首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Millions of ducks, geese, and sandhill cranes (Grus canadensis; hereafter cranes) stop in the Central Platte River Valley (CPRV) of Nebraska to store nutrients for migration and reproduction by consuming corn remaining in fields after harvest. We examined factors that influence use of cornfields by cranes and geese (all mid-continent species combined; e.g., Anser, Chen, and Branta spp.) because it is a key step to efficient conservation planning aimed at ensuring that adequate food resources are available to migratory birds stopping in the CPRV. Distance to night-time roost site, segment of the CPRV (west to east), and agricultural practices (post-harvest treatment of cornfields: idle, grazed, mulched, mulched and grazed, and tilled) were the most important and influential variables in our models for geese and cranes. Probability of cornfield use by geese and cranes decreased with increasing distance from the closest potential roosting site. The use of cornfields by geese increased with the density of corn present there during the early migration period, but field use by cranes appeared not to be influenced by early migration corn density. However, probability of cornfield use by cranes did increase with the amount of wet grassland habitat within 4.8 km of the field. Geese were most likely to use fields that were tilled and least likely to use fields that were mulched and grazed. Cranes were most likely to use fields that were mulched and least likely to use fields that were tilled, but grazing appeared not to influence the likelihood of field use by cranes. Geese were more likely to use cornfields in western segments of the CPRV, but cranes were more likely to use cornfields in eastern segments. Our data suggest that managers could favor crane use of fields and reduce direct competition with geese by reducing fall and spring tilling and increasing mulching. Moreover, crane conservation efforts would be most beneficial if they were focused in the eastern portions of the CPRV and in fields as close as possible to both known roosting and large amounts of wet grassland habitats. © 2011 The Wildlife Society.  相似文献   

2.
ABSTRACT The central Platte River valley (CPRV) in Nebraska, USA, is a key spring-staging area for approximately 80% of the midcontinent population of sandhill cranes (Grus canadensis; hereafter cranes). Evidence that staging cranes acquired less lipid reserves during the 1990s compared to the late 1970s and increases in use of the CPRV by snow geese (Chen caerulescens) prompted us to investigate availability of waste corn and quantify spatial and temporal patterns of crane and waterfowl use of the region. We developed a predictive model to assess impacts of changes in availability of corn and snow goose abundance under past, present, and potential future conditions. Over a hypothetical 60-day staging period, predicted energy demand of cranes and waterfowl increased 87% between the late 1970s and 1998–2007, primarily because peak abundances of snow geese increased by 650,000 and cranes by 110,000. Compared to spring 1979, corn available when cranes arrived was 20% less in 1998 and 68% less in 1999; consequently, the area of cornfields required to meet crane needs increased from 14,464 ha in 1979 to 32,751 ha in 1998 and 90,559 ha in 1999. Using a pooled estimate of 88 kg/ha from springs 1998–1999 and 2005–2007, the area of cornfields needed to supply food requirements of cranes and waterfowl increased to 65,587 ha and was greatest in the eastern region of the CPRV, where an estimated 54% of cranes, 47% of Canada geese (Branta canadensis), 45% of greater white-fronted geese (Anser albifrons), and 46% of snow geese occurred during ground surveys. We estimated that a future reduction of 25% in available corn or cornfields would increase daily foraging flight distances of cranes by 27–38%. Crane use and ability of cranes to store lipid reserves in the CPRV could be reduced substantially if flight distance required to locate adequate corn exceeded a physiological maximum distance cranes could fly in search of food. Options to increase carrying capacity for cranes include increasing accessibility of cornfields by restoring degraded river channels to disperse roosting cranes and increasing wetland availability in the Rainwater Basin to attract snow geese using the CPRV.  相似文献   

