首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
We examined associations between annual reproduction and climate for 6 populations of individually marked northern spotted owls (Strix occidentalis caurina) in Washington and Oregon. We used an information-theoretical approach and mixed models to evaluate statistical models representing a priori hypotheses about the effects of weather and climate on reproduction. Reproduction was higher for adult than subadult owls and declined as the proportion of spotted owl territories with barred owl (Strix varia) detections increased. Similar to other spotted owl studies, we found that reproduction was negatively associated with cold, wet winters and nesting seasons at 3 of 6 study areas. In addition, we identified new relationships between reproduction, annual precipitation, storms, and regional climate cycles. For 3 of 6 areas, we found a quadratic relation between precipitation (rain and snow) and reproduction, with the number of young fledged per pair per year declining as precipitation in the previous year deviated from average levels. A meta-analysis conducted across all 6 areas indicated that reproduction at the regional level had a quadratic association with total winter snowfall in the preceding winter and was positively related to temperatures during the previous summer and fall. The amount of annual variation in reproduction accounted for by weather and climate varied widely across the 6 areas (4–79%), whereas variation in weather and climate across owl territories accounted for little of the spatial variation in reproduction (0–4%). Our results suggest that across the range of the species climate factors affecting prey abundance may have a greater effect on reproduction than direct effects of weather on nestlings. © 2011 The Wildlife Society.  相似文献   

7.
The range expansion by barred owls (Strix varia) into western North America has raised considerable concern regarding their potential effects on declining northern spotted owl (Strix occidentalis caurina) populations, yet most information on the occurrence of barred owls in the region is limited to incidental detections during surveys for spotted owls. To address this shortcoming we investigated response behavior, detection probabilities, and landscape occupancy patterns of barred owls in western Oregon, USA, during conspecific versus spotted owl call-broadcast surveys. Subtle differences in barred owl response behavior to conspecific versus spotted owl vocalizations combined with minor procedural differences between species-specific survey protocols led to a sizeable difference in estimated detection probabilities during conspecific (0.66, 95% CI = 0.61–0.71) versus spotted owl (0.48, 95% CI = 0.39–0.56) surveys. We identified 61 territorial pairs of barred owls during repeated surveys of a multi-ownership study area with the probability of occupancy being highest in the structurally diverse mixture of mature and old forests that occurred almost entirely on public lands. Our findings suggest that research and management strategies to address potential competitive interactions between spotted owls and barred owls will require carefully designed, species-specific survey methods that account for erratic response behaviors and imperfect detection of both species. Our sampling methods can be used by forest managers to determine the occurrence and distribution of barred owls with high confidence. © 2011 The Wildlife Society.  相似文献   

8.
The northern spotted owl (Strix occidentalis caurina) is one of the most intensively studied raptors in the world; however, little is known about the impacts of wildfire on the subspecies and how they use recently burned areas. Three large-scale wildfires in southwest Oregon provided an opportunity to investigate the short-term impacts of wildfire and salvage logging on site occupancy of spotted owls. We used Program MARK to develop single-species, multiple-season models of site occupancy using data collected during demographic surveys of spotted owl territories. In our first analysis, we compared occupancy dynamics of spotted owl nesting territories before (1992–2002) and after the Timbered Rock burn (2003–2006) to a reference area in the south Cascade Mountains that was not affected recently by wildfire. We found that the South Cascades had greater colonization probabilities than Timbered Rock before and after wildfire ( , 95% CI = 0.60–2.03), and colonization probabilities declined over time at both areas ( , 95% CI = −0.12 to 0.00). Extinction probabilities were greater at South Cascades than at Timbered Rock prior to the burn ( , 95% CI = 0.23–2.62); however, Timbered Rock had greater extinction probabilities following wildfire ( , 95% CI = 0.29–2.62). The Timbered Rock and South Cascades study areas had similar patterns in site occupancy prior to the Timbered Rock burn (1992–2001). Furthermore, Timbered Rock had a 64% reduction in site occupancy following wildfire (2003–2006) in contrast to a 25% reduction in site occupancy at South Cascades during the same time period. This suggested that the combined effects of habitat disturbances due to wildfire and subsequent salvage logging on private lands negatively affected site occupancy by spotted owls. In our second analysis, we investigated the relationship between wildfire, salvage logging, and occupancy of spotted owl territories at the Biscuit, Quartz, and Timbered Rock burns from 2003 to 2006. Extinction probabilities increased as the combined area of early seral forests, high severity burn, and salvage logging increased within the core nesting areas ( , 95% CI = 0.10–3.66). We were unable to identify any relationships between initial occupancy or colonization probabilities and the habitat covariates that we considered in our analysis where the β coefficient did not overlap zero. We concluded that site occupancy of spotted owl nesting territories declined in the short-term following wildfire, and habitat modification and loss due to past timber harvest, high severity fire, and salvage logging jointly contributed to declines in site occupancy. © 2013 The Wildlife Society.  相似文献   

