首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insects are important participants in many ecosystem processes, but the effects of anthropogenic and natural disturbances on insect communities have been poorly studied. To describe how disturbances affect insect communities, we addressed two questions: Do insect communities return to a pre‐hurricane composition? And how do insect communities change during succession? To answer these questions, we studied insect communities in a chronosequence of two abandoned pastures (5 yr and 32 yr) and a mature forest (>80 yr) that were recently disturbed by two hurricanes (Hurricane Hugo, 1989) Hurricane Georges, 1998). Although insect abundance and richness fluctuated during the study, all sites returned to pre‐hurricane (Hurricane Georges) abundance and richness in less than one year. All trophic categories present before Hurricane Georges were present after the hurricane, but richness within categories fluctuated greatly. Insect richness did not increase during succession; the 5 yr site had the highest richness, the >80 yr site had an intermediate richness, and die 32 yr site the lowest. Nevertheless, the species composition of the two forested sites was different in comparison to the 5 yr site. These results suggest that trophic structure varies little in time and space, but the species composition within each trophic category is highly variable.  相似文献   

2.
We addressed the interacting effects of a natural large–scale fire and a subsequent major hurricane on relative positions of epiphytes in a subtropical forest. In Everglades National Park, subtropical hammocks (hardwood tree “islands”; burned and unburned) during the Ingraham Fire (1989) were surveyed for trees and epiphytic bromeliads (Tillandsia spp.) one year before, as well as one and five years after, Hurricane Andrew (1992). We measured trees (species, diameter, and status [alive/dead]) and epiphytes (species, height, host tree characteristics, substrate life status, and density). The fire decreased the height of epiphytes during the hurricane because branches and bark of trees killed by the fire were unstable epiphyte substrates in the high winds. Proportions of epiphytes on Quercus virginiana were equally increased after the hurricane in both unburned and burned hammocks; the large size and bark characteristics resulted in greater proportional survival of epiphytes on this species. During the five years following the hurricane, changes in the distributions of epiphytes generally were toward pre–hurricane distributions, but recovery was faster in unburned than burned hammocks. We conclude that disturbances that kill trees are likely to amplify the vertical reduction of epiphytes during a subsequent hurricane and that effects of a single disturbance on plant populations can be influenced by the disturbance history of the system, including different types of disturbances.  相似文献   

3.
Hurricane‐caused tree mortality in tropical dry forests occurs predominantly in early successional species. Consequently, hurricanes may accelerate succession in these forests. Forest regeneration, however, must be measured over an extended posthurricane time period to demonstrate this pattern. In this study, we recorded tree seedlings in 19 Florida Keys forests during May–August 1995, 3 years after Hurricane Andrew. For these forests—spanning a chronosequence from 14 to over 100 years since the most recent clearing—we used weighted averaging regression on relative abundances of pre‐hurricane trees to calculate a successional age optimum for each species; and used weighted averaging calibration to calculate inferred successional ages for stands based on pre‐hurricane trees and on posthurricane seedlings. To test the hypothesis that successional stage of seedlings exceeded successional stage of pre‐hurricane trees, we compared inferred stand ages based on posthurricane seedlings with those based on pre‐hurricane trees. Across the study area, inferred stand ages based on posthurricane seedlings were greater than those based on pre‐hurricane trees (P < 0.005); however, more seedlings in the youngest stands were early successional than in older stands. Of 29 species present both as pre‐hurricane trees and posthurricane seedlings, 23 had animal‐dispersed seeds. These results provide evidence that: (1) hurricanes do not ‘reset’ succession, and may accelerate succession; and (2) a strong legacy of stand successional age influences seedling assemblages in these forests.  相似文献   

