首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Previously, we have reported that nanoporous gold (NPG) films prepared by a chemical dealloying method have distinctive plasmonic properties, i.e., they can simultaneously support localized and propagating surface plasmon resonance modes (l-SPR and p-SPR, respectively). In this study, the plasmonic properties of NPG are quantified through direct comparison with thermally evaporated gold (EG) films. Cyclic voltammetry and electrochemical impedance spectroscopy experiments reveal that the NPG films have 4–8.5 times more accessible surface area than EG films. Assemblies of streptavidin–latex beads generate p-SPR responses on both NPG and EG films that correlate well with the bead density obtained from scanning electron microscopy (SEM) images. A layer-by-layer assembly experiment on NPG involving biotinylated anti-avidin IgG and avidin, studied by l-SPR and SEM, shows that the l-SPR signal is directly linked to the accessibility of the interior of the NPG porosity, an adjustable experimental parameter that can be set by the dealloying condition and time. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
By a dealloying/annealing/redealloying strategy, nanoporous gold (NPG) with hierarchical microstructure is fabricated for electrochemical biosensing application. The first dealloying and annealing would produce NPG/AuAg alloy composite with a large-pore NPG layer and the second dealloying would further etch the AuAg alloy part in the composite, generating a small-pore NPG layer. By using the large-pore (≈ 100 nm) layer as the glucose oxidase (GOx) container, and the small-pore (≈ 12 nm) layer as a signal producer, this novel hierarchical NPG is demonstrated to be a good support for enzyme immobilization and fabricating enzyme-based biosensors. The immobilized GOx retains ≈ 92% of the initial activity after 7 repeated use. The GOx-loaded stratified NPG biosensor can detect glucose more sensitively with a wider linear range (up to 22 mM) than normal NPG with a uniform pore size of 30-40 nm (linear range: up to 17 mM).  相似文献   

3.
In this study a protein-based multi-bit biomemory device consisting of recombinant azurin with its cysteine residue modified by site-directed mutagenesis method has been developed. The recombinant azurin was directly immobilized on four different gold (Au) electrodes patterned on a single silicon substrate. Using cyclic voltammetry (CV), chronoamperometry (CA) and open circuit potential amperometry (OCPA) methods the memory function of the fabricated biodevice was validated. The charge transfer occurs between protein molecules and Au electrode enables a bi-stable electrical conductivity allowing the system to be used as a digital memory device. Data storage is achieved by applying redox potentials which are within the range of 200mV. Oxidation and open circuit potentials with current sensing were used for writing and reading operations respectively. Applying oxidation potentials in different combinations to each Au electrodes, multi-bit information was stored in to the azurin molecules. Finally, the switching robustness and reliability of the proposed device has been examined. The results suggest that the proposed device has a function of memory and can be used for the construction of nano-scale multi-bit information storage device.  相似文献   

4.
Porous metals attract significant interest for use in diverse electrochemical catalytic applications. However the fabrication of scalable and controlled porous metal structures on the nanoscale, particularly with highly catalytic pure Pt, still remains a significant challenge. We demonstrate highly engineered nanoporous Pt thin films by the dealloying of a Pt‐Si binary alloy system with a predetermined alloy composition. Controlled pore dimensions and nanostructures are obtained by tailoring the Pt‐Si alloy composition followed by selective Si etching. As a result, isotropic open nanopores are formed in continuous Pt ligaments and the porosity becomes larger on increasing the Si/Pt atomic ratio, which leads to the formation of a higher surface area and active catalytic sites. The formed nanoporous Pt film shows a 32‐times‐higher catalytic activity than Pt/C catalysts, with a high current density and low charge‐transfer resistance during methanol electro‐oxidation. The results reported here open up possibilities to develop high‐performance and reliable catalytic electrodes in energy and environmental applications.  相似文献   