9.
Northern spotted owls (Strix occidentalis caurina) have received intense research and management interest since their listing as a threatened species by the United States Fish and Wildlife Service in 1990. For example, public and private forest managers in the Pacific Northwest, USA, conduct surveys to determine presence or absence of spotted owls prior to timber harvest operations. However, although recently developed statistical methods have been applied to presence–absence data collected during research surveys, the effectiveness of operational surveys for detecting spotted owls and evaluating site occupancy dynamics is not known. We used spotted owl survey data collected from 1995 to 2009 on a study area in interior northern California, USA, to evaluate competing occupancy models from Program PRESENCE using Akaike's Information Criterion (AIC). During 1,282 individual surveys, we recorded 480 spotted owl detections (37.4%) and 13 barred owl (1.0%) detections. Average per visit detection probability (85% CL) for single and paired spotted owls was 0.93 (0.90–0.96) for informed daytime, stand-based searches and 0.47 (0.43–0.51) for nighttime, station-based surveys (estimated from the best model); the average per visit detection probability from the null model was 0.67 (0.64–0.70). Average pair-only detection probabilities were 0.86 (0.81–0.90) for informed daytime, stand-based searches and 0.23 (0.18–0.29) for nighttime, station-based surveys; the average per visit detection probability from the null model was 0.63 (0.58–0.68). Site occupancy for any owl declined from 0.81 (0.59–0.93) in 1995 to 0.50 (0.39–0.60) in 2009; pair occupancy declined from 0.75 (0.56–0.87) to 0.46 (0.31–0.61). Our results suggest that a combination of 1 informed stand and 2 station-based operational surveys can support determinations of spotted owl site status (either a single or a pair) at desired levels of confidence. However, our information was collected in an area where barred owls were rarely detected. Surveys conducted in areas that support well-established barred owl populations are likely to be less effective for determining presence or absence of spotted owls and may require more surveys and/or different survey methods to determine site status with confidence. © 2012 The Wildlife Society.  相似文献   

10.
11.
12.
We studied home range and habitat selection of radio-marked adult California spotted owls (Strix occidentalis occidentalis) randomly selected from among the breeding population of owls in the central Sierra Nevada, California from June to October 2006. The most parsimonious home-range estimate for our data was 555 ha (SE = 100 ha). Home-range size was positively correlated with the number of vegetation patches in the home range (habitat heterogeneity). We used resource selection ratios to examine selection of vegetation types by owls within our study area. Owl home ranges contained a high proportion of mature conifer forest, relative to its availability, although the confidence interval for this estimate overlapped one. We also used resource selection functions (RSF) to examine owl foraging habitat selection. Relative probability of selection of foraging habitat was correlated with vegetation classes, patch size, and their interaction. Owls showed highest selection rates for large patches (>10 ha) of pole-sized coniferous forest. Our results suggested that spotted owls in the central Sierra Nevada used habitat that contained a high proportion of mature conifer forest at the home-range scale, but at a finer scale (foraging site selection) owls used other vegetation classes interspersed among mature forest patches, consistent with our hypothesis that spotted owls may use other forest types besides old growth and mature forests when foraging. Our study provides an unbiased estimate of habitat use by spotted owls in the central Sierra Nevada. Our results suggest that forest managers continue to protect remaining mature and old-growth forests in the central Sierra Nevada because owl home ranges contain high proportions of these habitats. However, our results also showed that owls used younger stands as foraging habitat so that landscape heterogeneity, with respect to cover types, may be an important consideration for management but we did not attempt to relate our findings to fitness of owls. Thus management for some level of landscape heterogeneity for the benefit of owls should proceed with caution or under an adaptive management framework. © 2011 The Wildlife Society.  相似文献   