4.
A tree species replacement sequence for dry broadleaved forests (tropical hardwood hammocks) in the upper Florida Keys was inferred from species abundances in stands abandoned from agriculture or other anthropogenic acitivities at different times in the past. Stands were sampled soon after Hurricane Andrew, with live and hurricane‐killed trees recorded separately; thus it was also possible to assess the immediate effect of Hurricane Andrew on stand successional status. We used weighted averaging regression to calculate successional age optima and tolerances for all species, based on the species composition of the pre‐hurricane stands. Then we used weighted averaging calibration to calculate and compare inferred successional ages for stands based on (1) the species composition of the pre‐hurricane stands and (2) the hurricane‐killed species assemblages. Species characteristic of the earliest stages of post‐agricultural stand development remains a significant component of the forest for many years, but are gradually replaced by taxa not present, even as seedlings, during the first few decades. This compositional sequence of a century or more is characterized by the replacement of deciduous by evergreen species, which is hypothesized to be driven by increasing moisture storage capacity in the young organic soils. Mortality from Hurricane Andrew was concentrated among early‐successional species, thus tending to amplify the long‐term trend in species composition.  相似文献   

5.
Paudel  Shishir  Battaglia  Loretta L. 《Plant Ecology》2021,222(2):133-148

Hurricane disturbances produce significant changes in forest microclimates, creating opportunities for seedling regeneration of native and invasive plant species alike. However, there is limited information on how changes in microclimates and pre-existing forest conditions affect native and invasive plants responses to hurricane disturbances. In this manipulative study, we examined the responses of three common shrub/small stature tree species, two of which are native to the coastal region of the southeastern USA (Baccharis halimifolia and Morella cerifera) and one that is invasive (Triadica sebifera), to two key components of hurricane disturbance (canopy damage and saline storm surge). In a greenhouse, we grew seedlings of these species under a range of shade levels that mimicked pre-and post-hurricane canopy conditions for wet pine forest and mixed hardwood forest, two forest communities common in coastal areas of the southeastern USA. Seedlings were subjected to saline storm surges equivalent to full strength sea water for 3 days. Seedling responses (mortality and growth) to the treatments were monitored for 16 months. All species benefitted from higher canopy openness. Storm surge effects were short-lived and seedlings readily recovered under high light conditions. The storm surge had stronger negative effects on survival and growth of all species when coupled with high shade, suggesting storm surge has greater negative impacts on seedlings where hurricane winds cause minimal or no canopy damage. The invasive T. sebifera was by far more shade tolerant than the natives. Survival of T. sebifera seedlings under highly shaded conditions may provide it a competitive edge over native species during community reassembly following tropical storms. Differential responses of native and invasive species to hurricane disturbances will have profound consequences on community structure across coastal forest stands, and may be regulated by legacies of prior disturbances, community structure, extent of canopy damage, and species’ tolerance to specific microclimates.

  相似文献   

6.
Aim Tropical dry forests in the Caribbean have an uniquely short, shrubby structure with a high proportion of multiple‐stemmed trees compared to dry forests elsewhere in the Neotropics. Previous studies have shown that this structure can arise without the loss of main stems from cutting, grazing, or other human intervention. The Caribbean has a high frequency of hurricanes, so wind may also influence forest stature. Furthermore, these forests also tend to grow on soils with low amounts of available phosphorus, which may also influence structure. The objective of this study was to assess the role of high winds in structuring dry forest, and to determine whether soil nutrient pools influence forest response following hurricane disturbance. Location Guánica Forest, Puerto Rico. Methods Over 2000 stems in five plots were sampled for hurricane effects within 1 week after Hurricane Georges impacted field sites in 1998. Sprout initiation, growth, and mortality were analysed for 1407 stems for 2 years after the hurricane. Soil nutrient pools were measured at the base of 456 stems to assess association between nutrients and sprout dynamics. Results Direct effects of the hurricane were minimal, with stem mortality at < 2% and structural damage to stems at 13%, although damage was biased toward stems of larger diameter. Sprouting response was high – over 10 times as many trees had sprouts after the hurricane as before. The number of sprouts on a stem also increased significantly. Sprouting was common on stems that only suffered defoliation or had no visible effects from the hurricane. Sprout survival after 2 years was also high (> 86%). Soil nutrient pools had little effect on forest response as a whole, but phosphorus supply did influence sprout dynamics on four of the more common tree species. Main conclusions Hurricanes are able to influence Caribbean tropical dry forest structure by reducing average stem diameter and basal area and generating significant sprouting responses. New sprouts, with ongoing survival, will maintain the high frequency of multi‐stemmed trees found in this region. Sprouting is not limited to damaged stems, indicating that trees are responding to other aspects of high winds, such as short‐term gravitational displacement or sway. Soil nutrients play a secondary role in sprouting dynamics of a subset of species. The short, shrubby forest structure common to the Caribbean can arise naturally as a response to hurricane winds.  相似文献   

