似文献   

4.
Abstract Many termite species rely on intestinal protozoan symbionts to digest their cellulosic foods. We examined cellulose acquisition by the symbionts of the Eastern subterranean termite Reticulitermes flavipes Kollar (Isoptera; Rhinotermitidae) by following their phagocytosis of red paper fed to the termite host. The effects of termite host starvation and environmental temperature on feeding activity were studied in the zooflagellates Trichonympha agilis Leidy (Trichonymphidae), Pyrsonympha vertens Leidy, Dinenympha fimbriata Kirby, and D. gracilis Leidy (Pyrsonymphidae), which are among the largest residents in R. flavipes' hindguts. Protozoans in termites starved for 24 h ingested red paper significantly sooner than protozoans in termites with continuous access to food. Trichonympha, Pyrsonympha, and Dinenympha all ingested red paper particles at approximately the same rate. Red paper appeared significantly sooner in protozoans in termites maintained at 32°C than in those maintained at 22°C or 26°C. At 32°C, numbers of Trichonympha per gut remained constant over 96 h. Pyrsonympha and Dinenympha cells were absent or significantly reduced in number by 72 h at that temperature. These results provide insight into the environmental factors that shape the termite–protozoan symbiosis. They may aid in the development of protozoicides used to control pest termites. Received: 1 August 1997; Accepted: 26 November 1997  相似文献   

5.
Termitaria snyderi Thaxter is found in and around Gainesville, Florida, infecting the subterranean termites Reticulitermes virginicus (Banks) and R. flavipes (Kollar). The fungus forms sporodochia-like structures on the exoskeleton of the termites. These structures have a subhymenium of tightly held phialides. The phialides cut off phialoconidia apically in basipetal succession into the collarettes at conidiogenous loci. The basal layer of the thallus has certain thick-walled cells that send haustoria into the integument of the host termite. Termitaria appears to be closely related to another cuticle-infecting parasite of termites, Mattirolella Colla. A new species of the latter, M. crustosa, is described here. The relationships of the two genera are discussed and a new order of Deuteromycetes, Termitariales is proposed for them.  相似文献   

6.
Abstract Symbiotic microorganisms that inhabit the gut of Coptotermes formosanus enable this termite to degrade lignocelluloses and further produce hydrogen as an important intermediate to be recycled in its hindgut or as a byproduct to be emitted to the atmosphere. Both symbiotic protists and prokaryotes in the guts of termites demonstrated some different roles with respect to hydrogen production. In this study, the effects of two antibiotics, ampicillin and tetracycline, on hydrogen emission and the gut symbionts of C. formosanus were investigated. Hydrogen emission from termite guts was significantly enhanced when termites fed on wood diets treated with either ampicillin or tetracycline. The greatest H2 emission rates, 2 519 ± 74 and 2 080 ± 377 nmol/h/g body weight, were recorded with the treatments of ampicillin and tetracycline, respectively, which showed 6–7 times more H2 production than that of controls. Antibiotic‐treated diets negatively affected the prokaryotic communities and reduced their abundances, particularly on those ectosymbionts inhabiting the gut walls or in the gut fluid of C. formosanus, such as spirochetes. However, no significant reductions in the counts of gut cellulolytic protists, Pseudotrichonympha grassii and Holomastigotoids hartmanni, were recorded; and with a further observation by confocal laser scanning microscopy, the endosymbionts inhabiting P. grassii generally survived the antibiotic treatments. These results suggest that some prokaryotes may serve as the main hydrogen consumers, while P. grassii, together with its endosymbionts, may function as the main contributors for hydrogen production in the hindgut of C. formosanus.  相似文献   