3.
Wheat curl mites, Aceria tosichella Keifer, dispersing from wheat (Triticum spp.) to nearby corn (Zea mays L.) fields play a role in the development of kernel red streaking in corn. These studies were undertaken to verify the relationship of wheat curl mite to kernel red streaking, to determine whether wheat is the main source of curl mites dispersing into corn and to determine whether planting corn in temporal or spatial isolation of wheat is a valid management strategy. These studies were conducted on farm fields using sticky traps to monitor mites, followed by sampling mature grain for kernel streaking in southwestern Ontario from 1999 to 2002. The dominant source mites were winter wheat. Mite dispersal occurred during the first 3 wk of winter wheat maturation after the wheat had reached Zadoks stage 87. Mite dispersal corresponded to prevailing winds in the area with the lowest number of mites and the lowest severity of kernel red streaking occurring 60 m from wheat fields planted to the north, south, and east of cornfields and 90 m from wheat fields planted to the west of cornfields. The severity of kernel red streaking was positively correlated with the density of wheat curl mites in corn; however, the correlation was weak and kernel red streaking was still high in many cornfields when few or no mites were present. These findings suggest that wheat curl mite migration into corn is not entirely predictive of the incidence and severity of kernel red streaking.  相似文献   

4.
Each year, millions of songbirds concentrate in coastal areas during fall migration. The choices birds make at the coast about stopover habitat use and migratory route can influence both the success of their migratory journey and fitness in subsequent life stages. We made use of a regional‐scale automated radio telemetry array to study stopover and migratory flights and migratory routes of blackpoll warblers Setophaga striata and red‐eyed vireos Vireo olivaceus during fall migration in the Gulf of Maine, USA. We focused on differences between species, sexes, age groups, breeding origins, and time of year. Both species made within‐stopover relocations (i.e. ‘stopover flights’) from the coastal capture site. Stopover flights were primarily oriented inland, and were more frequent for blackpolls (87%) than vireos (44%). By studying migratory behavior at a broad spatial scale, we demonstrated that most blackpolls and vireos took coastal and offshore routes through the Gulf of Maine, despite initially relocating inland from the capture site. Though we captured blackpolls and vireos from a broad breeding range, more than 70% of migratory flights from the capture site were oriented for coastal or offshore travel for both species, suggesting that birds actively chose coastal and offshore routes, and were not simply displaced by wind drift. Later vireos oriented offshore more frequently during migratory flights from the coast, indicating that they may be more inclined towards time‐minimizing overwater flight routes and thus more exposed to coastal and offshore collision hazards than earlier conspecifics.  相似文献   

5.
The North American greater snow goose population has increased dramatically during the last 40 years. We evaluated whether refuge creation, changes in land use on the wintering and staging grounds, and climate warming have contributed to this expansion by affecting the distribution, habitat use, body condition, and migration phenology of birds. We also reviewed the effects of the increasing population on marshes on the wintering grounds, along the migratory routes and on the tundra in summer. Refuges established before 1970 may have contributed to the initial demographic increase. The most important change, however, was the switch from a diet entirely based on marsh plants in spring and winter (rhizomes of Scirpus/Spartina) to one dominated by crops (corn/young grass shoots) during the 1970s and 1980s. Geese now winter further north along the US Atlantic coast, leading to reduced hunting mortality. Their migratory routes now include portions of southwestern Québec where corn production has increased exponentially. Since the mid‐1960s, average temperatures have increased by 1–2.4°C throughout the geographic range of geese, which may have contributed to the northward shift in wintering range and an earlier migration in spring. Access to spilled corn in spring improved fat reserves upon departure for the Arctic and may have contributed to a high fecundity. The population increase has led to intense grazing of natural wetlands used by geese although these habitats are still largely undamaged. The foraging in fields allowed the population to exceed limits imposed by natural marshes in winter and spring, but also prevented permanent damage because of their overgrazing.  相似文献   

6.
Transgene spreading is a major concern in cultivating genetically modified (GM) corn. Cross-pollination may cause the spread of transgenes from GM cornfields to conventional fields. Occasionally, seed lot contamination, volunteers, mixing during sowing, harvest, and trade can also lead to transgene escape. Obviously, new biological confinement technologies are highly desired to mitigate transgene spreading in addition to physical separation and isolation methods. In this study, we report the development of a built-in containment method to mitigate transgene spreading in corn. In this method, an RNAi cassette for suppressing the expression of the nicosulfuron detoxifying enzyme CYP81A9 and an expression cassette for the glyphosate tolerant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene G10 were constructed and transformed into corn via Agrobacterium-mediated transformation. The GM corn plants that were generated were found to be sensitive to nicosulfuron but resistant to glyphosate, which is exactly the opposite of conventional corn. Field tests demonstrated that GM corn plants with silenced CYP81A9 could be killed by applying nicosulfuron at 40 g/ha, which is the recommended dose for weed control in cornfields. This study suggests that this built-in containment method for controlling the spread of corn transgenes is effective and easy to implement.  相似文献   

