首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corynosoma strumosum (Acanthocephala), a widespread parasite of pinnipeds, is reported in marine foraging North American mink (Neogale vison) and river otter (Lontra canadensis) on Vancouver Island, British Columbia. This is the first confirmed case of infection by C. strumosum in river otters on the west coast of North America and may be the first confirmed case of infection in wild North American mink; C. strumosum has previously been reported in river otters in Europe (Lutra lutra) and in farmed mink fed with marine fish. We also detected a case of acanthocephalan associated peritonitis in a juvenile mink. Furthermore, though infections with Corynosoma spp. are often assumed to be accidental in mustelids, some C. strumosum individuals found in mink showed signs of reproductive activity. These findings indicate that mink may be a competent definitive host and represent a reservoir in coastal habitats although further research is needed to confirm this. Investigating whether river otters may be competent hosts and determine the prevalence of infection in coastal populations would determine the potential implications of C. strumosum for coastal otters and minks. Our report indicates that mink and possibly river otter living in coastal areas are vulnerable to this previously unreported parasitic infection with mortality risk, at least in juvenile individuals.  相似文献   

2.
ABSTRACT We estimated carrying capacity for sea otters (Enhydra lutris) in the coastal waters of British Columbia, Canada, by characterizing habitat according to the complexity of nearshore intertidal and sub-tidal contours. We modeled the total area of complex habitat on the west coast of Vancouver Island by first calculating the complexity of the Checleset Bay-Kyuquot Sound (CB-KS) region, where sea otters have been at equilibrium since the mid-1990s. We then identified similarly complex areas on the west coast of Vancouver Island (WCVI model), and adapted the model to identify areas of similar complexity along the entire British Columbia coast (BC model). Using survey data from the CB-KS region, we calculated otter densities for the habitat predicted by the 2 models. The density estimates for CB-KS were 3.93 otters/km2 and 2.53 otters/km2 for the WCVI and BC models, respectively, and the resulting 2 estimates of west coast of Vancouver Island complex habitat carrying capacity were not significantly different (WCVI model: 5,123, 95% CI = 3,337–7,104; BC model: 4,883, 95% CI = 3,223–6,832). The BC model identified the region presently occupied by otters on the central British Columbia coast, but the amount of coast-wide habitat it predicted (5,862 km2) was relatively small, and the associated carrying capacity estimate (14,831, 95% CI = 9,790–20,751) was low compared to historical accounts. We suggest that our model captured a type of high-quality or optimum habitat prevalent on the west coast of Vancouver Island, typified by the CB-KS region, and that suitable sea otter habitat elsewhere on the coast must include other habitat characteristics. We therefore calculated a linear, coast-wide carrying capacity of 52,459 sea otters (95% CI = 34,264–73,489)—a more realistic upper limit to sea otters in British Columbia. Our carrying capacity estimates are helping set population recovery targets for sea otters in Canada, and our habitat predictions represent a first step in Critical Habitat identification. This habitat-based approach to estimating carrying capacity is likely suitable for other nonmigratory, density-dependent species.  相似文献   

3.
Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02′S) to Chiloé (42°00′S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14′S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies.  相似文献   