5.
Nanoporous silver (NPS) and copper (NPC) obtained by dealloying AgAl and CuAl alloys, respectively, were used as both three-dimensional templates and reducing agents for the fabrication of nanoporous PtAg (NPS-Pt) and PtCu (NPC-Pt) alloys with hollow ligaments by a simple galvanic replacement reaction with H(2)PtCl(6). Electron microscopy and X-ray diffraction characterizations demonstrate that NPS and NPC with similar ligament sizes (30-50 nm) have different effects on the formed hollow nanostructures. For NPS-Pt, the shell of the hollow ligament is seamless. However, the shell of NPC-Pt is comprised of small pores and alloy nanoparticles with a size of ~3 nm. The as-prepared NPS-Pt and NPC-Pt exhibit remarkably improved electrocatalytic activities towards the oxidation of ethanol and H(2)O(2) compared with state-of-the-art Pt/C catalyst, and can be used for sensitive electrochemical sensing applications. The hierarchical nanoporous structure also provides a good microenvironment for enzymes. After immobilization of glucose oxidase (GOx), the enzyme modified nanoporous electrode can sensitively detect glucose in a wide linear range (0.6-20 mM).  相似文献   

6.
The electroconductive properties and photocurrent generation capabilities of self-assembled monolayers formed by conformationally-constrained hexapeptides were studied by cyclic voltammetry, chronoamperometry, and photocurrent generation experiments. Lipoic acid was covalently linked to the N-terminus of the peptides investigated to exploit the high affinity of the disulfide group to the gold substrates. Smart functionalization of the peptide scaffold with a redox-active (TOAC) or a photosensitizer (Trp) amino acid allowed us to study the efficiency of peptide-based self-assembled monolayers to mediate electron transfer and photoinduced electron transfer processes on gold substrates. Interdigitated microelectrodes have shown higher film stability under photoexcitation, lower dark currents, and higher sensitivity with respect to standard gold electrodes.  相似文献   

7.
Immediate-release oxybutynin was the gold standard for pharmacologic treatment of overactive bladder for nearly 30 years. Intolerable systemic side effects, in particular dry mouth, limited its clinical utility, resulting in poor patient compliance with dosing regimens. Multiple studies have demonstrated the vastly superior tolerability of tolterodine, extended-release tolterodine, and extended-release oxybutynin over that of immediate-release oxybutynin at equivalent doses, and in the case of extended-release oxybutynin even to twice the dose of the original immediate-release form. With different drug delivery systems and, perhaps, with better bladder selectivity, these new oral agents have favorable side effect profiles, which translate into higher patient compliance and fewer treatment withdrawals or dosage reductions.  相似文献   

8.
Immobilization of enzymes on porous inorganic materials is very important for biocatalysis and biotransformation. In this paper, nanoporous gold (NPG) was used as a support for lignin peroxidase (LiP) immobilization. NPG with a pore size of 40–50 nm was prepared by dealloying Au/Ag alloy (50:50 wt%) for 17 h. By incubation with LiP aqueous solution, LiP was successfully immobilized on NPG. The optimal temperature of the immobilized LiP was ca. 40, 10 °C higher than that of free LiP. After 2 h incubation at 45 °C, 55% of the initial activity of the immobilized LiP was still retained while the free LiP was completely deactivated. In addition, a high and sustainable LiP activity was achieved via in situ release of H2O2 by a co-immobilized glucose oxidase. The present co-immobilization system was demonstrated to be very effective for LiP-mediated dye decolourization.  相似文献   

9.
A voltammetric enzyme electrode was developed based on nicotinamide-independent trimethylamine dehydrogenase (TMADH, EC 1.5.99.7), which catalyses the oxidation of trimethylamine (TMA) to dimethylamine and formaldehyde. A quaternized osmium hydrogel polymer, poly(vinylimidazole-[Os(4,4′-dimethyl-2,2′-bipyridine)2Cl]+/2+) with ethylamine (PVI-Os-EA), was prepared as a potential redox mediator in an electrochemical biosensor. TMA was detected using TMADH that was co-immobilized with an osmium hydrogel polymer on electrodeposited gold nanoparticles (Au-NPs) on screen-printed carbon electrodes (SPCEs). The Au-NPs deposited onto SPCEs provided about a three times higher electrochemical response compared to that of a planar gold electrode. As TMA was catalyzed by wired TMADH, the electrical signal was monitored at 0.3 V versus Ag/AgCl by cyclic voltammetry and chronoamperometry. The anode currents increased linearly in proportion to the TMA concentration over the 0 ∼ 2.5 mM range with a detection limit of 1 μM (R = 0.9972).  相似文献   