7.
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover‐to‐passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south‐eastern US, the most prominent corridor for North America’s migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.  相似文献   

8.
Twenty‐two honeybee (Apis mellifera) colonies were placed in four different cornfield areas in order to study the potential in situ effects of seed‐coated systemic neonicotinoid pesticides used in cornfields (Zea mays spp) on honeybee health. Two apiaries were located in two independent neonicotinoid‐treated cornfield areas and two others in two independent untreated cornfield areas used as controls. These experimental hives were extensively monitored for their performance and health traits over a period of one year. Trapped pollen was collected and microscopically identified to define the visited flowers and the amount of corn pollen collected by bees. Liquid chromatography–mass spectrometry was performed to detect pesticide residues in honeybee foragers and trapped pollen. Honeybee colonies located in neonicotinoid‐treated cornfields expressed significantly higher varroa mite loads than those in untreated cornfields. However, brood production and colony weight were less disturbed by the treatment factor. Sublethal doses of neonicotinoids were detected in the trapped corn pollen and none in bee foragers. Overall, our results show that forager bees collected 20% of corn pollen containing variable concentrations of neonicotinoids. Colonies located in treated cornfields expressed higher varroa loads and long‐term mortality than those in untreated cornfields. On the other hand, no significant differences were observed regarding the brood production and colony weight.  相似文献   

9.
Many migratory water birds are known to feed both during day and night outside the breeding season, but the underlying factors and mechanisms determining this foraging pattern are poorly understood. We addressed this topic by comparing both diurnal and nocturnal foraging activity (FA) and metabolizable energy intake rate (MEIR) in migrating black‐tailed godwits Limosa limosa staging in two different habitats, rice fields and coastal salt pans. Black‐tailed godwits staging in rice fields during pre‐breeding migration fed on rice seeds, and only foraged during the daylight period (FA: 81.89 ± 3.03%; MEIR: 1.15 ± 0.03 kJ · min?1). Daily energy consumption (DEC) of godwits relying on seeds was enough to meet the theoretical daily energy expenditure (DEE). In contrast, black‐tailed godwits staging in salt pans during post‐breeding migration fed on chironomid larvae, and they foraged during both daylight (FA: 67.36 ± 4.30%; MEIR: 0.27 ± 0.01 kJ · min?1) and darkness (FA: 69.89 ± 6.89%; MEIR: 0.26 ± 0.00 kJ · min?1). Nocturnal energy intake contributed 31.7% to DEC, the latter being insufficient to fully meet DEE. Our findings give empirical support to the view that diurnal foraging is the norm in many migratory water birds outside the breeding season, and nocturnal foraging occurs when the daily energy requirements are not met during the daylight period, supporting the supplementary food hypothesis.  相似文献   

10.
Clear-fell harvest of forest concerns many wildlife biologists because of loss of vital resources such as roosts or nests, and effects on population viability. However, actual impact has not been quantified. Using New Zealand long-tailed bats (Chalinolobus tuberculatus) as a model species we investigated impacts of clear-fell logging on bats in plantation forest. C. tuberculatus roost within the oldest stands in plantation forest so it was likely roost availability would decrease as harvest operations occurred. We predicted that post-harvest: (1) roosting range sizes would be smaller, (2) fewer roosts would be used, and (3) colony size would be smaller. We captured and radiotracked C. tuberculatus to day-roosts in Kinleith Forest, an exotic plantation forest, over three southern hemisphere summers (Season 1 October 2006–March 2007; Season 2 November 2007–March 2008; and Season 3 November 2008–March 2009). Individual roosting ranges (100% MCPs) post harvest were smaller than those in areas that had not been harvested, and declined in area during the 3 years. Following harvest, bats used fewer roosts than those in areas that had not been harvested. Over 3 years 20.7% of known roosts were lost: 14.5% due to forestry operations and 6.2% due to natural tree fall. Median colony size was 4.0 bats (IQR = 2.0–8.0) and declined during the study, probably because of locally high levels of roost loss. Post harvest colonies were smaller than colonies in areas that had not been harvested. Together, these results suggest the impact of clear-fell harvest on long-tailed bat populations is negative.  相似文献   