4.
“Super-blooms” of cyanobacteria that produce potent and environmentally persistent biotoxins (microcystins) are an emerging global health issue in freshwater habitats. Monitoring of the marine environment for secondary impacts has been minimal, although microcystin-contaminated freshwater is known to be entering marine ecosystems. Here we confirm deaths of marine mammals from microcystin intoxication and provide evidence implicating land-sea flow with trophic transfer through marine invertebrates as the most likely route of exposure. This hypothesis was evaluated through environmental detection of potential freshwater and marine microcystin sources, sea otter necropsy with biochemical analysis of tissues and evaluation of bioaccumulation of freshwater microcystins by marine invertebrates. Ocean discharge of freshwater microcystins was confirmed for three nutrient-impaired rivers flowing into the Monterey Bay National Marine Sanctuary, and microcystin concentrations up to 2,900 ppm (2.9 million ppb) were detected in a freshwater lake and downstream tributaries to within 1 km of the ocean. Deaths of 21 southern sea otters, a federally listed threatened species, were linked to microcystin intoxication. Finally, farmed and free-living marine clams, mussels and oysters of species that are often consumed by sea otters and humans exhibited significant biomagnification (to 107 times ambient water levels) and slow depuration of freshwater cyanotoxins, suggesting a potentially serious environmental and public health threat that extends from the lowest trophic levels of nutrient-impaired freshwater habitat to apex marine predators. Microcystin-poisoned sea otters were commonly recovered near river mouths and harbors and contaminated marine bivalves were implicated as the most likely source of this potent hepatotoxin for wild otters. This is the first report of deaths of marine mammals due to cyanotoxins and confirms the existence of a novel class of marine “harmful algal bloom” in the Pacific coastal environment; that of hepatotoxic shellfish poisoning (HSP), suggesting that animals and humans are at risk from microcystin poisoning when consuming shellfish harvested at the land-sea interface.  相似文献   

5.
Infectious diseases, in particular canine distemper virus (CDV), are an important threat to the viability of wild carnivore populations. CDV is thought to be transmitted by direct contact between individuals; therefore, the study of species interactions plays a pivotal role in understanding CDV transmission dynamics. However, CDV often appears to move between populations that are ecologically isolated, possibly through bridge hosts that interact with both species. This study investigated how an introduced species could alter multihost interactions and act as a bridge host in a novel carnivore assemblage of domestic dogs (Canis familiaris), invasive American mink (Neovison vison), and threatened river otters (Lontra provocax) in southern Chile. We found that rural dogs interact with mink near farms whereas in riparian habitats, minks and river otters shared the same latrines with both species visiting sites frequently within time intervals well within CDV environmental persistence. No interactions were observed between dogs and otters at either location. Both dog and mink populations were serologically positive for CDV, making the pathogen transfer risk to otters a conservation concern. Altogether, introduced mink in this ecosystem have the potential to act as bridge hosts between domestic dogs and endangered carnivores.  相似文献   

6.
For North American river otters (Lontra canadensis) in Louisiana, statewide distribution, availability of aquatic habitats, and the absence of physical barriers to dispersal might suggest that they exist as a large, panmictic population. However, the wide variety of habitat types in this region, and the dynamic nature of these habitats over time, could potentially structure river otter populations in accordance with cryptic landscape features. Recently developed landscape genetic models offer a spatially explicit approach that could be useful in identifying potential barriers to the movement of river otters through the dynamic aquatic landscape of Louisiana. We used georeferenced multilocus microsatellite genotypes in spatially implicit (STRUCTURE) and spatially explicit (GENELAND) models to characterize patterns of landscape genetic structure. All models identified 3 subpopulations of river otters in Louisiana, corresponding to Inland, Atchafalaya River, and Mississippi River regions. Variation in breeding seasonality, brought about by variation in prey abundance between inland and coastal populations, may have contributed to genetic differentiation among populations. It is also possible that the genetic discontinuities we observed indicate a correlation between otter distribution and access to freshwater. Regardless of the mechanism, it is likely that any genetic differentiation among subpopulations is exacerbated by relatively poor dispersal.  相似文献   

7.
Sulkava RT  Sulkava PO  Sulkava PE 《Oecologia》2007,153(3):579-588
Long-term studies were carried out in central Finland between 1985 and 2003 to examine the temporal and spatial variation in the density of otter populations. Snow tracking was used to estimate the total population and the number of litters in the study area. In total 52 otters, including 16 cubs in 11 litters, lived in the study area (1,650 km2) in 2002–2003. The otter population clearly increased during the study period. The increase in density of the otter population was sigmoid, indicating that the population had reached the local carrying capacity. The density of the population was 0.12 individuals per river ha in 1985 and 0.29 individuals per river ha in 2002. The number of cubs per litter decreased when the density of the population increased. Density-dependent offspring production, together with the auto-correlation function of growth rate, indicates intraspecific competition in otter populations. Otters in a few river systems produced most of the cubs, creating several small source populations in the entire study area. Otters in secondary (sink) habitats had a low reproduction rate. Most otters lived in river systems with large lake surfaces. The number or area of lakes within the river system correlated positively with the total number of otters, litters and cubs in the river system. The six river systems (out of 16) with the largest water area of lakes produced 81.2% of all cubs born in the study area. However, the population growth rate per river hectare or per river kilometre was equal in all kinds of river systems. Thus, among local otter populations in central Finland, a source–sink system between different habitats seems to be prevalent.  相似文献   

