首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 346 毫秒
1.
Several conceptual models describing patterns of prey selection by predators have been proposed, but such models rarely have been tested empirically, particularly with terrestrial carnivores. We examined patterns of prey selection by sympatric wolves ( Canis lupus ) and cougars ( Puma concolor ) to determine i) if both predators selected disadvantaged prey disproportionately from the prey population, and ii) if the specific nature and intensity of prey selection differed according to disparity in hunting behavior between predator species. We documented prey characteristics and kill site attributes of predator kills during winters 1999–2001 in Idaho, and located 120 wolf-killed and 98 cougar-killed ungulates on our study site. Elk ( Cervus elephus ) were the primary prey for both predators, followed by mule deer ( Odocoileus hemionus ). Both predators preyed disproportionately on elk calves and old individuals; among mule deer, wolves appeared to select for fawns, whereas cougars killed primarily adults. Nutritional status of prey, as determined by percent femur marrow fat, was consistently poorer in wolf-killed prey. We found that wolf kills occurred in habitat that was more reflective of the entire study area than cougar kills, suggesting that the coursing hunting behavior of wolves likely operated on a larger spatial scale than did the ambush hunting strategy of cougars. We concluded that the disparity in prey selection and hunting habitat between predators probably was a function of predator-specific hunting behavior and capture success, where the longer prey chases and lower capture success of wolf packs mandated a stronger selection for disadvantaged prey. For cougars, prey selection seemed to be limited primarily by prey size, which could be a function of the solitary hunting behavior of this species and the risks associated with capturing prime-aged prey.  相似文献   

2.
Abstract Widespread mule deer (Odocoilus hemionous) declines coupled with white-tailed deer (O. virginianus) increases prompted us to investigate the role of cougar (Puma concolor) predation in a white-tailed deer, mule deer, and cougar community in northeast Washington, USA. We hypothesized that cougars select for and disproportionately prey on mule deer in such multiple-prey communities. We estimated relative annual and seasonal prey abundance (prey availability) and documented 60 cougar kills (prey usage) from 2002 to 2004. White-tailed deer and mule deer comprised 72% and 28% of the total large prey population and 60% and 40% of the total large prey killed, respectively. Cougars selected for mule deer on an annual basis (αmd = 0.63 vs. αwt = 0.37; P = 0.066). We also detected strong seasonal selection for mule deer with cougars killing more mule deer in summer (αmd = 0.64) but not in winter (αmd = 0.53). Cougars showed no seasonal selection for white-tailed deer despite their higher relative abundance. The mean annual kill interval of 6.68 days between kills varied little by season (winter = 7.0 days/kill, summer = 6.6 days/kill; P = 0.78) or prey species (white-tailed deer = 7.0 days/kill, mule deer = 6.1 days/kill; P = 0.58). Kill locations for both prey species occurred at higher elevations during summer months (summer = 1,090 m, winter = 908 m; P = 0.066). We suspect that cougars are primarily subsisting on abundant white-tailed deer during winter but following these deer to higher elevations as they migrate to their summer ranges, resulting in a greater spatial overlap between cougars and mule deer and disproportionate predation on mule deer.  相似文献   

3.
Abstract: Numerous studies have documented how prey may use antipredator strategies to reduce the risk of predation from a single predator. However, when a recolonizing predator enters an already complex predator—prey system, specific antipredator behaviors may conflict and avoidance of one predator may enhance vulnerability to another. We studied the patterns of prey selection by recolonizing wolves (Canis lupus) and cougars (Puma concolor) in response to prey resource selection in the northern Madison Range, Montana, USA. Elk (Cervus elaphus) were the primary prey for wolves, and mule deer (Odocoileus hemionus) were the primary prey for cougars, but elk made up an increasingly greater proportion of cougar kills annually. Although both predators preyed disproportionately on male elk, wolves were most likely to prey on males in poor physical condition. Although we found that the predators partitioned hunting habitats, structural complexity at wolf kill sites increased over time, whereas complexity of cougar kill sites decreased. We concluded that shifts by prey to structurally complex refugia were attempts by formerly naïve prey to lessen predation risk from wolves; nevertheless, shifting to more structurally complex refugia might have made prey more vulnerable to cougars. After a change in predator exposure, use of refugia may represent a compromise to minimize overall risk. As agencies formulate management strategies relative to wolf recolonization, the potential for interactive predation effects (i.e., facilitation or antagonism) should be considered.  相似文献   