7.
Predicting forest composition change through time is a key challenge in forest management. While multiple successional pathways are theorized for boreal forests, empirical evidence is lacking, largely because succession has been inferred from chronosequence and dendrochronological methods. We tested the hypotheses that stands of compositionally similar overstory may follow multiple successional pathways depending on time since last stand‐replacing fire (TSF), edaphic conditions, and presence of intermediate disturbances. We used repeated measurements from combining sequential aerial photography and ground surveys for 361 boreal stands in central Canada. Stands were measured in 8–15 yr intervals over a ~ 60 yr period, covering a wide range of initial stand conditions. Multinomial logistic regression was used to analyze stand type transitions. With increasing TSF, stands dominated by shade‐intolerant Pinus banksiana, Populus sp., and Betula papyrifera demonstrated multiple pathways to stands dominated by shade‐tolerant Picea sp., Abies balsamea, and Thuja occidentalis. Their pathways seemed largely explained by neighborhood effects. Succession of stands dominated by shade‐tolerant species, with an exception of stands dominated by Picea sp., was not related to TSF, but rather dependent on edaphic conditions and presence of intermediate disturbances. Varying edaphic conditions caused divergent pathways with resource limited sites being dominated by nutrient‐poor tolerant species, and richer sites permitting invasion of early successional species and promoting species mixtures during succession. Intermediate disturbances promoted deciduous persistence and species diversity in A. balsamea and mixed‐conifer stands, but no evidence was detected to support “disturbance accelerated succession”. Our results demonstrate that in the prolonged absence of stand‐replacing disturbance boreal forest stands undergo multiple succession pathways. These pathways are regulated by neighborhood effects, resource availability, and presence of intermediate disturbance, but the relative importance of these regulators depends on initial stand type. The observed divergence of successional pathways supports the resource‐ratio hypothesis of plant succession.  相似文献   

8.
Abstract. Computer simulations were used to elaborate hypotheses about controls on forest structure and composition in a 0.7 km ≤ area of boreal forest in Central Sweden. DBH and species of all adult trees and stand conditions were recorded for 57–10 m radius plots. Ordination of these data suggested that nutrient-availability and time-since-disturbance were the main controls of forest composition and structure within the area. The simulation model couples equations representing the effect of tree canopy structure and biomass on light and soil conditions with equations representing the effect of these conditions on reproduction, growth and mortality in height cohorts of trees on a 0.1 ha patch. Nitrogen-availability levels for each modeled plot were simulated by species-specific growth multipliers. The model was run for 400 simulated yr at six levels of N availability. Age and N status of each study plot were inferred by matching with the most similar model output. Inferred ages agreed with what is known of the disturbance history, and site factors related to soil fertility were correctly correlated with the inferred N status. The consequences of size-selective disturbance were explored by model experiments. Biomass was removed from large or small size classes at 100 - 200 yr and the simulations were run for an additional 300 yr. Disturbed stands of high N status often became similar to undisturbed stands of different N status. Size-selective disturbances produced stands that were different from any in the undisturbed succession, but these differences disappeared within 50 - 100 yr, implying successional convergence in stand structure and composition. Plots of simulated basal area against time and nitrogen-availability for the four species illustrate the time dependence of species performance along a fertility gradient.  相似文献   