8.
The barn owl (Tyto alba) is a non-migratory species widely distributed across much of North America in areas with extensive old-field and grassland habitat and without extensive winter snow cover. We investigated the genetic diversity and phylogeographic patterns of barn owl populations in western North America, ranging from British Columbia (BC) to southern California, and one eastern population from Pennsylvania. We also determined the genetic distinctiveness of a population off the coast of southern California, Santa Barbara Island, as management plans to control the local owl population are being considered to decrease predation rate on the now threatened Scripps’s Murrelet (Synthliboramphus scrippsi). Using 8 polymorphic microsatellite markers (N = 126) and ND2 mitochondrial sequences (N = 37), we found little to no genetic structure among all sampled regions, with the exception of Santa Barbara Island. The BC mainland population, despite its northwestern geographically peripheral location and ongoing habitat degradation, is not genetically depauperate. However, individuals from Vancouver Island, likewise a peripheral population in BC, exhibited the lowest genetic diversity of all sampled locations. The low global FST value (0.028) estimated from our study suggests that old-field agricultural habitats are well connected in North America. Since the BC population has declined by about 50 % within the last three decades, it is vital to focus on preserving the remaining barn owl habitats in BC to allow successful establishment from neighbouring populations. Additionally, our microsatellite data revealed that the population on Santa Barbara Island showed genetic divergence from its continental counterpart. Mitochondrial data, however, demonstrated that this island population is not a monophyletic lineage containing unique haplotypes, and hence cannot be designated as an Evolutionarily Significant Unit.  相似文献   

9.
We report cases of long‐distance dispersal in Odonata, some of which were directly observed by identifying single individuals of riverine species in unsuitable habitat, mostly desert, far distant from reproduction habitats. The shortest possible linear distances of the observation points to reproduction habitats were measured. Furthermore, established populations of riverine species were recorded in artificial lakes in central and southern Namibia far distant from the next regular reproduction sites. Our records demonstrate that single individuals of riverine species were probably covering distances of several hundred kilometres over arid landscape without any intervening possible reproduction habitat. Although it is likely that only small numbers of individuals of the river populations may disperse long distances, relatively recent colonizations of artificial habitats suggest that a few, or even single, dispersing individuals may lead to large‐scale‐range expansions.  相似文献   

10.
11.
We studied the habitat preferences of Eurasian river otters (Lutra lutra) using the distribution patterns of the numbers of spraints and sprainting spots of otters, as well as related environmental variables (habitat zone, river management, bank type, vegetation coverage, width, depth, etc.) in two streams. The numbers of otter spraints and sprainting spots were sampled monthly in two streams on Geoje Island, Republic of Korea, from January to December 2004. Additional environmental variables were measured at the sampling sites. A self-organizing map (SOM), which is an unsupervised artificial neural network, was used to characterize the habitat preferences of otters. In our results, the SOM classified three different groups of study sites based on their habitat conditions, and the habitat differences were effectively visualized on the trained SOM map. Otters showed spatial and temporal dynamics in the numbers of spraints and sprainting spots, and revealed habitat preferences for shallow, narrow areas of streams and edges of water that were not far from reservoirs but covered with trees and shrubs. Additionally, otters preferred an environment in which weirs reduced the drift of water and gathered fishes and had a natural type of stream bank; these findings are relevant for river management. Otters adapted to places close to roads, residential areas, and agricultural areas with some tolerance of human interference.  相似文献   