4.
ABSTRACT Minimizing risk of predation from multiple predators can be difficult, particularly when the risk effects of one predator species may influence vulnerability to a second predator species. We decomposed spatial risk of predation in a 2-predator, 2-prey system into relative risk of encounter and, given an encounter, conditional relative risk of being killed. Then, we generated spatially explicit functions of total risk of predation for each prey species (elk [Cervus elaphus] and mule deer [Odocoileus hemionus]) by combining risks of encounter and kill. For both mule deer and elk, topographic and vegetation type effects, along with resource selection by their primary predator (cougars [Puma concolor] and wolves [Canis lupus], respectively), strongly influenced risk of encounter. Following an encounter, topographic and vegetation type effects altered the risk of predation for both ungulates. For mule deer, risk of direct predation was largely a function of cougar resource selection. However, for elk, risk of direct predation was not only a function of wolf occurrence, but also of habitat attributes that increased elk vulnerability to predation following an encounter. Our analysis of stage-based (i.e., encounter and kill) predation indicates that the risk effect of elk shifting to structurally complex habitat may ameliorate risk of direct predation by wolves but exacerbate risk of direct predation by cougars. Information on spatiotemporal patterns of predation will be become increasingly important as state agencies in the western United States face pressure to integrate predator and prey management.  相似文献   

5.
We tested for seasonal differences in cougar (Puma concolor) foraging behaviors in the Southern Yellowstone Ecosystem, a multi-prey system in which ungulate prey migrate, and cougars do not. We recorded 411 winter prey and 239 summer prey killed by 28 female and 10 male cougars, and an additional 37 prey items by unmarked cougars. Deer composed 42.4% of summer cougar diets but only 7.2% of winter diets. Males and females, however, selected different proportions of different prey; male cougars selected more elk (Cervus elaphus) and moose (Alces alces) than females, while females killed greater proportions of bighorn sheep (Ovis canadensis), pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus) and small prey than males. Kill rates did not vary by season or between males and females. In winter, cougars were more likely to kill prey on the landscape as: 1) elevation decreased, 2) distance to edge habitat decreased, 3) distance to large bodies of water decreased, and 4) steepness increased, whereas in summer, cougars were more likely to kill in areas as: 1) elevation decreased, 2) distance to edge habitat decreased, and 3) distance from large bodies of water increased. Our work highlighted that seasonal prey selection exhibited by stationary carnivores in systems with migratory prey is not only driven by changing prey vulnerability, but also by changing prey abundances. Elk and deer migrations may also be sustaining stationary cougar populations and creating apparent competition scenarios that result in higher predation rates on migratory bighorn sheep in winter and pronghorn in summer. Nevertheless, cougar predation on rare ungulates also appeared to be influenced by individual prey selection.  相似文献   

