首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last decades wild rabbit (Oryctolagus cuniculus) populations have been progressively declining in the Iberian Peninsula as a result of several factors, namely habitat deterioration. Hence, habitat management has become one of the most commonly used management techniques to restore wild rabbit populations. To test the efficacy of some of these measures (creation of pastures, opening firebreaks) in rabbit populations, two managed (M1 and M2) and two control areas (C1 and C2) were selected in the Portuguese Southwest (SW) Coast. In each study area, the influence of habitat management was tested assessing temporal changes in rabbit abundance obtained from pellet counts and in rabbits’ diet through microhistological analysis of fecal pellets. Rabbit densities were higher in managed than in control areas (mean annual values: M1–1.08 pellets/m2; M2–1.60 pellets/m2; C1–0.69 pellets/m2; C2–0.40 pellets/m2). In general, Gramineae was the most consumed plant group throughout the year and in all study areas. In control areas, consumption of alternative species with low nutritive value (e.g., Cistus ladanifer) was observed, especially in summer. Our data suggest a positive influence of habitat management on rabbit populations since in managed areas individuals presented an overall higher abundance and a more nutritive diet. In addition, there was no evidence that sown species were consumed in detriment to naturally occurring grasses, suggesting that in Mediterranean semi-arid regions clearing vegetation inside the scrubland might be sufficient to improve habitat conditions for rabbits.  相似文献   

2.
Reliable estimates of presence or absence of a species can provide substantial information on management questions related to distribution and habitat use but should incorporate the probability of detection to reduce bias. We surveyed for the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) in habitat patches on 5 Florida Key islands, USA, to estimate occupancy and detection probabilities. We derived detection probabilities using spatial replication of plots and evaluated hypotheses that patch location (coastal or interior) and patch size influence occupancy and detection. Results demonstrate that detection probability, given rabbits were present, was <0.5 and suggest that naïve estimates (i.e., estimates without consideration of imperfect detection) of patch occupancy are negatively biased. We found that patch size and location influenced probability of occupancy but not detection. Our findings will be used by Refuge managers to evaluate population trends of Lower Keys marsh rabbits from historical data and to guide management decisions for species recovery. The sampling and analytical methods we used may be useful for researchers and managers of other endangered lagomorphs and cryptic or fossorial animals occupying diverse habitats. © 2011 The Wildlife Society.  相似文献   

3.
Aim The mechanisms of initial dispersal and habitat occupancy by invasive alien species are fundamental ecological problems. Most tests of metapopulation theory are performed on local population systems that are stable or in decline. In the current study we were interested in the usefulness of metapopulation theory to study patch occupancy, local colonization, extinction and the abundance of the invasive Caspian gull (Larus cachinnans) in its initial invasion stages. Location Waterbodies in Poland. Methods Characteristics of the habitat patches (waterbodies, 35 in total) occupied by breeding pairs of Caspian gulls and an equal sample of randomly selected unoccupied patches were compared with t‐tests. Based on presence–absence data from 1989 to 2006 we analysed factors affecting the probability of local colonization, extinction and the size of local populations using generalized linear models. Results Occupied habitat patches were significantly larger and less isolated (from other habitat patches and other local populations) and were located closer to rivers than empty patches. The proximity of local food resources (fish ponds, refuse dumps) positively affected the occurrence of breeding pairs. The probability of colonization was positively affected by patch area, and negatively by distances to fish ponds, nearest habitat patch, nearest breeding colony and to a river, and by higher forest cover around the patch boundaries. The probability of extinction was lower in patches with a higher number of breeding pairs and with a greater area of islets. The extinction probability increased with distances to other local populations, other habitat patches, fish ponds and to refuse dumps and with a higher cover of forest around the patch boundaries. The size of the local population decreased with distances to the nearest habitat patch, local population, river, fish pond and refuse dump. Local abundance was also positively affected by the area of islets in the patch. Main conclusions During the initial stages of the invasion of Caspian gulls in Poland the species underwent metapopulation‐like dynamics with frequent extinctions from colonized habitat patches. The results prove that metapopulation theory may be a useful conceptual framework for predicting which habitats are more vulnerable to invasion.  相似文献   