9.
Among their effects on forest structure and carbon dynamics, hurricanes frequently create large‐scale canopy gaps that promote secondary growth. To measure the accumulation of aboveground biomass (AGBM) in a hurricane damaged forest, we established permanent plots 4 mo after the landfall of Hurricane Joan on the Atlantic coast of Nicaragua in October 1988. We quantified AGBM accumulation in these plots by correlating diameter measurements to AGBM values using a published allometric regression equation for tropical wet forests. In the first measurement year following the storm, AGBM in hurricane‐affected plots was quite variable, ranging from 26 to 153 Mg/ha, with a mean of 78 (±15) Mg/ha. AGBM was substantially lower than in two control plots several kilometers outside the hurricane's path (331 ±15 Mg/ha). Biomass accumulation was slow (5.36 ± 0.74 Mg/ha/yr), relative to previous studies of forest regeneration following another hurricane (Hugo) and agricultural activity. We suggest that large‐scale, homogenous canopy damage caused by Hurricane Joan impeded the dispersal and establishment of pioneer trees and led to a secondary forest dominated by late successional species that resprouted and survived the disturbance. With the relatively slow rate of biomass accumulation, any tightening in disturbance interval could reduce the maximum capacity of the living biomass to store carbon.  相似文献   

10.
Few hurricanes affect intact stands of subtropical pines. We examined effects of winds in the eyewalls of Hurricane Andrew, where wind speeds were >200 km h–1, on all remaining large mainland stands of Pinus elliottii var. densa (south Florida slash pine) on limestone outcroppings (rocklands) in the everglades region of southern Florida. We measured densities and sizes of trees and assessed damage and mortality in plots in old-growth stands in the Lostman's Pines (LOP) region of Big Cypress National Preserve and in second-growth stands in the Pines West (PIW) and Long Pine Key (LPK) regions of Everglades National Park. We also examined age-size relationships using sections from trees killed by the hurricane in LOP and LPK. We used the data to predict effects of recurrent hurricanes on the structure and dynamics of the old-growth stand and to compare effects of hurricanes on old- and second-growth stands.Slash pine was resistant to hurricane winds. Most trees in stands (68–76%) were not severely damaged; mortality in the three regions averaged 17–25% shortly after the hurricane and 3–7% during the following year. Mortality was positively associated with tree size; mean tree sizes decreased and size-selective thinning occurred in all stands. Nonetheless, local mortality ranged from 3–4% to 50–60% among plots in all stands. Such local variation in mortality resulted from clustering of large trees, especially in old-growth stands, and from microbursts during the hurricane, which affected all stands. Recurrent, intense hurricanes are predicted to kill larger trees, slowly opening new patches and increasing sizes of extant patches, thus resulting in almost continual presence of openings suitable for recruitment in old-growth stands. Age-size relationships also indicated that large trees in old-growth stands may survive 2–3 centuries. The combination of frequent openings and wind resistance of large trees is predicted to result in old-growth stands that are highly uneven aged, with trees locally distributed in similar-aged patches. The extent to which such stands deviate from demographic equilibrium, as well as turnover rates within stands, are likely to increase as the frequency of recurrent, intense hurricanes increases.Damage and mortality differed in old- and second-growth stands. Large trees were more, but small trees less likely to be damaged in old- than second-growth stands. In contrast, mortality was significantly lower in old- (LOP: 16.9% ± 3.1 [mean ± s.e.]) than second-growth stands (PIW: 22.5% ± 2.0; LPK: 25.2% ± 2.7). Total hurricane-related mortality was 30–60% higher in second- than old-growth stands. Size class structure, more uneven in old- than second growth stands prior to the hurricane, diverged even more afterwards. Hurricane Andrew removed  相似文献   