6.
Wolf (Canis lupus) diets and potential effects on prey have been a prominent subject of interest to wildlife researchers and managers since reintroduction into Yellowstone National Park, Wyoming, USA, in 1995 and 1996. Post-reintroduction, wolves expanded south and recolonized areas in the southern Yellowstone ecosystem. Elk (Cervus elaphus) in this area are supplementally fed during winter (Dec–Mar) at state-managed feedgrounds, resulting in high-density congregations of elk. From December to March 2000–2007, we determined the winter predation patterns of wolves by examining the remains of 289 wolf kills on 3 state-managed feedgrounds and adjacent winter range near Jackson, Wyoming. During winters 2002–2005, we also monitored the movements of radio-collared elk on feedgrounds to describe the response of elk to the presence of wolf kills. Thirty-seven percent (n = 106) of kills were located on elk feedgrounds where elk composition included 49% calves, 42% adult females, 5% adult males, and 5% unknown. Sixty-three percent (n = 183) of kills were located on winter range adjacent to feedgrounds and prey species consisted of 90% elk (38% calves, 35% adult females, 24% adult males, 2% unknown), 9% moose (Alces alces; 13% calves, 69% adult females, 6% adult males, 1% unknown), 1% mule deer (Odocoileus hemionus; 1 fawn, 1 adult female), and 0.5% adult female bison (Bison bison). Mean age of elk killed on feedgrounds was 4.2 years (range = 0–20) and 4.6 years (range = 0–23) on winter range. Calves were selected more than available in most years with female elk killed less than expected. Adult males were killed more than expected in 2005–2007. Eighty-eight percent (n = 198) of the time elk remained on the feedground even when wolves made a kill. Less commonly, elk left the feedground, gathered in larger herds on adjacent feedgrounds absent of wolves, and returned within a few days (6%, n = 13) or left the feedground for another feedground and did not return for the rest of the winter (6%; n = 14). Elk were less likely to leave feedgrounds in the presence of a wolf kill when there were more elk on that feedground. Elk left feedgrounds with greater topography and tree cover (Alkali and Fish Creek) and gathered on the flat, open feedgrounds (Patrol Cabin) more frequently than they left flat, open feedgrounds for feedgrounds with greater topography and tree cover. Our results indicate wolves in our study area primarily preyed on elk and exhibited a strong preference for elk calves. High-density concentrations of elk on feedgrounds will continue to be an attractant for wolves. Although elk leave feedgrounds for reasons other than wolf presence, any displacement of elk from feedgrounds due to wolves will be temporary. State managers have the ability to alter management strategies (e.g., increasing wolf harvest, phasing out elk feeding, increasing the intensity of elk feeding) in an effort to affect predator-prey relationships. © 2019 The Wildlife Society.  相似文献   

7.
Natural controls on the distribution, abundance, or growth rates of exotic species are a desirable mode of intervention because of lower costs compared to anthropogenic controls and greater social acceptance. In the Great Basin, cougars (Puma concolor) are the most widely distributed carnivore capable of killing large ungulate prey. Populations of feral horses (Equus ferus) are widely distributed throughout the Great Basin and can grow at rates up to 20%/year. Although cougars exhibit distributional overlap with horses, it has been assumed that predation is minimal because of differences in habitat use and body-size limitations. To evaluate this hypothesis, we monitored the diets of 21 global positioning system (GPS)-collared cougars in the western Great Basin (5 males, 8 females) and eastern Sierra Nevada (2 males, 6 females) from 2009–2012. We investigated 1,310 potential kill sites and located prey remains of 820 predation events. We compared prey composition and kill rates of cougars inhabiting the Sierra Nevada and Great Basin, and among male and female cougars across seasons. We used generalized linear mixed models (GLMMs) to examine the effects of prey availability and habitat characteristics on the probability of predation on horses by cougars. Mule deer (Odocoileus hemionus) comprised 91% of prey items killed on the Sierra Nevada reference site but only comprised 29% of prey items in the Great Basin study area. Average annual kill rates for deer differed between the Sierra Nevada ( = 0.85 deer/week, range = 0.44–1.3) and Great Basin ( = 0.21 deer/week, range = 0.00–0.43). Diets of cougars in the Great Basin were composed predominantly of horses (59.6%, n = 460 prey items; 13 individuals). Ten cougars regularly consumed horses, and horses were the most abundant prey in the diet of 8 additional individuals in the Great Basin. Cougars on average killed 0.38 horses/week in the Great Basin (range=0.00–0.94 horses/week). Differences in predation on horses between the sexes of cougars were striking; Great Basin females incorporated more horses across all age classes year-round, whereas male cougars tended to exploit neonatal young during spring and summer before switching to deer during winter. Within GLMM models, the probability of predation on horses compared to other prey species increased with elevation, horse density, and decreasing density of mule deer on the landscape, and was more likely to occur in sagebrush (Artemesia spp.) than in pinyon (Pinus monophylla)–juniper (Juniperus osteosperma) forests. Behavior of individual cougars accounted for more than a third of the variation explained by our top models predicting predation on horses in the Great Basin. At landscape scales, cougar predation is unlikely to limit the growth of feral horse populations. In the Great Basin ecosystem, however, cougars of both sexes successfully preyed on horses of all age classes. Moreover, some reproductive, female cougars were almost entirely dependent on feral horses year-round. Taken together, our data suggest that cougars may be an effective predator of feral horses, and that some of our previous assumptions about this relationship should be reevaluated and integrated into management and planning. © 2021 The Wildlife Society.  相似文献   