4.
Although of practical importance, the relationship between the duration of an epidemic and host spatial structure is poorly understood. Here we use a stochastic metapopulation model for the transmission of infection in a spatially structured host population. There are three qualitatively different regimes for the extinction time, which depend on patch population size, the within‐patch basic reproductive number and the strength of coupling between patches. In the first regime, the extinction time for the metapopulation (i.e. from all patches) is approximately equal to the extinction time for a single patch. In the second regime, the metapopulation extinction time is maximal but also highly variable. In the third regime, the extinction time for the metapopulation (TE) is given by TE = a + bn1/2 where a is the local extinction time (i.e. from last patch), b is the transit time (i.e. the time taken for infection to spread from one patch to another) and n is the total number of patches.  相似文献   

5.
European rabbits Oryctolagus cuniculus are a keystone species in Iberian Mediterranean ecosystems. However, the reliability of methods for estimating rabbit abundance, particularly when at low numbers, is not well understood. Further, better standardization of these methodologies would allow abundance estimates to be more reliably compared between areas and periods. Consequently, we compared several frequently used methods of estimating rabbit abundance and assessed their advantages and disadvantages. During the summers of 2008 and 2009, in 11 localities of central-southern Spain we undertook (a) driving transect counts of rabbits, either at dusk or at night, (b) linear transects on foot recording rabbit signs, (c) cleared-plot pellet counts at permanent plots, and (d) standing crop counts, both with and without habitat stratification. Density estimated at night from driving transects using the Distance Sampling method (the reference method against which all other indices were compared) varied from 0 to 2.69 rabbits ha−1. Most pellet-count indices were significantly related to the reference method. In particular, cleared-plot pellet counts in permanent plots corrected for pellet persistence showed the best correlation with the reference method. In contrast, latrine counts were not related to the reference method index, and we recommend against their use. A standard methodology based on cleared-plot pellets counts could be used to monitor rabbit abundance on a large scale.  相似文献   

6.
Recent studies on butterflies emphasize habitat characteristics together with metapopulation parameters (patch area and isolation) giving a more thorough understanding of processes influencing population persistence and patch occupancy, than either of them alone. We studied a coastal and an archipelago population of the Apollo butterfly (Parnassius apollo) in SW Finland. Larvae were surveyed for four years in both populations. Counting larvae on three consecutive days and temporarily removing them tested the survey accuracy. The removals showed four times higher larval abundance in the archipelago than on the coast. Survey methods were reliable, provided that empty patch status was not based on single visits only, if larval abundance was low. On the coast, large patches, and patches with high host-plant abundance were often occupied. In the archipelago, patches rich in host-plant were often occupied whereas patch area did not affect patch occupancy. In both populations, the probability of patches being occupied for three consecutive years increased with increasing host-plant abundance and patch area. Conservation of P. apollo depends on securing host-plant abundance on large enough patches in both study systems. In these systems, even crude habitat measures prove useful for understanding ecological processes behind observed patterns.  相似文献   

7.
European rabbits (Oryctolagus cuniculus), a keystone species in the Iberian Mediterranean ecosystem, are the staple prey of the Iberian lynx (Lynx pardinus) and the Spanish imperial eagle (Aquila adalberti). These predators require medium to high rabbit densities and a low degree of human disturbance. We compared rabbit abundances in areas of central-southern Spain under three levels of protection and management: protected areas, intensively managed (nonprotected) hunting estates, and other nonprotected areas. We used pellet abundance indices to estimate rabbit density in 118 surveys conducted during the summers of 2002 and 2003. We observed greater rabbit abundance in intensively managed hunting estates compared to protected areas and other nonprotected areas, perhaps because policy makers did not consider rabbit numbers when selecting priority areas. Alternatively, differences in game management practices (e.g., predator control or habitat management) may explain the higher rabbit densities observed in managed hunting estates. Our results suggest that the best feeding conditions for the Iberian lynx and the Spanish imperial eagle occur in intensively managed hunting areas, where such predators are frequently persecuted. The conservation of these endangered predators may require efforts to increase rabbit densities in protected areas.  相似文献   