12.
Genetic diversity in nine African buffalo (Syncerus caffer) populations throughout Africa was analysed with 14 microsatellites to study the effects of rinderpest epidemics and habitat fragmentation during the 20th century. A gradient of declining expected heterozygosity was observed among populations in Save Valley Conservancy (Zimbabwe), and northern and southern Kruger National Park (South Africa). This was explained by a high mortality in northern Kruger National Park during the rinderpest pandemic at the end of the 19th century followed by recolonization from neighbouring populations, resulting in intermediate heterozygosity levels in northern Kruger National Park. In other populations expected heterozygosity was very high, indicating that rinderpest and recent habitat fragmentation had a limited effect on genetic diversity. From expected heterozygosity, estimates of long-term effective population size were derived. Migration rates among populations in eastern and southern Africa were very high, as shown by a weak isolation by distance and significant correlation in allele frequencies between populations. However, there were indications that dry habitats could limit migration. Genetic distances within buffalo in central Africa were relatively large, supporting their status as distinct subspecies. Finally, it was observed that the higher polymorphic microsatellites were less sensitive at detecting isolation by distance and differences in Ne, which may be a result of the high mutation pressure at these loci.  相似文献   

13.
杨波  周绍春  张明海  陈红  王启蕃 《生态学报》2023,43(20):8655-8662
水獭作为淡水生态系统健康的指示种和旗舰物种,在维持水生生态系统平衡与稳定中发挥着重要作用。然而目前对于完达山东部地区水獭种群数量、分布及其生境选择的影响因素的研究较为匮乏,严重影响了对该物种的野外保护与管理工作。于2021年12月至2022年4月冬季河流封冻期,采用沿河随机样线调查和红外相机监测相结合的方法对完达山东部地区8条主河和23条支流内的欧亚水獭(Lutra lutra)种群数量、分布现状进行了调查,并利用广义可加模型探究水獭出现频次与环境因子的关系。研究结果表明:(1)欧亚水獭在完达山东部水獭种群数量为571-661只,水獭种群密度为沿河(0.5559±0.2898)只/km,呈现中间高,四周低的趋势;(2)环境因子对水獭出现频次影响分析表明,河流深度、距农田距离、距居民区距离和距道路距离是影响水獭出现频次的关键因素。水獭出现频次与河流深度(0-40 cm)呈线性正相关,当河流深度达到40-50 cm时,水獭出现频次最高,之后随着河流深度的增加,出现频次降低;水獭出现频次与距农田距离(0-1.5 km)呈非线性正相关,在距农田距离为1.5-2 km范围内,水獭出现频次最高,之后降低;水獭出现频次与距居民区距离呈线性正相关;水獭出现频次与距道路距离呈非线性关系,当距离>7 km时,二者之间呈现为正相关,反之呈现为负相关。因此,水獭选择栖息地偏向于河流深(40-50 cm),远离农田(1.5-2 km)、居民区和道路(>7 km)的水域。研究为完达山东部欧亚水獭物种保护提供了基础数据和理论依据,建议通过河岸土地覆盖类型的管理、在河岸周围建立森林缓冲区及加强水獭保护宣传力度等措施实现对水獭物种及其栖息地的维持和保护。  相似文献   

14.
The increase in Eurasian otter Lutra lutra populations in their natural range and recolonization processes are recently observed in several European countries. We address the process of otter recolonization and habitat utilization in Central Poland over 14 years. Field surveys in 1998 and 2007 documented increase in occurrence of the species. The frequency of positive sites denoted 15 % in 1993, 38 % in 1998, and 89 % in 2007. Otter occurrence at study sites was positively affected by river width while negatively affected by presence of buildings at the site and river regulation. During the most intensive colonization process in the 1990s, the habitat preferences of the otter did not change. However, the sites inhabited by otters after 1998 were characterized by lower river width and tree cover and were more often located on regulated river sections, suggesting change in habitat tolerance during expansion. The otter abundance in transformed habitats is a result of increasing population numbers and the necessity to inhabit suboptimal sections of watercourses. Thus, it seems that presence–absence data for otter populations cannot be considered a reliable indicator of habitat quality, being depended of the population density.  相似文献   