8.
Estimates of predation rates by large predators can provide valuable information on their potential impact on their ungulate prey populations. This is especially the case for pumas Puma concolor and its main prey, mule deer Odocoileus hemionus . However, only limited information on predation rates of pumas exist where mule deer are the only ungulate prey available. I used VHF telemetry data collected over 24-h monitoring sessions and once daily over consecutive days to derive two independent estimates of puma predation rates on mule deer where they were the only large prey available. For the 24-h data, I had 48 time blocks on female pumas with kittens, 43 blocks on females without kittens and 30 blocks on males. For the daily consecutive data, the average number of consecutive days followed was 51.5±4.2 days. There were data on five female pumas with kittens, five pregnant females and nine females without kittens. Predation rates over an average month of 30 days from the 24-h monitoring sessions were 2.0 mule deer per puma month for males (15.1 days per kill), 2.1 mule deer per puma month (14.3 days per kill) for females without kittens and 2.5 mule deer per puma month (12.0 days per kill) for pregnant females and females with kittens. For the consecutive daily data, females without kittens had an estimated predation rate of 2.1±0.14 mule deer per puma month (14.9±0.90 days per kill). Pregnant and females with kittens had predation rates of 2.7±0.18 and 2.6±0.21 mule deer per puma month, respectively (11.4±0.72 and 12.0±1.1 days per kill, respectively). Predation rates estimated in this study compared with those estimated by energetic demand for pumas in the study area but were lower than other field derived estimates. These data help increase our understanding of predation impacts of large predators on their prey.  相似文献   

9.
Abstract: Assessing the impact of large carnivores on ungulate prey has been challenging in part because even basic components of predation are difficult to measure. For cougars (Puma concolor), limited field data are available concerning fundamental aspects of predation, such as kill rate, or the influence of season, cougar demography, or prey vulnerability on predation, leading to uncertainty over how best to predict or interpret cougar-ungulate dynamics. Global Positioning System (GPS) telemetry used to locate predation events in the field is an efficient way to monitor large numbers of cougars over long periods in all seasons. We applied GPS telemetry techniques combined with occasional snow-tracking to locate 1,509 predation events for 53 marked and an unknown number of unmarked cougars and amassed 9,543 days of continuous predation monitoring for a subset of 42 GPS-collared cougars in west-central Alberta, Canada. Cougars killed ungulates at rates near the upper end of the previously recorded range, and demography substantially influenced annual kill rate in terms of both number of ungulates (subad F [SAF] = 24, subad M [SAM] = 31, ad M = 35, ad F = 42, ad F with kittens <6 months = 47, ad F with kittens <6 months = 67) and kg of prey (SAF = 1,441, SAM = 2,051, ad M = 4,708, ad F = 2,423, ad F with kittens <6 months = 2,794, ad F with kittens >6 months = 4,280). Demography also influenced prey composition; adult females subsisted primarily on deer (Odocoileus spp.), whereas adult males killed more large ungulates (e.g., moose [Alces alces]), and subadults incorporated the highest proportion of nonungulate prey. Predation patterns varied by season and cougars killed ungulates 1.5 times more frequently in summer when juveniles dominated the diet. Higher kill rate in summer appeared to be driven primarily by greater vulnerability of juvenile prey and secondarily by reduced handling time for smaller prey. Moreover, in accordance with predictions of the reproductive vulnerability hypothesis, female ungulates made up a higher proportion of cougar diet in spring just prior to and during the birthing period, whereas the proportion of males increased dramatically in autumn during the rut, supporting the notion that prey vulnerability influences cougar predation. Our results have implications for the impact cougars have on ungulate populations and have application for using cougar harvest to manage ungulates.  相似文献   