11.
Regeneration in fringe mangrove forests damaged by Hurricane Andrew   总被引:1,自引:0,他引:1  
Baldwin  Andrew  Egnotovich  Michael  Ford  Mark  Platt  William 《Plant Ecology》2001,157(2):151-164
Mangrove forests along many tropical coastlines are frequently andseverely damaged by hurricanes. The ability of mangrove forests to regeneratefollowing hurricanes has been noted, but changes that occur in vegetationfollowing disturbance by hurricane winds and storm tides have not been studied.We measured changes in plant community structure and environmental variables intwo fringe mangrove forests in south Florida, USA that experienced high windvelocities and storm tides associated with Hurricane Andrew (August1992). Loss of the forest canopy stimulated regeneration via seedlinggrowth and recruitment, as well as resprouting of some trees that survived thehurricane. Initial regeneration differed among species in both forests:Rhizophora mangle L. regenerated primarily via growth ofseedlings present at the time of the hurricane (i.e., release of advancerecruits), but many trees of Avicennia germinans(L.) Stearn and Laguncularia racemosa Gaertn.f.resprouted profusely from dormant epicormic buds. In one forest, which wasformerly dominated by Laguncularia, high densities ofRhizophora seedlings survived the hurricane and grew toform dense stands of saplings and small trees ofRhizophora. In the other forest, there were lowerdensitiesof surviving Rhizophora seedlings (possibly due tohigher storm tide), and extensive bare areas that were colonized byAvicennia, Laguncularia, andherbaceous species. This forest, predominantly Rhizophoraat the time of the hurricane, now contains stands of saplings and small treesofall three species, interspersed with patches dominated by herbaceous plants.These findings indicate that moderately damaged fringe forests may regenerateprimarily via release of Rhizophora advance recruits,leading to single-species stands. In severely damaged forests, seedlingrecruitment may be more important and lead to mixed-species stands.Regeneration of mangrove forests following hurricanes can involve differentpathways produced by complex interactions between resprouting capability,seedling survival, post-hurricane seedling recruitment, and colonizationby herbaceous vegetation. These differences in relative importance ofregeneration pathways, which may result in post-hurricane forestsdifferent from their pre-hurricane structure, suggest that models forregeneration of mangrove forests will be more complex than directregeneration models proposed for other tropical forests whereregeneration after hurricanes is dominated by resprouting.  相似文献   

12.
Abstract. Sirén (1955) studied understorey species composition, tree stand properties and humus‐layer thickness in 64 unlogged forest stands on topographically and pedologically comparable sites. The stands were of even age (6 – 300 yr), stocked with the first or second tree generation after wildfire. The view of Sirén and several authors after him, that the vegetation of old‐growth boreal Picea forests is homogeneous on a broad scale, was examined by applying, in parallel, the partial variants of two ordination methods (DCA and PCA) to Sirén's vegetation data. Two main vegetation gradients were found: a major gradient running from recently burnt plots with prominence of pioneer species to plots with stand age > 100 yr, a well stocked tree layer and a thick humus layer, dominance of feather‐mosses and ample occurrence of shade‐tolerant as well as light‐preferring vascular plant species, and a second gradient along which first‐ and second‐generation plots segregate. The more prominent element of Betula trees in first‐ than in second‐generation stands < 100 yr contributed to the latter. A minor third gradient related to humus‐layer thickness was recovered by partial DCA only. The main vegetation gradient reappeared in separate ordinations of data from 47 mature forest stands (> 100 yr), but without being correlated with forest age. Variation among mature‐forest stands in the importance of pioneer species is considered mainly to be brought about by fine‐scale disturbance processes such as tree uprooting. Increasing importance of factors operating on within‐stand scales [development of a varied gap structure and stronger gradients in tree influence (radiation at ground level), soil moisture, soil depth and nutrient availability] with time is also reflected in the second and third mature‐forest ordination axes. Possible implications of the results for conservation of biological diversity and monitoring of changes in boreal forests are discussed.  相似文献   