15.
River otters (Lontra canadensis) were extirpated from much of their historic distribution because of exposure to pollution and urbanization, resulting in expansive reintroduction programmes that continue today for this and other species of otters worldwide. Bioaccumulation of toxins negatively affects fecundity among mustelids, but high vagility and different dispersal distances between genders may permit otter populations to recover from extirpation caused by localized environmental pollution. Without understanding the influence of factors such as social structure and sex-biased dispersal on genetic variation and gene flow among populations, effects of local extirpation and the potential for natural recolonization (i.e. the need for translocations) cannot be assessed. We studied gene flow among seven study areas for river otters (n = 110 otters) inhabiting marine environments in Prince William Sound, Alaska, USA. Using nine DNA microsatellite markers and assignment tests, we calculated immigration rates and dispersal distances and tested for isolation by distance. In addition, we radiotracked 55 individuals in three areas to determine characteristics of dispersal. Gender differences in sociality and spatial relationships resulted in different dispersal distances. Male river otters had greater gene flow among close populations (within 16-30 km) mostly via breeding dispersal, but both genders exhibited an equal, low probability of natal dispersal; and some females dispersed 60-90 km. These data, obtained in a coastal environment without anthropogenic barriers to dispersal (e.g. habitat fragmentation or urbanization), may serve as baseline data for predicting dispersal under optimal conditions. Our data may indicate that natural recolonization of coastal river otters following local extirpation could be a slow process because of low dispersal among females, and recolonization may be substantially delayed unless viable populations occurred nearby. Because of significant isolation by distance for male otters and low gene flow for females, translocations should be undertaken with caution to help preserve genetic diversity in this species.  相似文献   

16.
Habitat fragmentation seriously damages local biodiversity of widespread organisms, or so-called common species, in agricultural habitats. We hypothesized that specialists adaptive to local particular conditions makes a population of generalists vulnerable to habitat fragmentation. To evaluate the extinction-proneness of common rural species, we determined the extent of phenotypic divergence using paddy fish, medaka, Oryzias latipes. Despite its wide geographical range, a rapid population decline threatens its persistence, and remnants persist in fragmented patches. We studied niche profiling of populations from different habitats for a factor that possibly lies behind the species being abundant within particular areas. Measurements of behavioral and morphological characteristics provided comparable variables between populations. Principal component analysis summarized these variables into compounded elements relevant to foraging and predator avoidance. Detection of association between behavioral and morphological traits showed a limited number of phenotypes specific to a local habitat, through which individuals adapted to specific narrow niches. Medaka maintains its status by accumulating a variety of local specialists. Because of the limited-dispersal ability, specialized individuals are vulnerable to isolation in less suitable patches that are caused by the destruction of the habitat-network. From a conservation point of view, the results suggest that preservation of habitats that also serve as corridors is recommended for enhancing the richness of common species that are composed of adaptively diversified phenotypes.  相似文献   

17.
We studied the genetic diversity of the dwarf bulrush (Typha minima) along a 60 km section of the Isère river using AFLP markers. Total clonality was relatively low (proportion of distinguishable genotypes = 0.70) but extremely variable among populations with one monoclonal population and several populations where all sampled individuals were different. Genetic diversity was high (He = 0.129) and again variable among populations. Although no major genetic discontinuity could be detected, gene flow was found to be limited. Our results show a much higher diversity compared to Swiss populations. The high genetic diversity within most populations despite the species’ potentially important clonal growth indicates that populations are relatively young. This is in line with the fact that the species lives in open habitats created by high floods that erase river banks leading to a metapopulation dynamics. However the metapopulation dynamics is at least partly disturbed as gene flow appears to be restricted so that our populations are probably at risk if no action is taken to re-establish more natural river flow dynamics.  相似文献   