10.
ABSTRACT Information on factors affecting population size of pumas (Puma concolor) can be important because their principal prey over most of the western United States are valued big game species (e.g., mule deer [Odocoileus hemionus], elk [Cervus elaphus], and bighorn sheep [Ovis canadensis]). Based on the hypothesis that puma numbers are limited by their food supply, puma populations should track changes in prey abundance by growing exponentially with increases in prey and by declining with a lag response when prey decreases. Additional predictions proposed by researchers are that body mass of pumas, female productivity, kitten survival, and adult survival should decrease after a prey decline. We used a 15-year database from a hunted population of pumas in southern Idaho and northwestern Utah to test these predictions. During the 15-year time span of the database, a major decline in mule deer abundance occurred. Estimates of puma numbers and demographic characteristics came from intensive capture and radiocollaring efforts. We calculated kitten and adult survival with MICROMORT software. We found that adult puma numbers increased exponentially at r = 0.07 during a period of increasing mule deer numbers. Four years after the mule deer abundance declined, puma numbers decreased at a rate of r = −0.06. Body mass of female pumas was lower after the decline in puma numbers (42.6 ± SE = 1.2 kg, n = 40 vs. 40.1 ± 0.64 kg, n = 34, t = 5.06, P = 0.045). Kitten survival was less after the decline in deer abundance (0.573 ± 0.016, n = 30 vs. 0.856 ± 0.015, n = 25, Z = 2.40, P < 0.01). Survival of resident females was significantly less after the decline in puma numbers (0.783 ± 0.03 vs. 0.929 ± 0.019, U = 55.0, P = 0.009). Female productivity did not differ before or after the decline in deer abundance. Our results supported the majority of the predictions concerning the impact of changing deer abundance, which supported the hypothesis that the abundance of mule deer limited our population of pumas.  相似文献   

11.
ABSTRACT We assessed whether use of 2 methods, intensive very high frequency (VHF) radiotelemetry and Global Positioning System (GPS) cluster sampling, yielded similar estimates of cougar (Puma concolor) kill rates in Yellowstone National Park, 1998–2005. We additionally determined biases (underestimation or overestimation of rates) resulting from each method. We used modeling to evaluate what characteristics of clusters best predicted a kill versus no kill and further evaluated which predictor(s) minimized effort and the number of missed kills. We conducted 16 VHF ground predation sequences resulting in 37 kill intervals (KIs) and 21 GPS sequences resulting in 84 KIs on 6 solitary adult females, 4 maternal females, and 5 adult males. Kill rates (days/kill and biomass [kg] killed/day) did not differ between VHF and GPS predation sampling methods for maternal females, solitary adult females, and adult males. Sixteen of 142 (11.3%) kills detected via GPS clusters were missed through VHF ground-based sampling, and the kill rate was underestimated by an average of 5.2 (95% CI = 3.8–6.6) days/kill over all cougar social classes. Five of 142 (3.5%) kills identified by GPS cluster sampling were incorrectly identified as the focal individual's kill from scavenging, and the kill rate was overestimated within the adult male social class by an average of 5.8 (95% CI = 3.0–8.5) days/ungulate kill. The number of nights (locations between 2000 hours and 0500 hours) a cougar spent at a cluster was the most efficient variable at predicting predation, minimizing the missed kills, and minimizing number of extra clusters that needed to be searched. In Yellowstone National Park, where competing carnivores displaced cougars from their kills, it was necessary to search extra sites where a kill may not have been present to ensure we did not miss small, ungulate prey kills or kills with displacement. Using predictions from models to assign unvisited clusters as no kill, small prey kill, or large prey kill can bias downward the number of kills a cougar made and bias upward kills made by competitors that displace cougars or scavenge cougar kills. Our findings emphasize that field visitation is crucial in determining displacement and scavenging events that can result in biases when using GPS cluster methods in multicarnivore systems.  相似文献   

12.
Conservation and management efforts have resulted in population increases and range expansions for some apex predators, potentially changing trophic cascades and foraging behavior. Changes in sympatric carnivore and dominant scavenger populations provide opportunities to assess how carnivores affect one another. Cougars (Puma concolor) were the apex predator in the Great Basin of Nevada, USA, for over 80 years. Black bears (Ursus americanus) have recently recolonized the area and are known to heavily scavenge on cougar kills. To evaluate the impacts of sympatric, recolonizing bears on cougar foraging behavior in the Great Basin, we investigated kill sites of 31 cougars between 2009 and 2017 across a range of bear densities. We modeled the variation in feeding bout duration (number of nights spent feeding on a prey item) and the proportion of primary prey, mule deer (Odocoileus hemionus), in cougar diets using mixed‐effects models. We found that feeding bout duration was driven primarily by the size of the prey item being consumed, local bear density, and the presence of dependent kittens. The proportion of mule deer in cougar diet across all study areas declined over time, was lower for male cougars, increased with the presence of dependent kittens, and increased with higher bear densities. In sites with feral horses (Equus ferus), a novel large prey, cougar consumption of feral horses increased over time. Our results suggest that higher bear densities over time may reduce cougar feeding bout durations and influence the prey selection trade‐off for cougars when alternative, but more dangerous, large prey are available. Shifts in foraging behavior in multicarnivore systems can have cascading effects on prey selection. This study highlights the importance of measuring the impacts of sympatric apex predators and dominant scavengers on a shared resource base, providing a foundation for monitoring dynamic multipredator/scavenger systems.  相似文献   