13.
Aim This research examines environmental theories and remote sensing methods that have been hypothesized to be associated with tropical dry forest structure. Location Tropical dry forests of South Florida and the Neotropics. Methods Field measurements of stand density, basal area and tree height were collected from 22 stands in South Florida and 30 stands in the Neotropics. In South Florida, field measurements were compared to climatic (temperature, precipitation, hurricane disturbance) and edaphic (rockiness, soil depth) variables, spectral indices (NDVI, IRI, MIRI) from Landsat 7 ETM+, and estimates of tree height from the Shuttle Radar Topography Mission (SRTM) and the National Elevation Dataset (NED). Environmental variables associated with tropical dry forest structure in South Florida were compared to tropical dry forest in other Neotropical sites. Results There were significant correlations among temperature and precipitation, and stand density and tree height in South Florida. There were significant correlations between (i) stand density and mean NDVI and standard deviation of NDVI, (ii) MIRI and stand density, basal area and mean tree height, and (iii) estimates of tree height from SRTM with maximum tree height. In the Neotropics, there were no relationships between temperature or precipitation and tropical dry forest structure, however, Neotropical sites that experience hurricane disturbance had significantly shorter tree heights and higher stand densities. Main conclusions It is possible to predict and quantify the forest structure characteristics of tropical dry forests using climatic data, Landsat 7 ETM+ imagery and SRTM data in South Florida. However, results based on climatic data are region‐specific and not necessarily transferable between tropical dry forests at a continental spatial scale. Spectral indices from Landsat 7 ETM+ can be used to quantify forest structure characteristics, but SRTM data are currently not transferable to other regions. Hurricane disturbance has a significant impact on forest structure in the Neotropics.  相似文献   

14.
Size and age structure, spatial analysis, and disturbance history were used to analyse the population structures and regeneration patterns of 8 conifer stands in the central western Cascade Range, Oregon, USA. Variation in forest structure reflected the effects of frequent (20–50 yr) low-intensity fires and treefalls, infrequent (100–200 yr) localised, intense fires, and extensive fires that resulted in stand replacement (every ca 400 yr?).The amount of canopy removed and the size of openings formed by fires and treefalls were important determinants of subsequent forest establishment. Single or several species stands of Pseudotsuga and/or Abies procera, or mixed species stands of Pseudotsuga, Abies procera, Tsuga heterophylla and Abies amabilis established in openings where intense fires had removed most of the canopy trees over several ha. Multi-tiered and multi-aged stands, often containing 400–500 yr-old Pseudotsuga and variously-sized more or less even-aged patches of younger shade tolerant Tsuga heterophylla and/or Abies amabilis, occurred where lower-intensity fires did not kill all overstorey trees or where treefalls occurred after the initial fire.Current regeneration processes are influenced by overstorey composition, the availability and size of canopy openings, and the availability of substrates suitable for regeneration. Tsuga heterophylla and Abies amabilis established under Pseudotsuga menziesii and Abies procera canopies and in small canopy openings (<400 m2) created by windfalls, but rarely under Tsuga. Down logs and stumps were favoured establishment sites for Tsuga.The disturbance regime of fires of low-to moderate-intensity, windfalls, and occasional fires that result in extensive stand replacement contrasts with the pattern of infrequent, catastrophic disturbances proposed for other areas of the Pacific Northwest. Although fires at stand establishment commonly determine much of the composition, structure, and subsequent stand development, canopy replacement by shade tolerant species occurs as the different life histories of the species are expressed in response to various disturbances differing in intensity and frequency. Such a non-equilibrium view of vegetation change is consistent with many other fire-dominated forests of the western United States.  相似文献   