8.
Analytically tractable metapopulation models usually assume that every patch is identical, which limits their application to real metapopulations. We describe a new single species model of metapopulation dynamics that allows variation in patch size and position. The state of the metapopulation is defined by the presence or absence of the species in each patch. For a system of n patches, this gives 2n possible states. We show how to construct and analyse a matrix describing transitions between all possible states by first constructing separate extinction and colonisation matrices. We illustrate the model′s application to metapopulations by considering an example of malleefowl, Leipoa ocellata, in southern Australia, and calculate extinction probabilities and quasi-stationary distributions. We investigate the relative importance of modelling the particular arrangement of patches and the variation in patch sizes for this metapopulation and we use the model to examine the effects of further habitat loss on extinction probabilities.  相似文献   

9.
Metapopulation ecology is a field that is richer in theory than in empirical results. Many existing empirical studies use an incidence function approach based on spatial patterns and key assumptions about extinction and colonization rates. Here we recast these assumptions as hypotheses to be tested using 18 years of historic detection survey data combined with four years of data from a new monitoring program for the Lower Keys marsh rabbit. We developed a new model to estimate probabilities of local extinction and colonization in the presence of nondetection, while accounting for estimated occupancy levels of neighboring patches. We used model selection to identify important drivers of population turnover and estimate the effective neighborhood size for this system. Several key relationships related to patch size and isolation that are often assumed in metapopulation models were supported: patch size was negatively related to the probability of extinction and positively related to colonization, and estimated occupancy of neighboring patches was positively related to colonization and negatively related to extinction probabilities. This latter relationship suggested the existence of rescue effects. In our study system, we inferred that coastal patches experienced higher probabilities of extinction and colonization than interior patches. Interior patches exhibited higher occupancy probabilities and may serve as refugia, permitting colonization of coastal patches following disturbances such as hurricanes and storm surges. Our modeling approach should be useful for incorporating neighbor occupancy into future metapopulation analyses and in dealing with other historic occupancy surveys that may not include the recommended levels of sampling replication.  相似文献   

10.
Population abundance estimates using predictive models are important for describing habitat use and responses to population-level impacts, evaluating conservation status of a species, and for establishing monitoring programs. The golden-cheeked warbler (Setophaga chrysoparia) is a neotropical migratory bird that was listed as federally endangered in 1990 because of threats related to loss and fragmentation of its woodland habitat. Since listing, abundance estimates for the species have mainly relied on localized population studies on public lands and qualitative-based methods. Our goal was to estimate breeding population size of male warblers using a predictive model based on metrics for patches of woodland habitat throughout the species' breeding range. We first conducted occupancy surveys to determine range-wide distribution. We then conducted standard point-count surveys on a subset of the initial sampling locations to estimate density of males. Mean observed patch-specific density was 0.23 males/ha (95% CI = 0.197–0.252, n = 301). We modeled the relationship between patch-specific density of males and woodland patch characteristics (size and landscape composition) and predicted patch occupancy. The probability of patch occupancy, derived from a model that used patch size and landscape composition as predictor variables while addressing effects of spatial relatedness, best predicted patch-specific density. We predicted patch-specific densities as a function of occupancy probability and estimated abundance of male warblers across 63,616 woodland patches accounting for 1.678 million ha of potential warbler habitat. Using a Monte Carlo simulation, our approach yielded a range-wide male warbler population estimate of 263,339 (95% CI: 223,927–302,620). Our results provide the first abundance estimate using habitat and count data from a sampling design focused on range-wide inference. Managers can use the resulting model as a tool to support conservation planning and guide recovery efforts. © 2012 The Wildlife Society.  相似文献   