13.
ABSTRACT Using clusters of locations obtained from Global Positioning System (GPS) telemetry collars to identify predation events may allow more efficient estimation of behavioral predation parameters for the study and management of large carnivore predator-prey systems. Applications of field- and model-based GPS telemetry cluster techniques, however, have met with mixed success. To further evaluate and refine these techniques for cougars (Puma concolor), we used data from visits to 1,735 GPS telemetry clusters, 637 of which were locations where cougars killed prey >8 kg in a multi-prey system in west-central Alberta. We tested 1) whether clusters were reliably created at kill locations, 2) the ability of logistic regression models to identify kill occurrence (prey >8 kg) and multinomial regression models to identify the prey species at a kill cluster, and 3) the duration of monitoring required to accurately estimate kill rate and prey composition. We found that GPS collars programmed to attempt location fixes every 3 hours consistently identified locations where prey >8 kg were handled, and cluster creation was robust to GPS location acquisition failures (poor collar fix success). The logistic regression model was capable of estimating cougar kill rate with a mean 5-fold cross validation error of <10%, provided the appropriate probability cutoff distinguishing kill clusters from non-kill clusters was selected. Logistic models also can be used to direct visits to clusters, reducing field efforts by as much as 25%, while still locating >95% of all kills. The multinomial model overpredicted occurrence of primary prey (deer) in the diet and underpredicted consumption of alternate prey (e.g., elk and moose) by as much as 100%. We conclude that a purely model-based approach should be used cautiously and that field visitation is required to obtain reliable information on species, sex, age, or condition of prey. Ultimately, we recommend a combined approach that involves using models to direct field visitation when estimating behavioral predation parameters. Regardless of the monitoring approach, long continuous monitoring periods (i.e., >100 days of a 180-day period) were necessary to reduce bias and imprecision in kill rate and prey composition estimates.  相似文献   

14.
ABSTRACT Postpartum behavior of maternal deer may be specific to species of deer and predators. We captured sympatric white-tailed deer (Odocoileus virginianus) and mule deer (O. hemionus eremicus) fawns from radiocollared adult females in 2004–2006 on rangelands of west central Texas, USA, where predators larger than bobcats (Lynx rufus) were absent. Our objective was to determine whether differences in postpartum antipredator behavior existed between deer species, and if so, examine efficacy of those strategies. We collected postpartum group cohesion data in 2004 and 2005 by using radiotelemetry and examined dead fawns for cause of mortality. During fawns' hider phase, <3 weeks postpartum, mule deer females kept fawns closer to themselves (95% CI = 39−66 m) and twins closer to each other (95% CI = 25–49 m) than did white-tailed deer females (95% CIs = 152–234 m and 163–255 m, respectively). After 30 days postpartum, familial group cohesion was similarly tight for both species. During hider phases from 2004 to 2006, predated carcasses of white-tailed deer fawns (11 of 11) were dismembered or consumed more than mule deer fawns (7 of 13, P = 0.016), which was one line of evidence for maternal defense by mule deer adults. During hider phases in 2004 and 2005, predation rate of mule deer fawns was lower than that for white-tailed deer fawns. In 2006, predation rate increased for mule deer but was similar for white-tailed deer fawns compared with previous years. The tight cohesion strategy of mule deer exhibited in 2004 and 2005 seemed successful at thwarting small predators. Without large predators, the loose cohesion strategy of white-tailed deer females was maladaptive. When meso-predators are abundant due to extermination of larger predators, predation on fawns could increase if a deer species has relatively fixed postpartum maternal antipredator behavior.  相似文献   