15.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   

16.
Changes in forest structure and species diversity throughout secondary succession were studied using a chronosequence at two sites in the Bolivian Amazon. Secondary forests ranging in age from 2 to 40 years as well as mature forests were included, making a total of 14 stands. Fifty plants per forest layer (understory, subcanopy, and canopy) were sampled using the transect of variable area technique. Mean and maximum height, total stem density, basal area, and species number were calculated at the stand level. Species diversity was calculated for each stand and for each combination of forest layer and stand. A correspondence analysis was performed, and the relationship between relative abundance of the species and stand age was modeled using a set of hierarchical models. Canopy height and basal area increased with stand age, indicating that secondary forests rapidly attain a forest structure similar in many respects to mature forests. A total of 250 species were recorded of which ca 50 percent made up 87 percent of the sampled individuals. Species diversity increased with stand age and varied among the forest layers, with the lowest diversity in the canopy. The results of the correspondence analysis indicated that species composition varies with stand age, forest layer, and site. The species composition of mature forests recovered at different rates in the different forest layers, being the slowest in the canopy layer. Species showed different patterns of abundance in relation to stand age, supporting the current model of succession.  相似文献   

17.
Long-term studies are needed to understand the dynamics of tropical forests, particularly those subject to periodic disturbances such as hurricanes. We studied a flood plain Prestoea montana palm forest in the Luquillo Mountains of Puerto Rico over a 15-yr period (1980–1995), which included the passage of Hurricane Hugo in September 1989. The passage of the hurricane caused the dominant species to become more dominant and created low instantaneous tree mortality (1% of stems) and reductions in tree biomass (-16 Mg/ha/yr) and density, although not in basal area. Five years after the hurricane, the palm flood plain forest had exceeded its prehurricane aboveground tree biomass, tree density, and basal area. Aboveground tree biomass accumulated at a rate of 9.2 Mg/ha/yr, 76 percent of which was due to palms. Before the hurricane this rate was on the order of 3 Mg/ha/yr. Forest floor litter decreased to prehurricane levels (6.7 Mg/ha), within 5 yr, mostly due to the disappearance of woody litter. Thirteen tree species not represented in the canopy entered the forest by regeneration, and 2 species suffered almost 20 percent/yr mortality over a 5-yr period after the storm (floodplain average of 2%/yr). Delayed tree mortality was twice as high as instantaneous tree mortality after the storm and affected dicotyledonous trees more than it did palms. Regencration of dicotyledonous trees, palms, and tree ferns was influenced by a combination of factors including hydroperiod, light, and space. Redundancy Data Analysis showed that the area near the river channel was the most favorable for plant regeneration. Palm regeneration was higher in locations with longer hydroperiods, while regeneration of dicotyledonous trees was higher in areas with low risk of flooding. This study shows how a periodic disturbance provides long-term opportunities for species invasions and long-term ecosystem response at the patch scale of < 1 ha.  相似文献   

18.
Species composition, diversity and tree population structure were studied in three stands of the tropical wet evergreen forest in and around Namdapha National Park, Arunachal Pradesh, India. Three study stands exposed to different intensities of disturbances were identified, viz., undisturbed (2.4 ha) in the core zone of the park, moderately disturbed (2.1 ha) in the periphery of the park and highly disturbed (2.7 ha) outside the park area. In total 200 plant species belonging to 73 families were recorded in three stands. Tree density and basal area showed a declining trend with the increase in disturbance intensity. The densities of tree saplings and seedlings were lower in the disturbed stands than in the undisturbed stand. Species like Altingia excelsa, Olea dioica, Terminalia chebula, Mesua ferrea and Shorea assamica in the undisturbed stand and Albizia procera alone in the moderately disturbed stand contributed more than 50% of the total tree density in respective stands. The undisturbed stand contained young tree population. In the highly disturbed stand, the tree density was scarce, but had uncut trees of higher girth class (>210 cm GBH). Low shrub density was recorded in both disturbed stands due to frequent human disturbances; the broken canopy and direct sunlight enhanced the abundance of herbs in these stands. With a species rarity (species having <2 individuals) of ca. 50%, the tropical wet evergreenforests of the Namdapha National Park and its adjacent areas warrant more protection from human intervention and also eco-development to meet the livelihood requirements of the local inhabitants in the peripheral areas of the Namdapha National Park in order to reduce the anthropogenic pressure on the natural resources of the park.  相似文献   