7.
Abstract.Oxygen uptake and carbon dioxide release at 28°C were determined in worker castes of twenty-six species of forest termites from the Danum Valley Conservation Area, south-east Sabah, by Warburg manometry. Metabolic rate varied inversely with body weight in a suite of soil-, wood/soil- and wood-feeding species, giving a slope (in a log–log plot) of – 0.63. However, a number of large species, actively foraging forms such as Macrotermes malaccensis, M. gilvus, Havilanditermes atripennis and Hospitalitermes hospitalis, but also the wood-feeding Schedorhinotermes sarawakensis, showed an oxygen consumption greater than expected for their body weight. Rates of methane emission were above 0.100 μmol g–1 h–1 in seventeen species, with very high fluxes in two wood/soil-feeders, Termes borneensis (0.546 ± 0.163 μmol g–1 h–1) and Prohamitermes mirabilis (0.303 ± 0.123 μmol g–1 h–1). Of the fifteen remaining species, seven were soil-feeders, five were wood-feeders, two were wood/litter-feeders and a single species fed on lichen and moss. Low or negligible CH4 emissions (< 0.100 μmol g–1 h–1) were observed in three other species, all wood-feeders. An apparent respiratory quotient (RQapp) was calculated using xCO2 and xO2 (corrected for methane emission, but not hydrogen). Mean RQapp was at or above 1.00 in eleven species and between 0.95 and 1.00 in a further six species, the two sets of species together representing all trophic groups, including lichen-feeders. This is argued to be consistent with carbohydrate being the principal substrate supporting respiration.  相似文献   

8.
The effects of various concentrations, distance, and application methods of Altriset (Chlorantraniliprole) were investigated against one of the most destructive termites, the eastern subterranean termite, Reticulitermes flavipes Kollar. Three laboratory experiments were conducted. First, we examined the concentration effect of treating the soil contiguously to established foraging tunnels at a fixed 1 m distance. The results demonstrated 100% termite control in 19 d posttreatment at 100 and 50 μg/g and 27% termite mortality at 25 μg/g. Second, we tested the distance effect of the soil treatment (2 and 4 m) on the efficacy of Altriset to the satellite termite populations at a fixed 50 μg/g concentration. This resulted in 100% termite control in 22 d posttreatment at both 2 and 4 m. Third, we examined the effect of differing application methods using 12.5 and 25 μg/g prior to the establishment of foraging tunnels at a fixed 1m distance. This illustrated 100% termite control in 9 d posttreatment at 25 μg/g and 12 d posttreatment at 12.5 μg/g. The third experiment demonstrated soil treatments that were applied prior to termite tunnel establishment had greater efficacy than applications made post tunnel construction. Our results provide a comprehensive understanding about the efficacy of Altriset treatments on eastern subterranean termites.  相似文献   

9.
Selective removal of symbiotic hindgut microorganisms by chemical treatments reduced methane emission by the termiteZootermopsis angusticollis. Methane emission from untreated termites incubated in 25% H2 increased 123%, from 10.3 nmol/termite/hour (U) to 22.9 U. Though linear with time, methane emission was not correlated with termite mass. Hyperbaric oxygen treatments reduced methane emission to unquantifiable levels and eliminated all but the protozoaTricercomitus andHexamastix. Exogenous H2 restored 5% of methane emission to 1.3 U. 2-bromoethanesulfonic acid, fed on filter papers to termites, eliminated methane production. Epifluorescence microscopy showed that this treatment selectively removed methanogens from symbioses withTricercomitus, Hexamastix, andTrichomitopsis, but the protozoa did not appear to be affected. The insect molting hormone 20-hydroxyecdysone reduced methane production 86% to 1.6 U from an initial level of 11.4 U. Hydrogen incubation increased this rate to 77% of the initial rate, 8.8 U. Hormone treatment reduced the number ofTrichonympha in the hindgut and induced sexuality in these protozoa. A model suggests thatTrichonympha evolve most of the hydrogen and that methanogenic bacteria symbiotic withTrichomitopsis produce most of the methane in this hindgut ecosystem.  相似文献   

10.
Coptotermes formosanus Shiraki is a wood‐feeding termite which secretes a series of lignolytic and cellulolytic enzymes for woody biomass degradation. However, the lignin modification mechanism in the termite is largely elusive, and the characteristics of most lignolytic enzymes in termites remain unknown. In this study, a laccase gene lac1 from C. formosanus was heterogeneously expressed in insect Sf9 cells. The purified Lac1 showed strong activities toward hydroquinone (305 mU/mg) and 2,6‐dimethoxyphenol (2.9 mU/mg) with low Km values, but not veratryl alcohol or 2,2’‐azino‐bis (3‐ethylbenzothiazoline‐6‐sulfonic acid). Lac1 could function well from pH 4.5 to 7.5, and its activity was significantly inhibited by H2O2 at above 4.85 mmol/L (P < 0.01). In addition, the lac1 gene was found to be mainly expressed in the salivary glands and foregut of C. formosanus, and seldom in the midgut or hindgut. These findings suggested that Lac1 is a phenol‐oxidizing laccase like RflacA and RflacB from termite Reticulitermes flavipes, except that Lac1 was found to be more efficient in phenol oxidation, and it did not require H2O2 for its function. It is suspected that this kind of termite laccase might only be able to directly oxidize low redox‐potential substrates, and the high redox‐potential groups in lignin might be oxidized by other enzymes in the termite or by using the Fenton reaction.  相似文献   