15.
Forage availability and predation risk interact to affect habitat use of ungulates across many biomes. Within sky‐island habitats of the Mojave Desert, increased availability of diverse forage and cover may provide ungulates with unique opportunities to extend nutrient uptake and/or to mitigate predation risk. We addressed whether habitat use and foraging patterns of female mule deer (Odocoileus hemionus) responded to normalized difference vegetation index (NDVI), NDVI rate of change (green‐up), or the occurrence of cougars (Puma concolor). Female mule deer used available green‐up primarily in spring, although growing vegetation was available during other seasons. Mule deer and cougar shared similar habitat all year, and our models indicated cougars had a consistent, negative effect on mule deer access to growing vegetation, particularly in summer when cougar occurrence became concentrated at higher elevations. A seemingly late parturition date coincided with diminishing NDVI during the lactation period. Sky‐island populations, rarely studied, provide the opportunity to determine how mule deer respond to growing foliage along steep elevation and vegetation gradients when trapped with their predators and seasonally limited by aridity. Our findings indicate that fear of predation may restrict access to the forage resources found in sky islands.  相似文献   

16.
Ungulates often alter behavior and space use in response to interspecific competition. Despite observable changes in behavior caused by competitive interactions, research describing the effects of competition on survival or growth is lacking. We used spatial modeling to determine if habitat use by female mule deer (Odocoileus hemionus) was affected by other ungulate species prior to, during, and after parturition. We conducted our study in the Book Cliffs region of eastern Utah, USA, during 2019 and 2020. We used resource selection function (RSF) analysis to model space use of 4 ungulate species that potentially competed with mule deer: bison (Bos bison), cattle, elk (Cervus canadensis), and feral horses. We incorporated RSF models for competing species into a random forest analysis to determine if space use by mule deer was influenced by these other ungulate species. We used survival and growth data from neonate mule deer to directly assess potential negative effects of other ungulates. Habitat use by elk was an important variable in predicting use locations of mule deer during birthing and rearing. The relationship was positive, suggesting interference competition was not occurring. Survival of neonate mule deer increased as the probability of use by elk increased (hazard ratio = 0.185 ± 0.497 [SE]). Further, probability of use by elk in rearing habitat had no influence on growth of neonate mule deer from birth to 6 months of age, suggesting that exploitative competition was not occurring.  相似文献   

17.
Predation can disproportionately affect endangered prey populations when generalist predators are numerically linked to more abundant primary prey. Apparent competition, the term for this phenomenon, has been increasingly implicated in the declines of endangered prey populations. We examined the potential for apparent competition to limit the recovery of Sierra Nevada bighorn sheep (Ovis canadensis sierrae), an endangered subspecies under the US Endangered Species Act. Using a combination of location, demographic, and habitat data, we assessed whether cougar (Puma concolor) predation on endangered bighorn sheep was a consequence of their winter range overlap with abundant mule deer (Odocoileus hemionus). Consistent with the apparent competition hypothesis, bighorn sheep populations with higher spatial overlap with deer exhibited higher rates of cougar predation which had additive effects on adult survival. Bighorn sheep killed by cougars were primarily located within deer winter ranges, even though those areas constituted only a portion of the bighorn sheep winter ranges. We suspect that variation in sympatry between bighorn sheep and deer populations was largely driven by differences in habitat selection among bighorn sheep herds. Indeed, bighorn sheep herds that experienced the highest rates of predation and the greatest spatial overlap with deer also exhibited the strongest selection for low elevation habitat. Although predator-mediated apparent competition may limit some populations of bighorn sheep, it is not the primary factor limiting all populations, suggesting that the dynamics of different herds are highly idiosyncratic. Management plans for endangered species should consider the spatial distributions of key competitors and predators to reduce the potential for apparent competition to hijack conservation success.  相似文献   