11.
Interpretation of spatially structured population systems is critically dependent on levels of migration between habitat patches. If there is considerable movement, with each individual visiting several patches, there is one ”patchy population”; if there is intermediate movement, with most individuals staying within their natal patch, there is a metapopulation; and if (virtually) no movement occurs, then the populations are separate (Harrison 1991, 1994). These population types actually represent points along a continuum of much to no mobility in relation to patch structure. Therefore, interpretation of the effects of spatial structure on the dynamics of a population system must be accompanied by information on mobility. We use empirical data on movements by ringlet butterflies, Aphantopus hyperantus, to investigate two key issues that need to be resolved in spatially-structured population systems. First, do local habitat patches contain largely independent local populations (the unit of a metapopulation), or merely aggregations of adult butterflies (as in patchy populations)? Second, what are the effects of patch area on migration in and out of the patches, since patch area varies considerably within most real population systems, and because human landscape modification usually results in changes in habitat patch sizes? Mark-release-recapture (MRR) data from two spatially structured study systems showed that 63% and 79% of recaptures remained in the same patch, and thus it seems reasonable to call both systems metapopulations, with some capacity for separate local dynamics to take place in different local patches. Per capita immigration and emigration rates declined with increasing patch area, while the resident fraction increased. Actual numbers of emigrants either stayed the same or increased with area. The effect of patch area on movement of individuals in the system are exactly what we would have expected if A. hyperantus were responding to habitat geometry. Large patches acted as local populations (metapopulation units) and small patches simply as locations with aggregations (units of patchy populations), all within 0.5 km2. Perhaps not unusually, our study system appears to contain a mixture of metapopulation and patchy-population attributes.  相似文献   

12.
Based on metapopulation theory, isolation, patch size and habitat quality within patches have recently been identified as the most critical parameters determining the persistence of species. In the special case of flightless and sedentary Orthoptera species, taking into account the low dispersal ability, species survival probably depends more on habitat quality than on isolation. The aim of this study was to document how landscape (patch size, isolation and climate) and microhabitat (vegetation structure, microclimate and land use) factors influence patch occupancy and population densities, respectively, of a flightless bush-cricket (Metrioptera brachyptera) in fragmented calcareous grasslands. In summer 2005 patch occupancy of M. brachyptera was assessed in 68 calcareous grassland patches of the Diemel Valley (central Germany). Among these, 26 patches with 80 plots were selected to characterise Mbrachyptera habitats in detail. On each plot, bush-cricket density was sampled in an area of 20 m2 using a 0.5 m2 box quadrat. At the landscape level (patches) in 46 (68%) of 68 studied calcareous grassland patches M. brachyptera was present. Patch occupancy increased with annual precipitation and patch size but was independent of altitude, annual temperature and isolation. At the microhabitat level (plots), population density of Mbrachyptera decreased with land-use intensity and increased with vegetation height. In addition, a high litter accumulation was adverse for M. brachyptera. Given the low explanatory power of isolation for patch occupancy, conservation of flightless and sedentary insects, such as M. brachyptera, should primarily focus on improving habitat quality. For M. brachyptera and other stenotopic calcareous grassland species we therefore recommend traditional rough grazing with sheep, which creates a heterogenous habitat structure and avoids the accumulation of too much litter.  相似文献   

13.
Summary Seedling recruitment in salt marsh plant communities is generally precluded in dense vegetation by competition from adults, but is also relatively rare in disturbance-generated bare space. We examined the constraints on seedling recruitment in New England salt marsh bare patches. Under typical bare patch conditions seed germination is severely limited by high substrate salinities. We examined the germination requirements of common high marsh plants and found that except for one notably patch-dependent fugitive species, the germination of high marsh plants is strongly inhibited by the high soil salinities routinely encountered in natural bare patches. Watering high marsh soil in the greenhouse to alleviate salt stress resulted in the emergence of up to 600 seedlings/225 cm2. The vast majority of this seed bank consisted of Juncus gerardi, the only common high marsh plant with high seed set. We tested the hypothesis that salt stress limits seedling contributions to marsh patch secondary succession in the field. Watering bare patches with fresh water partially alleviated patch soil salinities and dramatically increased both the emergence and survival of seedlings. Our results show that seedling recruitment by high marsh perennial turfs is limited by high soil salinities and that consequently their population dynamics are determined primarily by clonal growth processes. In contrast, populations of patch-dependent fugitive marsh plants which cannot colonize vegetatively are likely governed by spatially and temporally unpredictable windows of low salinities in bare patches.  相似文献   

14.
This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape; to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913–958, 2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that, under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing thatmainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopperBryodema tuberculata.  相似文献   