13.
ABSTRACT Competition with barred owls (Strix varia varia) is an important factor contributing to the continued decline of threatened northern spotted owl (Strix occidentalis caurina) populations in the Pacific Northwest, USA, but basic information on habitat selection and space use patterns of barred owls is lacking for much of the region. We investigated space use and habitat selection by tracking radiotagged barred owls in the Eastern Cascade Range of Washington, USA, from 2004 to 2006. We surveyed for barred owls across the 309-km2 study area and confirmed presence of barred owl pairs at 21 sites. We collected movement data on 14 barred owls from 12 sites. Mean annual 95% fixed-kernel home-range size was 194 ha for females (n = 4, SD = 70) and 288 ha for males (n = 5, SD = 114). Home ranges were located more frequently than expected in areas with low topographic position, gentle slopes, large overstory tree-crown diameter, high normalized difference vegetation index (NDVI), overstory tree canopy closure >72%, and a moderate amount of solar insolation. Within home ranges, areas that had large tree-crown diameters, low topographic positions, and gentle slopes were used more frequently than expected. The resource selection function we developed for barred owls in our study area indicated that barred owls used areas with the combination of low values for topographic position and slope and higher values for NDVI, solar insolation, and an interaction term for canopy closure and tree-crown diameter. In comparison to published information on northern spotted owls, barred owls used areas with similar canopy closure and tree size classes, but barred owl home ranges were much smaller and more concentrated on gentler slopes in valley bottoms. This information may contribute to the development of management practices that maintain forest characteristics appropriate for spotted owl habitat and prey in areas where spotted owls are least likely to be excluded by territorial barred owls in the Eastern Cascades of Washington.  相似文献   

14.
Barred owls (Strix varia) are forest-dwelling owls, native to eastern North America, with populations that expanded westward into the range of the spotted owl (Strix occidentalis). Barred owls exert an overwhelmingly negative influence on spotted owls, thereby threatening spotted owl population viability where the species co-occur. In this review, we provide an overview of the barred owl's range expansion and detail and synthesize previously published literature on spotted and barred owls within the range of the spotted owl as related to potential future outcomes for the northern spotted owl (S. o. caurina). We include research on diet, habitat use and selection, effects of barred owls on spotted owl demography and behavior, hybridization with spotted owls, parasites, contemporary management, and future research needs for spotted owl populations given continued barred owl expansion throughout western North America. Our literature review and synthesis should provide managers with the information necessary to develop strategies that mitigate deleterious effects of barred owls at local and landscape scales. © 2019 The Wildlife Society.  相似文献   

15.
16.
The northern spotted owl (Strix occidentalis caurina) is a threatened subspecies and the California spotted owl (Strix occidentalis occidentalis) is a subspecies of special concern in the western United States. Concern for their continued viability has arisen because of habitat loss caused by timber harvesting. The taxonomic status of the northern subspecies has been the subject of continuing controversy. We investigated the phylogeographical and population genetic structure of northern and California spotted owls with special reference to their region of contact. Mitochondrial DNA (mtDNA) control region sequences confirmed the existence of two well-differentiated lineages connected by a narrow hybrid zone in a region of low population density in north central California. Maximum-likelihood estimates indicated bidirectional gene flow between the lineages but limited introgression outside the region of contact. The lengths of both the mtDNA hybrid zone and the reduced density patch were similar and slightly exceeded estimates of natal dispersal distances. This suggests that the two subspecies were in secondary contact in a hybrid zone trapped by a population density trough. Consequently, the zone of interaction is expected to be geographically stable. We discovered a third, rare clade of haplotypes, which we interpreted to be a result of incomplete lineage sorting; those haplotypes result in a paraphyletic northern spotted owl with respect to the California spotted owl. A congeneric species, the barred owl (Strix varia), occasionally hybridizes with spotted owls; our results indicated an upper bound for the frequency of barred owl mtDNA haplotypes in northern spotted owl populations of 3%.  相似文献   