18.
The authors test the hypothesis that vocal fold morphology and biomechanical properties covary with species‐specific vocal function. They investigate mule deer (Odocoileus hemionus) vocal folds, building on, and extending data on a related cervid, the Rocky Mountain elk (Cervus elaphus nelsoni). The mule deer, in contrast to the elk, is a species with relatively little vocal activity in adult animals. Mule deer and elk vocal folds show the typical three components of the mammalian vocal fold (epithelium, lamina propria and thyroarytenoid muscle). The vocal fold epithelium and the lamina propria were investigated in two sets of tensile tests. First, creep rupture tests demonstrated that ultimate stress in mule deer lamina propria is of the same magnitude as in elk. Second, cyclic loading tests revealed similar elastic moduli for the vocal fold epithelium in mule deer and elk. The elastic modulus of the lamina propria is also similar between the two species in the low‐strain region, but differs at strains larger than 0.3. Sex differences in the stress–strain response, which have been reported for elk and human vocal folds, were not found for mule deer vocal folds. The laminae propriae in mule deer and elk vocal folds are comparatively large. In general, a thick and uniformly stiff lamina propria does not self‐oscillate well, even when high subglottic pressure is applied. If the less stiff vocal fold seen in elk is associated with a differentiated lamina propria it would allow the vocal fold to vibrate at high tension and high subglottic pressure. The results of this study support the hypothesis that viscoelastic properties of vocal folds varies with function and vocal behavior. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Many ecosystems contain sympatric predator species that hunt in different places and times. We tested whether this provides vacant hunting domains, places and times where and when predators are least active, that prey use to minimize threats from multiple predators simultaneously. We measured how northern Yellowstone elk (Cervus elaphus) responded to wolves (Canis lupus) and cougars (Puma concolor), and found that elk selected for areas outside the high‐risk domains of both predators consistent with the vacant domain hypothesis. This enabled elk to avoid one predator without necessarily increasing its exposure to the other. Our results demonstrate how the diel cycle can serve as a key axis of the predator hunting domain that prey exploit to manage predation risk from multiple sources. We argue that a multi‐predator, spatiotemporal framework is vital to understand the causes and consequences of prey spatial response to predation risk in environments with more than one predator.  相似文献   

20.
Aims To examine the spatio‐temporal co‐occurrence of cougars (Felis concolor), wolves (Canis lupus), and their prey during winter using monthly (November–March) species–environment relationship models. In addition, to contrast predictions across two methods: logistic regression and Geographic Information System (GIS) image correlation. Location The eastern front ranges of the Canadian Rocky Mountains (south‐central Alberta), approximately 100 km west of Calgary, including portions of Banff National Park and Kananaskis Country. Methods Snow‐tracking data were collected simultaneously for cougars, wolves, elk (Cervus elaphus), and deer (Odocoileus virginianus and O. hemionus) between November and March, 1997–2000. Track data were synthesized in a GIS. Logistic regression and Akaike's information criterion (AIC) were used to select optimal environmental relationship models for each species. We first examined co‐occurrence by iteratively using each species as a dependent variable (presence/absence) in a logistic regression analysis and using all other species track‐density estimates as independent variables. We built predictive surfaces in a GIS using the exponent form of the logistic regression models, and assessed model accuracy with a receiver operating characteristic curve. We then re‐examined co‐occurrence using pairwise correlations of species probability surfaces by month. The correlation results were compared with logistic regression results to illuminate mechanisms of co‐occurrence and to investigate predictive consistency across the two methods. Results Cougars showed a trend in distribution from higher elevation and less rugged terrain in December, to lower elevation and more rugged terrain in March. This trend differed from that for wolves, which showed a more stable affinity for low elevation and less rugged valley bottoms across all months. The logistic regression models indicated variable positive and negative associations of cougars with wolves by month, and changes in prey associations over time. Notably, there was a shift in co‐occurrence for both predators from elk to deer in March. We found high predictive accuracy for all probability surfaces, except for the month of January. Our image comparison showed that spatial co‐occurrence amongst all species increased over winter, except that wolves and cougars were negatively correlated in February. Combining the results of each approach we found that cougars and wolves converged spatially over winter at the landscape scale (i.e. the valley), while showing more discrete use of that space over time and by habitat attributes (e.g. forest cover, topographic complexity, and prey track density). Main conclusions In the Rocky Mountains, the spatial distributions of cougars and wolves converged into the valley floor as winter progressed. Cougars were distinct from wolves and prey in the intensity of this shift. We determined that a comparison of predictive surfaces alone fails to explain species co‐occurrence. The surfaces must be coupled with investigation of respective species–environment models to account for temporal changes in associations. We suggest that the two approaches represent different ecological scales: image comparison may be best for landscape‐ (valley) level analysis, while logistic regression is best for site‐level analysis. Ultimately, both approaches were critical to our analysis. Finally, the variability observed over time suggested that annual and seasonal models may obscure important ecological patterns and processes, especially for cougars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号