18.
Habitat fragmentation has often been implicated in the decline of many species. For habitat specialists and/or sedentary species, loss of habitat can result in population isolation and lead to negative genetic effects. However, factors other than fragmentation can often be important and also need to be considered when assessing the genetic structure of a species. We genotyped individuals from 13 populations of the cooperatively breeding Brown‐headed Nuthatch Sitta pusilla in Florida to test three alternative hypotheses regarding the effects that habitat fragmentation might have on genetic structure. A map of potential habitat developed from recent satellite imagery suggested that Brown‐headed Nuthatch populations in southern Florida occupied smaller and more isolated habitat patches (i.e. were more fragmented) than populations in northern Florida. We also genotyped individuals from a small, isolated Brown‐headed Nuthatch population on Grand Bahama Island. We found that populations associated with more fragmented habitat in southern Florida had lower allelic richness than populations in northern Florida (P = 0.02), although there were no differences in heterozygosity. Although pairwise estimates of FST were low overall, values among southern populations were generally higher than northern populations. Population assignment tests identified K = 3 clusters corresponding to a northern cluster, a southern cluster and a unique population in southeast Florida; using sampling localities as prior information revealed K = 7 clusters, with greater structure only among southern Florida populations. The Bahamas population showed moderate to high differentiation compared with Florida populations. Overall, our results suggest that fragmentation could affect gene flow in Brown‐headed Nuthatch populations and is likely to become more pronounced over time.  相似文献   

19.
Hybridization between wild and domestic species is of conservation concern because it can result in the loss of adaptations and/or disappearance of a distinct taxon. Wolves from Vancouver Island, British Columbia (Canada), have been subject to several eradication campaigns during the twentieth century and were considered virtually extirpated between 1950 and 1970. In this study, we use control region mitochondrial DNA sequences and 13 autosomal microsatellite loci to characterize Vancouver Island wolves as well as dogs from British Columbia. We observe a turnover in the haplotypes of wolves sampled before and after the 1950–1970 period, when there was no permanent wolf population on the island, supporting the probable local extinction of wolves on Vancouver Island during this time, followed by re-colonization of the island by wolves from mainland British Columbia. In addition, we report the presence of a domestic dog mtDNA haplotype in three individuals eliminated in 1986 that were morphologically identified as wolves. Here we show that Vancouver Island wolves were also identified as wolves based on autosomal microsatellite data. We attribute the hybridization event to the episodically small size of this population during the re-colonization event. Our results demonstrate that at least one female hybrid offspring, resulting from a cross of a male wolf and a female dog or a female hybrid pet with dog mtDNA, successfully introgressed into the wolf population. No dog mtDNA has been previously reported in a population of wild wolves. Genetic data show that Vancouver Island wolves are distinct from dogs and thus should be recognized as a population of wild wolves. We suggest that the introgression took place due to the Allee effect, specifically a lack of mates when population size was low. Our findings exemplify how small populations are at risk of hybridization.  相似文献   

20.
Among the 14 extant species of the genus Marmota the Vancouver Island marmot (Marmota vancouverensis) is the most endangered. In 2007 as few as 85 individuals were left in the wild, with an additional 162 individuals maintained in captivity. To facilitate genetic monitoring of both wild and captive populations, polymorphic genetic markers were identified. Thirty-three different microsatellite loci were tested for amplification and variability in ≥30 wild-born individuals. Only 11 of these loci proved to be polymorphic and were subsequently analysed in 105 samples collected from wild Vancouver Island marmots. The average number of alleles (A) at those 11 loci was only 2.1, and the intraspecific variation (H E between 8 and 23% within colonies) was low compared to other marmot species. Variation within the small and geographically isolated Mt. Washington colony was particularly low (A = 1.3, H E = 0.08). Genetic distances between the Mt. Washington colony (11 individuals) and those of the Nanaimo Lakes region (94 individuals) on southern Vancouver Island were large (D values ranging from 0.42 to 0.50), while genetic distances among colonies within the latter area were much smaller (D values from 0.01 to 0.13). Given the low within-population genetic variation, and the resulting risk of inbreeding depression at Mt. Washington, we support the decision to maximize overall genetic variation of the species by crossbreeding marmots from the two different areas despite the possibility of local adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号