10.
Interest in using nanoporous materials for sensing applications has increased. The present study reports a method of preparing well-ordered nanoporous gold arrays using a porous silicon (PSi) template. Gold nanolayer could be electrodeposited on the surface of the PSi template at low electrolysis currents in low concentration of chloroauric acid (HAuCl4) solution. Surface morphology characterizations and optical measurements revealed that a PSi-templated nanoporous gold (Au–PSi) array well replicated the nanoporous structure and retained the optical properties of PSi. Fourier transform reflectometric interference spectra showed that a characteristic blue-shifted effective optical thickness (EOT) was observed due to the low refractive index of the gold film. An optical DNA biosensor was then fabricated via the self-assembly of single-stranded DNA (ssDNA) with a specific sequence on the surface of Au–PSi. The attachment of ssDNA and its hybridization with target oligonucleotides (ODNs) persistently caused the blue shift of the EOT. Consequently, a relationship between the EOT shift and the ODN concentration was established. The mechanism of the optical response caused by DNA hybridization on the Au–PSi surface was qualitatively explained by the electromagnetic theory and electrochemical impedance spectroscopy (EIS). The lowest detection limit for target ODNs was estimated at around 10−14 mol L−1, when the baseline noise, a variation in the value of EOT is around 5 nm. The fabricated Au–PSi based optical biosensor has potential use in the discovery of new ODN drugs because it will be able to detect the binding event between ODNs and the target DNA.  相似文献   

11.
We report on a highly sensitive electrochemical biosensor for the determination of total cholesterol. The novel biosensor was fabricated by co-immobilizing three enzymes, cholesterol oxidase (ChO(x)), cholesterol esterase (ChE) and horseradish peroxidase (HRP), on nanoporous gold networks directly grown on a titanium substrate (Ti/NPAu/ChO(x)-HRP-ChE). The morphology and composition of the fabricated nanoporous gold were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction spectroscopy (XRD). The electrochemical behaviour of the Ti/NPAu/ChO(x)-HRP-ChE biosensor was studied using cyclic voltammetry (CV), showing that the developed biosensor possessed high selectivity and high sensitivity (29.33 μA mM?1 cm?2). The apparent Michaelis-Menten constant, K(M)(app) of this biosensor was very low (0.64 mM), originating from the effective immobilization process and the nanoporous structure of the substrate. The biosensor exhibited a wide linear range up to 300 mg dL?1 in a physiological condition (pH 7.4), which makes it very promising for the clinical determination of cholesterol. The fabricated biosensor was further tested using real food samples margarine, butter and fish oil, showing that the biosensor has the potential to be used as a facile cholesterol detection tool in food and supplement quality control.  相似文献   

12.
In this study, gold electrodes (GE) were coated with conducting polymers to obtain a high photocurrent using cyanobacteria from a novel bioelectrochemical fuel cell. For this purpose, 4-(4H-ditiheno[3,2-b:2',3'-d]pyrol-4-yl) aniline and 5-(4H-dithieno[3,2-b:2',3'-d]pyrol-4-yl) napthtalane-1-amine monomers were coated on GE by performing an electropolymerization process. After that, gold nanoparticles (AuNP) were specifically modified by 2-mercaptoethane sulfonic acid and p-aminothiophenol to attach to the electrode surface. The conducting polymers GE coat was modified with functionalized AuNP using a cross-linker. The resulting electrode structures were characterized by cyclic voltammetry and chronoamperometry under on-off illumination using a fiber optic light source. Cyanobacteria Leptolyngbia sp. was added to the GE/conducting polymer/AuNP electrode surface and stabilized by using a cellulose membrane. During the illumination, water was oxidized by the photosynthesis, and oxygen was released. The released oxygen was electrocatalytically reduced at the cathode surface and a 25 nA/cm 2 photocurrent was observed in GE/ Leptolyngbia sp. After the electrode modifications, a significant improvement in the photocurrent up to 630 nA/cm 2 was achieved.  相似文献   

13.
The development of an immunosensor for the direct probing of the interaction between a cysteine-modified synthetic peptide, which corresponds to the epitope cTnC-89-98 of troponin C, and its specific antibody is described. Following immobilization of the peptide onto gold electrodes through the formation of a self-assembled monolayer, the alteration of the interfacial properties of the electrodes upon peptide-antibody interaction was traced by faradaic electrochemical impedance spectroscopy (EIS) using a silicotungstic heteropolyacid, H(4)SiO(4).12WO(3), as a redox probe. The electrochemical behaviour of the redox probe was evaluated with cyclic voltammetry and EIS. The effect of milk protein or 4-mercaptophenol, which was used as post-blocking agents, on the performance of the immunosensor, was investigated. Treatment with 4-mercaptophenol resulted in immunoeffective electrodes that successfully tested in anti-serum samples. An optimum dilution ratio of the samples, where the effect of the matrix on the measuring signal is negligible, was also determined.  相似文献   