19.
Tree species richness, tree density, basal area, population structure and distribution pattern were investigated in undisturbed, mildly disturbed, moderately disturbed and highly disturbed stands of tropical wet evergreen forests of Arunachal Pradesh. The forest stands were selected based on the disturbance index (the basal area of the cut trees measured at ground level expressed as a fraction of the total basal area of all trees including felled ones): (i) undisturbed stand (0% disturbance index), (ii) mildly disturbed (20% disturbance index), (iii) moderately disturbed (40% disturbance index), and (iv) highly disturbed stand (70% disturbance index). Tree species richness varied along the disturbance gradient in different stands. The mildly disturbed stand showed the highest species richness (54 of 51 genera). Species richness was lowest (16 of 16 genera) in the highly disturbed stand. In the undisturbed stand, 47 species of 42 genera were recorded while in the moderately disturbed stand 42 species of 36 genera were found. The Shannon–Wiener diversity index for tree species ranged from 0.7 to 2.02 in all the stands. The highest tree diversity was recorded in the undisturbed stand and the lowest in the highly disturbed stand. The stands differed with respect to the tree species composition at the family and generic level. Fagaceae, Dipterocarpaceae and Clusiaceae dominated over other families and contributed 53% in the undisturbed, 51% in the mildly disturbed, 42% in the moderately disturbed and 49% in the highly disturbed forest stands to the total density of the respective stand. Stand density was highest (5452 stems ha–1) in the undisturbed stand, followed by the mildly disturbed stand (5014), intermediate (3656) in the moderately disturbed stand and lowest (338) in the highly disturbed stand. Dominance, calculated as the importance value index of different species, varied greatly across the stands. The highest stand density and species richness were represented in the medium girth class (51–110 cm) in all the stands. In the undisturbed stand, the highest density was found in the 111–140 cm girth class, while in the mildly disturbed stand the 51–80 cm girth range recorded the highest density. About 55, 68 and 52% species were found to be regenerating in the undisturbed, mildly disturbed and moderately disturbed stands, respectively. No regeneration was recorded in the highly disturbed stand. Variation in species richness, distribution pattern and regeneration potential is related to human interference and the need for forest conservation is emphasized.  相似文献   

20.
In 1998, we measured the effects of Hurricane Georges after it passed over long‐term research sites in Puerto Rican dry forest. Our primary objectives were to quantify hurricane effects on forest structure, to compare effects in a large tract of forest versus a series of nearby forest fragments, to evaluate short‐term response to hurricane disturbance in terms of mortality and sprouting, and to assess the ability of hurricanes to maintain forest structure. We sampled damage from 33 plots (1.3 ha) across a 3000‐ha tract of forest as well as in 19 fragments. For stems with 2.5‐cm minimum diameter, 1004 stems/ha (12.4%) suffered structural damage, while 69 percent of the undamaged stems were at least 50 percent defoliated. Basal area lost to structural damage equaled 4.0 m2/ha (22%) in south‐facing native forests. Structural damage and defoliation increased with stem diameter and were more common in certain dry forest species. South‐facing forests and those on ridgetops incurred more damage than north‐facing forests or those comprised primarily of introduced species. Stem mortality was only 2 percent of all stems after 9 mo. Structural damage did not necessarily result in stem mortality. Hurricane‐induced mortality was not associated with stem height or diameter, but was ten times greater than background mortality. Basal sprouting was proportional to the amount of structural damage incurred in a stand. Forest fragments experienced the same patterns of hurricane effects as the reference forest. The low, dense structure of Caribbean dry forest can be maintained by hurricane damage to larger stems and induction of basal sprouting to generate multistemmed trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号