17.
18.
Species worldwide have begun to shift their range boundaries in response to climate change and other anthropogenic causes, with population declines at the trailing edge of a species' range often foreshadowing future changes in core parts of the range. Therefore, we analyzed a 30-year (1991–2019) data set for the California spotted owl (Strix occidentalis occidentalis) near its southern range boundary in southern California, USA, that included the largest regional population (San Bernardino Mountains) to estimate trends in territory occupancy and reproduction. We then assessed how these demographic rates were affected by habitat, wildfire, fuel treatments, and climate. Mean occupancy declined from 0.82 to 0.39 during our study, whereas reproductive output showed no temporal trends ( young/occupied territory). Territory extinction (extirpation) rates were relatively low in territories with more large trees (≥50 cm dbh), and colonization increased strongly with large tree density for low-elevation territories within the shrub-woodland ecotype but not for higher-elevation territories within mixed-conifer forest. High-severity wildfire had an adverse effect on occupancy: territory extinction rates steadily increased with the amount of high-severity fire within an owl territory during the previous 10 years, while colonization declined to nearly zero when ≥40% of a territory burned at high-severity during the previous 10 years. The effects of high-severity fire were unlikely to be confounded with post-fire fuel treatments, which primarily consisted of the removal, burning, or scattering of brush and small trees and snags (<40.6 cm dbh) and affected much smaller areas than high-severity fire. Of the 40 territories that received fuel treatments within 10 years of a fire, only 3 of them had post-fire fuel treatments that affected >5% of the territory, whereas average area burned at high severity for all 40 territories was 17%. Fuel treatments intended to modify fire behavior and reduce the likelihood of large, high-severity fires led to increases in territory extinction and colonization such that their net effect on occupancy was minimal. Our simulations of occupancy dynamics indicated that high-severity fire accounted for 9.6% of the observed decline in occupancy, whereas fuel treatments effectively accounted for none of the decline. Spotted owl reproductive output was lower at territories where fuel treatments occurred, but low- to moderate-severity fire resulted in much larger, population-level reductions in reproductive output (141 fewer young) from 2006–2019 than treatments (19 fewer young). Thus, the benefits of fuel treatments that reduce fire occurrence and severity appear to outweigh potential short-term costs to spotted owls and their habitat. Because high-severity fire only explained a modest amount of the long-term occupancy decline and much of the decline occurred in the 1990s before large fires occurred, additional factors are likely adversely affecting the owl population and merit further study. Nevertheless, the large observed population decline, limited evidence of owl dispersal among mountain ranges in the southern California metapopulation, and negative effects of increasingly large and severe fire suggest that California spotted owls at their southern range boundary are vulnerable to extirpation. In an era of climate change, owls in the core part of the range will likely become increasingly susceptible to warmer temperatures and increased severe fire activity in the future. Thus, the restoration of historical, low-severity fire regimes through fuels management while maintaining large trees is important to improving owl persistence.  相似文献   

19.
ABSTRACT Forest fire is often considered a primary threat to California spotted owls (Strix occidentalis occidentalis) because fire has the potential to rapidly alter owl habitat. We examined effects of fire on 7 radiomarked California spotted owls from 4 territories by quantifying use of habitat for nesting, roosting, and foraging according to severity of burn in and near a 610-km2fire in the southern Sierra Nevada, California, USA, 4 years after fire. Three nests were located in mixed-conifer forests, 2 in areas of moderate-severity burn, and one in an area of low-severity burn, and one nest was located in an unburned area of mixed-conifer-hardwood forest. For roosting during the breeding season, spotted owls selected low-severity burned forest and avoided moderate- and high-severity burned areas; unburned forest was used in proportion with availability. Within 1 km of the center of their foraging areas, spotted owls selected all severities of burned forest and avoided unburned forest. Beyond 1.5 km, there were no discernable differences in use patterns among burn severities. Most owls foraged in high-severity burned forest more than in all other burn categories; high-severity burned forests had greater basal area of snags and higher shrub and herbaceous cover, parameters thought to be associated with increased abundance or accessibility of prey. We recommend that burned forests within 1.5 km of nests or roosts of California spotted owls not be salvage-logged until long-term effects of fire on spotted owls and their prey are understood more fully.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号