14.
Bioelectronic interfaces that establish electrical communication between redox enzymes and electrodes have potential applications as biosensors, biocatalytic reactors, and biological fuel cells. These interfaces are commonly formed on gold films deposited using physical vapor deposition (PVD) or chemical vapor deposition (CVD). PVD and CVD require deposition of a primer layer, such as titanium or chromium, and require the use of expensive equipment and cannot be used on a wide range of substrates. This paper describes a versatile new bench-top method to form bioelectronic interfaces containing a gold film, electron mediator, cofactor, and dehydrogenase enzyme (secondary alcohol dehydrogenase, and sorbitol dehydrogenase) on nonconductive substrates such as polystyrene and glass. The method combines layer-by-layer deposition of polyelectrolytes, electroless metal deposition, and directed molecular self-assembly. Cyclic voltammetry, chronoamperometry, field emission X-ray dispersive spectroscopy, scanning electron microscopy, and atomic force microscopy were used to characterize the bioelectronic interfaces. Interfaces formed on flexible polystyrene slides were shown to retain their activity after bending to a radius of curvature of 18mm, confirming that the approach can be applied on cheap and flexible substrates for applications where traditional wafer-scale electronics is not suitable, such as personal or structural health monitors and rolled microtube biosensors.  相似文献   

15.
This paper is concerned with an investigation of electron transfer between cytochrome P450scc (CYP11A1) immobilized on nanostructured rhodium-graphite electrodes. Multi-walled carbon nanotubes (MWCNT) were deposited onto the rhodium-graphite electrodes by drop casting. Cytochrome P450scc was deposited onto MWCNT-modified rhodium-graphite electrodes. Cytochrome P450scc was also deposited onto both gold nanoparticle-modified and bare rhodium-graphite electrodes, in order to have a comparison with our previous works in this field. Cyclic voltammetry indicated largest enhanced activity of the enzyme at the MWCNT-modified surface. The role of the nanotubes in mediating electron transfer to the cytochrome P450scc was verified as further improved with respect to the case of rhodium-graphite electrodes modified by the use of gold nanoparticles. The sensitivity of our system in cholesterol sensing is higher by orders of magnitude with respect to other similar systems very recently published that are based on cholesterol oxidase and esterase. The electron transfer improvement attained by the use of MWCNT in P450-based cholesterol biosensors was demonstrated to be larger than 2.4 times with respect to the use of gold nanoparticles and 17.8 times larger with respect to the case of simple bare electrodes. The sensitivity was equal to 1.12muA/(mMmm(2)) and the linearity of the biosensor response was improved with respect to the use of gold nanoparticles.  相似文献   

16.
Electrochemical DNA biosensors based on a thin gold film sputtered on anodic porous niobium oxide (Au@Nb(2)O(5)) are studied in detail here. We found that the novel DNA biosensor based on Au@Nb(2)O(5) is superior to those based on the bulk gold electrode or niobium oxide electrode. For example, the novel method does not require any time-consuming cleaning step in order to obtain reproducible results. The adhesion of gold films on the substrate is very stable during electrochemical biosensing, when the thin gold films are deposited on anodically prepared nanoporous niobium oxide. In particular, the novel biosensor shows enhanced biosensing performance with a 2.4 times higher resolution and a three times higher sensitivity. The signal enhancement is in part attributed to capacitive interface between gold films and nanoporous niobium oxide, where charges are accumulated during the anodic and cathodic scanning, and is in part ascribed to the structural stability of DNA immobilized at the sputtered gold films. The method allows for the detection of single-base mismatch DNA as well as for the discrimination of mismatch positions.  相似文献   