11.
Abstract Chemical‐treated soil or physical barriers have been the most commonly used approach for termite management. We hypothesized that a barrier of soil incorporated with oven‐dried Lantana camara L. tissues could prevent termite infestation. We first examined the antitermitic effects of the dried tissues from two cultivars (‘Mozelle’ and ‘New Gold’) on the subterranean termite, Reticulitermes virginicus (Banks) (Isoptera: Rhinotermitidae). Results show that all of the tissues of Mozelle had greater antitermic activity than corresponding tissues of New Gold, and leaves had greater termiticidal effects than flowers and stems. When termites were exposed to the test materials in a no‐choice bioassay, the 24‐day test resulted in a significant reduction of survival (52.5%–88.6%), running speed (18.2%–37.3%), live weight (21.8%–53.5%) and body water content (33.2%–56.2%) compared to the control. The consumption of leaves and flowers was exiguous. When used as 25% tissue mulch‐barrier, the oven‐dried lantana tissues decreased termite tunneling and wood consumption and increased termite mortality. The decreased survival, vigor, and low consumption indicate a toxic and anti‐feeding property of the materials tested. The results therefore support our hypothesis that the dried lantana tissues possess antitermitic activities.  相似文献   

12.
Spirochetes of the genus Treponema are surprisingly abundant in termite guts, where they play an important role in reductive acetogenesis. Although they occur in all termites investigated, their evolutionary origin is obscure. Here, we isolated the first representative of ‘termite gut treponemes’ from cockroaches, the closest relatives of termites. Phylogenomic analysis revealed that Breznakiella homolactica gen. nov. sp. nov. represents the most basal lineage of the highly diverse ‘termite cluster I', a deep-branching sister group of Treponemataceae (fam. ‘Termitinemataceae’) that was present already in the cockroach ancestor of termites and subsequently coevolved with its host. Breznakiella homolactica is obligately anaerobic and catalyses the homolactic fermentation of both hexoses and pentoses. Resting cells produced acetate in the presence of oxygen. Genome analysis revealed the presence of pyruvate oxidase and catalase, and a cryptic potential for the formation of acetate, ethanol, formate, CO2 and H2 - the fermentation products of termite gut isolates. Genes encoding key enzymes of reductive acetogenesis, however, are absent, confirming the hypothesis that the ancestral metabolism of the cluster was fermentative, and that the capacity for acetogenesis from H2 plus CO2 - the most intriguing property among termite gut treponemes - was acquired by lateral gene transfer.  相似文献   

13.
In the tropics, termites are major players in the mineralization of organic matter leading to the production of greenhouse gases including nitrous oxide (N2O). Termites have a wide trophic diversity and their N-metabolism depends on the feeding guild. This study assessed the extent to which N2O emission levels were determined by termite feeding guild and tested the hypothesis that termite species feeding on a diet rich in N emit higher levels of N2O than those feeding on a diet low in N. An in-vitro incubation approach was used to determine the levels of N2O production in 14 termite species belonging to different feeding guilds, collected from a wide range of biomes. Fungus-growing and soil-feeding termites emit N2O. The N2O production levels varied considerably, ranging from 13.14 to 117.62 ng N2O-N d-1 (g dry wt.)-1 for soil-feeding species, with Cubitermes spp. having the highest production levels, and from 39.61 to 65.61 ng N2O-N d-1 (g dry wt.)-1 for fungus-growing species. Wood-feeding termites were net N2O consumers rather than N2O producers with a consumption ranging from 16.09 to 45.22 ng N2O-N d-1 (g dry wt.)-1. Incubating live termites together with their mound increased the levels of N2O production by between 6 and 13 fold for soil-feeders, with the highest increase in Capritermes capricornis, and between 14 and 34 fold for fungus-growers, with the highest increase in Macrotermes muelleri. Ammonia-oxidizing (amoA-AOB and amoA-AOA) and denitrifying (nirK, nirS, nosZ) gene markers were detected in the guts of all termite species studied. No correlation was found between the abundance of these marker genes and the levels of N2O production from different feeding guilds. Overall, these results support the hypothesis that N2O production rates were higher in termites feeding on substrates with higher N content, such as soil and fungi, compared to those feeding on N-poor wood.  相似文献   