11.
Geomagnetic cues have been shown to influence migratory orientation and migratory fuelling in night‐migratory songbird species. Here, we used captive‐bred northern wheatears Oenanthe oenanthe from the southern Norwegian population to show that other aspects of the birds’ migratory program can be influenced by magnetic cues as well. We observed that the amount of migratory restlessness increased strongly with progression of the migratory season when the birds were kept constantly in the magnetic field of northern Germany, but the amount of migratory restlessness decreased when the magnetic field changed along the birds’ natural flyway are simulated. Thus, the Earth's magnetic field can also act as a ‘signpost’ cue for fine‐tuning the spatio‐temporal course of migration.  相似文献   

12.
ABSTRACT Waterfowl frequently acquire high-energy agricultural seeds in harvested and unharvested croplands during migration and winter. Estimates of agricultural seed biomass in harvested and unharvested corn, soybean, and grain sorghum fields do not exist or are outdated for the southeastern United States. Therefore, we estimated seed biomass in 105 harvested and 59 unharvested corn, soybean, and grain sorghum fields across 4 climate regions in Tennessee, USA, from September through January 2006 and 2007. We also used estimates of seed biomass to calculate duck-energy days (DEDs) in December and January when migratory waterfowl abundance peaks in the southeastern United States. Mean biomass of corn, soybean, and grain sorghum seed in harvested fields declined 239 kg/ha to 39 kg/ha, 118 kg/ha to 26 kg/ha, and 392 kg/ha to 19 kg/ha, respectively, from postharvest to January. Continuous monthly rates of decline were 64% for corn, 84% for soybean, and 74% for grain sorghum. Agricultural seed biomass in harvested corn and grain sorghum fields dropped below the waterfowl giving-up density (i.e., 50 kg/ha) in 3 months; soybean dropped below this threshold 1 month postharvest. Mean DEDs/ha in harvested corn, soybean, and grain sorghum fields were low (274, 90, and 27, respectively) in January, and DEDs were zero in >85% of fields. In unharvested corn, soybean, and grain sorghum fields, mean DEDs/ha in January were high (69,000, 18,000, and 26,000, respectively), and continuous rates of decline (3%, 7%, and 18%, respectively) were much lower than for harvested crops. Waterfowl biologists in the Southeast should use our estimates of agricultural seed biomass in DED calculations. We also recommend that biologists provide unharvested grain fields and natural wetlands for migrating and wintering waterfowl because seed resources are low in harvested agricultural fields.  相似文献   

13.
Agricultural intensification in Europe has affected farmland bird populations negatively, both during summer and winter. Although the migratory period poses separate challenges on birds than breeding and wintering, the consequences of farming practices for birds during migration remain poorly investigated. We monitored abundance and species richness of migratory birds in autumn at matched pairs of organic and conventional farms situated either in intensively farmed open plains (homogeneous landscapes) or in small‐scale farming landscapes (heterogeneous landscapes) in southern Sweden. Total bird density did not differ between landscape types but was marginally higher on organic compared to conventional farms. When including taxonomic status in the model (passerines vs non‐passerines), we found significantly more birds on organic farms, and more non‐passerines in the homogeneous landscapes. The effect of farming practice and landscape type on density differed between functional groups. Omnivore density was higher in the homogeneous landscapes, and invertebrate feeders were marginally more abundant on organic farms. The effects of farming practice on the overall species richness and on the density of granivorous birds were landscape dependent. In the homogeneous landscapes, organic farms held a higher number of species and density of granivorous birds than conventional farms, but there was no such difference in the heterogeneous landscapes. Thus, organic farming can enhance abundance and species richness of farmland birds during migration, but the effect differs between landscape types and species. The effectiveness of organic farming was highest in the homogeneous landscape making it important to promote organic farming there. However, for some species during migration, increased heterogeneity in homogeneous landscapes may have negative effects. We propose that migratory bird diversity in homogeneous landscapes may be best preserved by keeping the landscape open, but that a reduced agricultural intensity, such as organic farming, should be encouraged.  相似文献   