15.
The effect of host patch area and configuration on the abundance of dispersing individuals of Delphacodes kuscheli Fennah (Homoptera: Delphacidae), the vector of Río Cuarto disease in maize, was investigated in the main maize production area of Argentina. Actively dispersing D. kuscheli individuals were collected from 15 sampling sites during the spring seasons of 1999 and 2000, using sticky traps placed at 6 m above ground level. Host patches were detected and quantified using Landsat 5 TM images for the periods studied. The spatial pattern analysis program FRAGSTATS was used to estimate the total class area, largest patch index, mean proximity index, and patch cohesion index for patches of winter pastures (the main insect host during winter) as observed from the satellite images. Landsat 5 TM estimations showed local variability in the proportion of winter pastures, with patches bigger during 1999 than during 2000, but these patches represented only a very small part of the total landscape. Proximity between host patches was also variable between sites and higher values of cohesion occurred during the first sampling season. The relationship between host area and D. kuscheli mean abundance was adjusted to an exponential (R2= 77.5%) model. Host patch dominance, host patch isolation, and host patch connectivity all showed a positive relationship with D. kuscheli mean abundance, adjusting significantly to linear models (R2= 92%, R2= 90%, and R2= 22%, respectively). Outbreaks of Río Cuarto disease in the main maize production area of Argentina are related to high vector populations. The results indicate that the abundance of D. kuscheli depends on factors related to the abundance and configuration of its host patches.  相似文献   

16.
Studies of time-invariant matrix metapopulation models indicate that metapopulation growth rate is usually more sensitive to the vital rates of individuals in high-quality (i.e., good) patches than in low-quality (i.e., bad) patches. This suggests that, given a choice, management efforts should focus on good rather than bad patches. Here, we examine the sensitivity of metapopulation growth rate for a two-patch matrix metapopulation model with and without stochastic disturbance and found cases where managers can more efficiently increase metapopulation growth rate by focusing efforts on the bad patch. In our model, net reproductive rate differs between the two patches so that in the absence of dispersal, one patch is high quality and the other low quality. Disturbance, when present, reduces net reproductive rate with equal frequency and intensity in both patches. The stochastic disturbance model gives qualitatively similar results to the deterministic model. In most cases, metapopulation growth rate was elastic to changes in net reproductive rate of individuals in the good patch than the bad patch. However, when the majority of individuals are located in the bad patch, metapopulation growth rate can be most elastic to net reproductive rate in the bad patch. We expand the model to include two stages and parameterize the patches using data for the softshell clam, Mya arenaria. With a two-stage demographic model, the elasticities of metapopulation growth rate to parameters in the bad patch increase, while elasticities to the same parameters in the good patch decrease. Metapopulation growth rate is most elastic to adult survival in the population of the good patch for all scenarios we examine. If the majority of the metapopulation is located in the bad patch, the elasticity to parameters of that population increase but do not surpass elasticity to parameters in the good patch. This model can be expanded to include additional patches, multiple stages, stochastic dispersal, and complex demography.  相似文献   

17.
Patch occupancy of two hemipterans sharing a common host plant   总被引:5,自引:0,他引:5  
Aim Two hemipteran species were chosen as a study system for the comparative analysis of patch occupancy and spatial population structure of insects sharing a common host plant. This study tested whether (1) the incidence in the host plant patches differed between the two species, and (2) the two species exhibited a different spatial population structure, i.e. were they affected differentially by isolation and area of the host plant patches. Location The porphyry landscape north of Halle (Saale) in Germany comprising 506 patches of the host plant Brachypodium pinnatum. Methods The host plant patches were surveyed for the two hemipterans. To assess the influence of patch quality on species occurrence the patches were characterized by mean cover abundance of B. pinnatum, type of subsoil, slope, exposure, and shading. The spatial configuration of the patches was considered by patch area and isolation. The influence of the habitat factors and the spatial configuration on the occupancy of the two species was analysed by logistic regression. Results Adarrus multinotatus was found in 441 patches, while Neophilaenus albipennis was found in only 90 patches. While A. multinotatus showed virtually no relationship to the habitat factors, the occupancy of N. albipennis was influenced by subsoil type, cover abundance, and shading. The effects of area and isolation on occupancy of the patches also differed between the two species. The occupancy of N. albipennis was determined largely by area and isolation, whereas in A. multinotatus no considerable effect of spatial configuration was found. Main conclusions The study revealed a marked difference between the two hemipteran species in respect of spatial population structure. Adarrus multinotatus built up a ‘patchy population’, whereas N. albipennis showed a ‘metapopulation’ structure within the same set of patches in the same landscape. Spatial population structure was found to be not only a function of spatial configuration of habitat patches, but population structure differed between the habitat generalist A. multinotatus and the habitat specialist N. albipennis.  相似文献   