14.
Tunneling behavior of laboratory-maintained cultures of Reticulitermes flavipes (Kollar) and R. virginicus (Banks) was examined to determine (1) if the termites build tunnels along preexisting wires or tunnels, and (2) whether tunnels are arranged to optimize search efficiency. Tunnel patterns were considered optimal if, for the number of tunnels present, the maximum area was explored. Termites entered either control arenas or arenas in which they encountered a wire or a pre-formed tunnel. Analyses revealed that R. flavipes and R. virginicus almost always follow pre-formed tunnels, but do not follow wires as readily. Within each species, the distributions of tunnels in treatment arenas were different from distributions in control arenas, most often when pre-formed tunnels were the treatment. Optimal tunnel arrangements in control arenas were found in 62% of R. flavipes patterns with 2 tunnels and in 43% of R. virginicus patterns with 2 tunnels. None of the 3-tunnel patterns from control arenas of R. flavipes and 29% of those of R. virginicus had optimal arrangements. Overall, the spatial arrangement of tunnels in control arenas was significantly different between R. flavipes and R. virginicus.  相似文献   

15.
Predation pressure from ants is a major driving force in the adaptive evolution of termite defense strategies and termites have evolved elaborate chemical and physical defenses to protect themselves against ants. We examined predator–prey interactions between the woodland ant, Aphaenogaster rudis (Emery) and the eastern subterranean termite, Reticulitermes flavipes (Kollar), two sympatric species widely distributed throughout deciduous forests in eastern North America. To examine the behavioral interactions between A. rudis and R. flavipes we used a series of laboratory behavioral assays and predation experiments where A. rudis and R. flavipes could interact individually or in groups. One-on-one aggression tests revealed that R. flavipes are vulnerable to predation by A. rudis when individual termite workers or soldiers are exposed to ant attacks in open dishes and 100% of termite workers and soldiers died, even though the soldiers were significantly more aggressive towards the ants. The results of predation experiments where larger ant and termite colony fragments interacted provide experimental evidence for the importance of physical barriers for termite colony defense. In experiments where the termites nested within artificial nests (sand-filled containers), A. rudis was aggressive at invading termite nests and inflicted 100% mortality on the termites. In contrast, termite mortality was comparable to controls when termite colonies nested in natural nests comprised of wood blocks. Our results highlight the importance of physical barriers in termite colony defense and suggest that under natural field conditions termites may be less susceptible to attacks by ants when they nest in solid wood, which may offer more structural protection than sand alone.  相似文献   

16.
17.
Among the great diversity of insect–fungus associations, fungal mimicry of termite eggs is a particularly fascinating consequence of evolution. Along with their eggs, Reticulitermes termites often harbour sclerotia of the fungus Fibularhizoctonia sp., called ‘termite balls’, giving the fungus competitor‐free habitat within termite nests. The fungus has evolved sophisticated morphological and chemical camouflage to mimic termite eggs. To date, this striking insect–fungus association has been found in eight temperate termite species, but is restricted to the lower termite genera Reticulitermes and Coptotermes. Here, we report the discovery of a novel type of termite ball (‘Z‐type’) in the subtropical termite, Nasutitermes takasagoensis. Phylogenetic analysis indicated that the Z‐type termite ball is an undescribed Trechisporoid fungus, Trechispora sp., that is phylogenetically distant from Fibularhizoctonia, indicating two independent origins of termite‐egg mimicry in sclerotium‐forming fungi. Egg protection bioassays using dummy eggs revealed that Reticulitermes speratus and N. takasagoensis differ in egg‐size preference. A comparative study of termite ball size and egg‐size preference of host termites showed that both fungi evolved a termite ball size that optimized the acceptance of termite balls as a unit investment. Termite‐egg mimicry by these fungi offers a model case of parallel evolution. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 531–537.  相似文献   