14.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

15.
Migratory connectivity between areas frequented by wide-ranging animals provides crucial information for conservation and management. In and around Hudson Bay (Canada), three stocks of beluga whales (Delphinapterus leucas) are associated with distinct summering areas. We analyzed genetic variation at mtDNA and 13 microsatellite loci among individuals (N > 1400) harvested by 23 Inuit communities to identify mating units and assess temporal and spatial differences in the way stocks use common migratory pathways. Strong structure at mtDNA and a lack of convincing evidence for nuclear genetic differentiation indicate that both males and females adopt distinct migratory routes towards summering grounds while probably interbreeding on wintering grounds. Spatiotemporal variation in stock composition indicates that subsistence hunting targets all three stocks. While representing ca. 5% of belugas in Hudson Bay, the endangered Eastern Hudson Bay stock accounts for 17% of the overall subsistence harvest by Inuit communities of northern Nunavik (Quebec), and ca. 30% of the spring harvest along northeastern Hudson Bay. Despite interbreeding, cultural conservatism of maternally transmitted migration routes seems to prevent the re-establishment of stocks in previously frequented estuaries. This phenomenon supports the current use of demographic population models based on stock composition for developing behavior-based management strategies.  相似文献   

16.
Many migratory bird species have undergone recent population declines, but there is considerable variation in trends between species and between populations employing different migratory routes. Understanding species-specific migratory behaviours is therefore of critical importance for their conservation. The Common Sandpiper Actitis hypoleucos is an Afro-Palaearctic migratory bird species whose European populations are in decline. We fitted geolocators to individuals breeding in England or wintering in Senegal to determine their migration routes and breeding or non-breeding locations. We used these geolocator data in combination with previously published data from Scottish breeding birds to determine the distributions and migratory connectivity of breeding (English and Scottish) and wintering (Senegalese) populations of the Common Sandpiper, and used simulated random migrations to investigate wind assistance during autumn and spring migration. We revealed that the Common Sandpipers tagged in England spent the winter in West Africa, and that at least some birds wintering in Senegal bred in Scandinavia; this provides insights into the links between European breeding populations and their wintering grounds. Furthermore, birds tagged in England, Scotland and Senegal overlapped considerably in their migration routes and wintering locations, meaning that local breeding populations could be buffered against habitat change, but susceptible to large-scale environmental changes. These findings also suggest that contrasting population trends in England and Scotland are unlikely to be the result of population-specific migration routes and wintering regions. Finally, we found that birds used wind to facilitate their migration in autumn, but less so in spring, when the wind costs associated with their migrations were higher than expected at random. This was despite the wind costs of simulated migrations being significantly lower in spring than in autumn. Indeed, theory suggests that individuals are under greater time pressures in spring than in autumn because of the time constraints associated with reproduction.  相似文献   

17.
Both wing size and wing shape affect the flight abilities of birds. Intra and inter‐specific studies have revealed a pattern where high aspect ratio and low wing loading favour migratory behaviour. This, however, have not been studied in soaring migrants. We assessed the relationship between the wing size and shape and the characteristics of the migratory habits of the turkey vulture Cathartes aura, an obligate soaring migrant. We compared wing size and shape with migration strategy among three fully migratory, one partially migratory and one non‐migratory (resident) population distributed across the American continent. We calculated the aspect ratio and wing loading using wing tracings to characterize the wing morphology. We used satellite‐tracking data from the migratory populations to calculate distance, duration, speed and altitude during migration. Wing loading, but not aspect ratio, differed among the populations, segregating the resident population from the completely migratory ones. Unlike what has been reported in species using flapping flight during migration, the migratory flight parameters of turkey vultures were not related to the aspect ratio. By contrast, wing loading was related to most flight parameters. Birds with lower wing loading flew farther, faster, and higher during their longer journeys. Our results suggest that wing morphology in this soaring species enables lower‐cost flight, through low wing‐loading, and that differences in the relative sizes of wings may increase extra savings during migration. The possibility that wing shape is influenced by foraging as well as migratory flight is discussed. We conclude that flight efficiency may be improved through different morphological adaptations in birds with different flight mechanisms.  相似文献   