17.
This paper is concerned with an investigation of electron transfer between cytochrome P450scc (CYP11A1) and gold nanoparticles immobilised on rhodium-graphite electrodes. Thin films of gold nanoparticles were deposited onto the rhodium-graphite electrodes by drop casting. Cytochrome P450scc was deposited onto both gold nanoparticle modified and bare rhodium-graphite electrodes. Cyclic voltammetry indicated enhanced activity of the enzyme at the gold nanoparticle modified surface. The role of the nanoparticles in mediating electron transfer to the cytochrome P450scc was verified using ac impedance spectroscopy. Equivalent circuit analysis of the impedance spectra was performed and the values of the individual components estimated. On addition of aliquots of cholesterol to the electrolyte bioelectrocatalytic reduction currents were obtained. The sensitivity of the nanoparticle modified biosensor to cholesterol was 0.13 microA microM-1 in a detection range between 10 and 70 microM of cholesterol. This confirms that gold nanoparticles enhance electron transfer to the P450scc when present on the rhodium-graphite electrodes.  相似文献   

18.
Four forms of horseradish peroxidase (HRP) have been used to prepare peroxidase-modified gold electrodes for mediatorless detection of peroxide: native HRP, wild type recombinant HRP, and two recombinant forms containing six-His tag at the C-terminus and at the N-terminus, respectively. The adsorption of the enzyme molecules on gold was studied by direct mass measurements with electrochemical quartz crystal microbalance. All the forms of HRP formed a monolayer coverage of the enzyme on the gold surface. However, only gold electrodes with adsorbed recombinant HRP forms exhibited high and stable current response to H(2)O(2) due to its bioelectrocatalytic reduction based on direct electron transfer between gold and HRP. The sensitivity of the gold electrodes modified with recombinant HRPs was in the range of 1.4-1.5 A M(-1) cm(-2) at -50 mV versus Agmid R:AgCl. The response to H(2)O(2) in the concentration range 0.1-40 microM was not dependent on the presence of a mediator (i.e. catechol) giving strong evidence that the electrode currents are diffusion limited. Lower detection limit for H(2)O(2) detection was 10 nM at the electrodes modified with recombinant HRPs.  相似文献   

19.
Photosystem II (PSII) modified gold electrodes have been prepared providing mediatorless electron transport on the basis of electrodeposited conductive layer poly-mercapto-p-benzoquinone (polySBQ). Such electrodes are suitable in construction of biosensors for PSII inhibiting herbicides. PolySBQ layer was synthesized on (i) screen-printed gold electrodes and (ii) gold microelctodes in an array on silicon substrate, by electrochemical-oxidation of sulpho-p-benzoquinone (SBQ) at +650 mV versus Ag/AgCl. The basic properties of polySBQ layer were characterized using linear sweep voltammetry and atomic force microscopy (AFM). The typical redox response for quinones was observed. The optimal length of the polymer providing direct electron transfer (DET) was found to be very close to 30 nm. PSII particles isolated from the thermophilic cyanobacteria Synechococcus bigranulatus were physically adsorbed on the polySBQ covered gold electrodes. The generation of photocurrent was observed at E=+250 mV (versus Ag/AgCl) without addition of any mediator. The basic properties of DET were studied. We concluded that: (i) PSII active in DET is immobilized in form of monolayer; (ii) the charge transport from PSII to gold working electrode (AuWE) is fast and dominated by the rate of the enzymatic reaction; (iii) polySBQ layer drains electrons from the Q(A) pocket of the photosystem since the electrode activity is inhibited by specific inhibitor, i.e. diuron (DCMU); (iv) the stability of the photosystem immobilized on gold electrodes by using polySBQ is comparable to the stability of PSII in solution under the same experimental conditions; (v) the inhibition of the photosystem by herbicide DCMU follows the sigmoid dependence; (vi) I(50) as well as limit of detection (LOD) show an improved sensitivity compared to other published biosensing systems using PSII as bioactive part.  相似文献   

20.
An electrochemical biosensor is described consisting of a thin-layer gold film electrode prepared by cathodic sputtering using a poly(vinyl chloride) sheet as substrate, with voltammetric behaviour comparable to that of conventional polycrystalline gold electrodes, coated with the hydrolysed copolymer hydroxyethyl methacrylate-co-methyl methacrylate onto which glucose oxidase was immobilized. The mechanical properties of the plastic foil substrate permit easy construction of circular-shaped electrodes which were employed as working electrodes for batch injection analysis. The electrochemical biosensor fabrication is inexpensive and can be used as disposable enzyme sensor for the detection of hydrogen peroxide. The biosensor was tested for the determination of glucose in serum and a good correlation was obtained with the measurement using the electrochemical and the spectrophotometric methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号