18.
The ability of subterranean termites to digest lignocellulose relies not only on their digestive tract physiology, but also on the symbiotic relationships established with flagellate protists and bacteria. The objective of this work was to test the possible effect of different cellulose‐based diets on the community structure (species richness and other diversity metrics) of the flagellate protists of the subterranean termite Reticulitermes grassei. Termites belonging to the same colony were subjected to six different diets (natural diet, maritime pine wood, European beech, thermally modified European beech, cellulose powder and starvation), and their flagellate protist community was evaluated after the trials. All non‐treated sound woods produced similar flagellate protist communities that were more diverse and of high evenness (low dominance). On the contrary, flagellate protist communities from cellulose‐fed termites and starving termites were considered to be significantly different from all non‐treated woods; they were less diverse and some morphotypes became dominant as a consequence of flagellate protist communities having suffered major adaptations to these diets. The flagellate protist communities of untreated beech and thermally modified beech‐fed termites were considered to be significantly different in terms of abundance and morphotype diversity. This may be caused by a decrease in lignocellulose quality available for termites and from an interference of thermally treated wood with the chemical stability of the termite hindgut. Our study suggests that as a consequence of the strong division of labour among these protists to accomplish the intricate process of lignocellulose digestion, termite symbiotic flagellate protist communities are a dynamic assemblage able to adapt to different conditions and diets. This study is important for the community‐level alteration approach, and it is the first study to investigate the effects of thermally modified wood on the flagellate protist communities of subterranean termites.  相似文献   

19.
Paratransgenesis targeting the gut protozoa is being developed as an alternative method for the control of the Formosan subterranean termite (FST). This method involves killing the cellulose‐digesting gut protozoa using a previously developed antiprotozoal peptide consisting of a target specific ligand coupled to an antimicrobial peptide (Hecate). In the future, we intend to genetically engineer termite gut bacteria as “Trojan Horses” to express and spread ligand‐Hecate in the termite colony. The aim of this study was to assess the usefulness of bacteria strains isolated from the gut of FST as “Trojan Horses.” We isolated 135 bacteria from the guts of workers from 3 termite colonies. Sequencing of the 16S rRNA gene identified 20 species. We tested 5 bacteria species that were previously described as part of the termite gut community for their tolerance against Hecate and ligand‐Hecate. Results showed that the minimum concentration required to inhibit bacteria growth was always higher than the concentration required to kill the gut protozoa. Out of the 5 bacteria tested, we engineered Trabulsiella odontotermitis, a termite specific bacterium, to express green fluorescent protein as a proof of concept that the bacteria can be engineered to express foreign proteins. Engineered T. odontotermitis was fed to FST to study if the bacteria are ingested. This feeding experiment confirmed that engineered T. odontotermitis is ingested by termites and can survive in the gut for at least 48 h. Here we report that T. odontotermitis is a suitable delivery and expression system for paratransgenesis in a termite species.  相似文献   

20.
Methane and hydrogen emission rates and the 13C of CH4 were observed for various termites in Australia, Thailand and Japan. Combined with the already reported emission rates of CH4 in the literature, the phylogenetic trend was examined. Emission rates of the observed termites were categorized into five groups: group I with high CH4 and low H2 emission rates with a CH4/H2 ratio of typically 10/1; group II with high CH4 and high H2 emissions with a CH4/H2 ratio of 4/1–1/2; group III with low emission rates of CH4 and H2; group IV with high H2 and insignificant CH4 emissions; and group V with insignificant emissions for both CH4 and H2. In lower termites, there are both colonies infected and uninfected with methanogens even in the same species, and no specific trend in CH4 and H2 emissions was observed within a genus. Whether protozoa in the hindgut of termites are infected with methanogens or not and the differences in species compositions of protozoa are possibly responsible for the inter-colonial variations. The proportions of infected colonies were possibly small for the family Kalotermitidae (dry wood feeders), and relatively large for families of wet or damp wood feeders. The hydrogen emission rate possibly depends on the locality of methanogens: namely, whether they are intracellular symbionts of protozoa or whether they are attached to the hindgut wall. Emission rates of higher termites were classified into groups according to genera and the diet. Most species of soil or wood/soil interface feeders classified into group I, while the soil feeders Dicuspiditermes in Thailand and Amitermes in Australia were classified into groups with high H2 emission rates. Typical wood-feeding termites and fungus-growing termites were classified into group III. The results indicate that higher termites tend to increase the CH4 emission rate during dietary evolution from wood- to soil-feeding, and two types of the system with different efficiencies of interspecies transfer of H2 have been formed. The 13C of CH4 was discernible with a difference in the decomposition process in the termite–symbiont system among lower termites, fungus-growing termites and other higher termites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号