18.
为了测量奄美岛上濒危物种琉球兔 (Pentalagusfurnessi)的丰盛度 ,我们计数了森林中道路、溪流和森林地被物中的粪堆数量。计算用的模型包括新粪堆的数量及其年龄、总粪堆数量、每天产生的平均粪堆数 ,以及在森林地被物和溪边的粪堆数量的回归方程。估计在 1 993- 1 994年期间该岛上有 2 5 0 0 - 6 1 0 0只琉球兔 ,在 2 0 0 2 - 2 0 0 3年间有 2 0 0 0 - 4 80 0只。通过比较粪便丰盛度和在森林道路旁观察到的琉球兔数量 ,我们考察了该模型的有效性 ,最后将以前调查的数据应用于该模型以确定种群下降的程度  相似文献   

19.
The scarce heath (Coenonympha hero) is an internationally threatened butterfly in Western Europe, where it occurs primarily on hay fields and abandoned arable land in a small-scale agricultural landscape of south-central Scandinavia. Due to afforestation, this habitat is becoming increasingly fragmented in Sweden, and it can be expected that the scarce heath will decline abruptly when threshold conditions for metapopulation persistence are no longer met. We used stepwise polychotomous logistic regression to compare habitat characteristics and isolation measures for patches that harbour large, small or no populations, respectively, in an area of south-western Sweden. We found that patch area, distance to the nearest large population and amount of Galium spp. explained a significant part of the variation in relative abundance among patches. Distance to nearest large population resulted in a better model to predict occupancy than both distance to the nearest inhabited patch and connectivity, which suggests that primarily large populations act as sources for small satellite populations. Today, sites of three of the eight larger populations in the study area have been planted with spruce or pine and will disappear within 20 years. We argue that the disappearance of these patches may very well lead to rapid extinction of the whole metapopulation system.  相似文献   

20.
Aim This study investigated whether habitat fragmentation at the landscape level influences patch occupancy and abundance of the black‐headed gull, Chroicocephalus ridibundus, and whether the response of the species to environmental factors is consistent across replicated landscape plots. Location Water bodies (habitat patches) in southern Poland. Methods Surveys were conducted in two landscape types (four plots in each): (1) more‐fragmented landscape, in which habitat patches were small (mean size 2.2–6.2 ha) and far apart (mean distance 2.5–3.1 km); and (2) less‐fragmented landscape, in which habitat patches were large (mean size 9.2–16.5 ha) and separated by short distances (mean 0.9–1.4 km). Observations were performed twice in 284 potential habitat patches during the 2007 breeding season. Results Colonies were significantly more frequent and larger in the less‐fragmented landscapes than in the more‐fragmented ones. Probability of patch occupancy and number of breeding birds were positively related with patch size and these relationships were especially strong in the more‐fragmented landscapes. In the less‐fragmented landscapes, the occurrence of black‐headed gulls was negatively related to the distance to the nearest local population, but in the more‐fragmented landscapes such a relationship was not detected. As distance to the nearest habitat patch increased, the probability of the patch occupancy decreased in the more‐fragmented landscapes. Moreover, abundance was negatively influenced by distance to the nearest habitat patch, especially strongly in more‐fragmented landscapes. Proximity of corridors (rivers) positively influenced the occupation of patches regardless of landscape type. The number of islets positively influenced occupancy and abundance of local populations, and this relationship was stronger in the more‐fragmented landscapes. Main conclusions Our results are in agreement with predictions from metapopulation theory and are the first evidence that populations of black‐headed gulls may have a metapopulation structure. However, patch occupancy and abundance were differentially affected by explanatory variables in the more‐fragmented landscapes than in the less‐fragmented ones. This implies that it is impossible to derive, a priori, predictions about presence/abundance patterns based on only a single landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号