18.
ABSTRACT Staging areas and migratory stopovers of wetland birds can function as geographic bottlenecks; common dependence among migratory wetland bird species on these sites has major implications for wetland conservation. Although 90% of playa wetlands in the Rainwater Basin (RWB) region of Nebraska, USA, have been destroyed, the area still provides essential stopover habitat for up to 10 million waterfowl each spring. Our objectives were to determine local (within wetland and immediate watershed) and landscape-scale factors influencing wetland bird abundance and species richness during spring migration at RWB playas. We surveyed 36–40 playas twice weekly in the RWB and observed approximately 1.6 million individual migratory wetland birds representing 72 species during spring migrations 2002–2004. We tested a priori hypotheses about whether local and landscape variables influenced overall species richness and abundance of geese, dabbling ducks, diving ducks, and shorebirds. Wetland area had a positive influence on goose abundance in all years, whereas percent emergent vegetation and hunting pressure had negative influences. Models predicting dabbling duck abundance differed among years; however, individual wetland area and area of semipermanent wetlands within 10 km of the study wetland consistently had a positive influence on dabbling duck abundance. Percent emergent vegetation also was a positive predictor of dabbling duck abundance in all years, indicating that wetlands with intermediate (50%) vegetation coverage have the greatest dabbling duck abundance. Shorebird abundance was positively influenced by wetland area and number of wetlands within 10 km and negatively influenced by water depth. Wetland area, water depth, and area of wetlands within 10 km were all equally important in models predicting overall species richness. Total species richness was positively influenced by wetland area and negatively influenced by water depth and area of semipermanent wetlands within 10 km. Avian species richness also was greatest in wetlands with intermediate vegetation coverage. Restoring playa hydrology should promote intermediate percent cover of emergent vegetation, which will increase use by dabbling ducks and shorebirds, and decrease snow goose (Chen caerulescens) use of these wetlands. We observed a reduction in dabbling duck abundance on wetlands open to spring snow goose hunting and recommend further investigation of the effects of this conservation order on nontarget species. Our results indicate that wildlife managers at migration stopover areas should conserve wetlands in complexes to meet the continuing and future habitat requirements of migratory birds, especially dabbling ducks, during spring migration.  相似文献   

19.
Pheromone traps can be used to monitor for adult western bean cutworms, Striacosta albicosta (Smith) (Lepidoptera: Noctuidae), and for the timing of field scouting. Understanding the effect that different trapping techniques have on adult captures could help corn (Zea mays L.) producers make better pest management decisions. Several approaches to trapping adults were evaluated in 2005 and 2006 by using two different pheromone traps (sticky wing and jug traps) in two different environments (corn or corn/soybean [Glycine max (L.) Merr.] at three different heights (0.6, 1.2, and 1.8 m). There was no significant difference in the trap catches by trap type in either 2005 or 2006. There were significantly more adults captured in traps placed between two cornfields than traps placed between corn/soybean fields during both years. Trap height also was significant, with the traps at 1.2 and 1.8 m catching more moths than traps at 0.6 m during both years. These results show that trapping techniques do affect trap catches and that either trap type placed between two cornfields at either 1.2 or 1.8 m above the ground will maximize trap catches.  相似文献   

20.
Waterfowl and other migratory birds commonly store nutrients at traditional staging areas during spring for later use during migration and reproduction. We investigated nutrient-storage dynamics in the midcontinent population of greater white-fronted geese (Anser albifrons; hereafter white-fronted geese) at spring staging sites in the Rainwater Basin of Nebraska during February–April and in southern Saskatchewan during April–May, 1998 and 1999. In Nebraska, lipid content of white-fronted geese did not increase, and protein content changed little over time for most age and sex categories. In Saskatchewan, lipids increased 11.4 g/day (SE = 1.7) and protein content increased 1.6 g/day (SE = 0.6) in the sample of adult geese collected over a 3-week period. A study conducted during 1979–1980 in the Rainwater Basin reported that white-fronted geese gained 8.8–17.7 g of lipids per day during spring, differing greatly from our results 2 decades later. In addition, lipid levels were less in the 1990s compared to spring 1980 for adult geese nearing departure from staging sites in Saskatchewan. This shift in where geese acquired nutrient stores from Nebraska to more northern staging sites coincided with a decrease in availability of waste corn in Nebraska, their primary food source while staging at that stopover site, and an increase in cultivation of high-energy pulse crops in Saskatchewan. White-fronted geese exhibited flexibility in nutrient dynamics during spring migration, likely in response to landscape-level variation in food availability caused by changes in agricultural trends and practices. Maintaining a wide distribution of wetlands in the Great Plains may allow spring-staging waterfowl to disperse across the region and facilitate access to high-energy foods over a larger cropland base. © 2011 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号