首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT In Quebec, Canada, harvest of bobcats (Lynx rufus) started to decline in 1985 and by 1991, harvest seasons were closed due to concerns of a perceived population decline. Since the closing of harvest season in 1991, the average temperature has increased, snow quantity has decreased, and important changes in agriculture and forest management have occurred. In light of changing conditions, the situation of Quebec bobcats needed reassessment. Thus, we analyzed harvest data to clarify the current status of bobcat populations in Quebec. From 1980 to 1991, bobcat harvest in Quebec was strongly correlated with bobcat harvest in Maine (USA), Nova Scotia (Canada), Ontario (Canada), and Vermont (USA). Extrapolations of harvest in Quebec relative to harvest in Maine, Ontario, Vermont, and Nova Scotia suggested an increase in number of bobcats after 1991. Mass of male and female bobcats before 1991 was less than mass of animals captured after 1991. Percentage of juveniles in the reported harvest before 1991 was higher than after 1991. However, percentage of males and litter sizes in the harvest did not differ before and after 1991. The geographic distribution of bobcats captured has gradually expanded after the closure of the harvest season. Our findings suggest that bobcat populations in Quebec have recovered from the 1985–1991 decline, and that the harvest season for this species could resume. This study also illustrates how managers can rely on data from neighboring jurisdiction to manage species when local harvest data is unavailable.  相似文献   

2.
Trapping data have a long and rich history of use in monitoring furbearer populations in North America but understanding the influences of variation in trapper harvest is important. Many factors besides abundance can cause variation in trapper harvest, including socioeconomics, weather, and motivation. The relationships between these extrinsic factors and trapper harvest may change temporally, which may obscure the causal understanding of variation in trapper harvest. We tested for changes in the relationships between pelt price and trapper numbers, and pelt price and harvest per trapper for raccoons (Procyon lotor) in Illinois, USA, from 1976–2018 while controlling for other socioeconomic (gasoline price, unemployment) and weather (temp, snow depth) factors. The annual raccoon harvest showed no clear trend, whereas the number of raccoon trappers declined markedly from approximately 1976–1990 in conjunction with pelt prices, after which the number of trappers remained relatively stable and were not significantly affected by pelt price. In contrast, harvest per trapper increased markedly during the 1990s and showed a significant negative relationship with pelt price pre-1990 but a positive relationship post-1990. We propose that declines in pelt prices resulted in a loss of less experienced or economically incentivized trappers, whereas contemporary trappers may continue trapping primarily for non-economic reasons. Our study highlights the potential for using non-linear relationships between trapper harvest data and socioeconomic covariates to help understand the influences of temporal variation in trapper harvest data. © 2020 The Wildlife Society.  相似文献   

3.
Harvest data (e.g., number of animals harvested, trapper effort) are an important source of information for state wildlife agencies to manage harvested furbearers. These data provide evidence to support adapting harvest regulations when necessary. Setting appropriate harvest regulations for fishers (Martes pennanti) and American martens (Martes americana) is critical, as these species often exist at low densities, are sensitive to timber-management practices and trapper-harvest, and experience some level of interspecific predation and competition in sympatric populations. We estimated effects of management (e.g., number of fishers or martens harvested per trapper per season [harvest limit], season length) and extrinsic (e.g., weather, pelt prices) factors on regulated harvests of fishers and martens in the Upper Peninsula of Michigan during 1996–2007. We used generalized linear mixed models in an information-theoretic approach (quasi-likelihood adjusted Akaike Information Criterion [QAIC]) to discern which factors most strongly influenced fisher and marten harvests. For harvest of fishers, the 3 QAIC-best models included harvest limit, season length, and number of trappers, suggesting that regulatory changes within the ranges tested may be implemented to influence harvest. The QAIC-best model (harvest limit) contained 26% of the weight of evidence, and using an independent subset of data, showed no difference between model predictions and harvest data. In contrast, harvest of martens was not strongly influenced by any factors we tested. Possible reasons for a lack of measurable effects while modeling harvest of martens include a low harvest limit (i.e., 1 marten) or incidental harvest of martens by fisher or bobcat (Lynx rufus) trappers. Knowledge of influences on harvest will lead to informed decision-making when managers are setting harvest regulations, particularly for low-density furbearers. © 2011 The Wildlife Society.  相似文献   

4.
Bobcats (Lynx rufus) are terrestrial mammals that also inhabit tree islands (i.e., topographically elevated patches of forested land) embedded in the subtropical Everglades wetlands, which serve as a dry refuge habitat during the wet season in this region of Florida, USA. The Comprehensive Everglades Restoration Plan seeks to restore Everglades water flow to pre-drainage conditions, but little is known about how water levels or other landscape-level factors may influence mammalian occurrence, such as bobcats, on the tree islands in this ecosystem. We used game camera records and occupancy modeling to test for effects of static habitat variables and dynamic hydrologic variables. We hypothesized that deep water levels would limit the accessibility of tree islands to bobcats; therefore, we predicted that bobcat occupancy would decline with higher water levels. We also tested for the effect of an expanding invasive snake (i.e., Burmese python [Python molarus bivittatus]) using output from a model constructed to predict density and spread of Burmese pythons across southern Florida. We hypothesized that increases in Burmese pythons on the landscape would influence the food resources of bobcats, resulting in reduced bobcat occupancy at higher predicted densities of pythons. We built detection histories using 1,855 bobcat images from game cameras set on 87 tree islands in an Everglades conservation area from 2005–2019. Bobcat occupancy was significantly diminished when predicted Burmese python densities exceeded approximately 3 Burmese pythons/km2. Bobcat occupancy probability also increased with tree-island density around the focal tree island. Although water depth and hydroperiod surrounding tree islands appeared in our top 3 candidate models, the hydrologic variables had weak effects on bobcat occupancy. Our results suggest that while hydrologic dynamics may play a role, the invasive Burmese python has stronger influences on bobcat occupancy of tree islands in this Everglades conservation area.  相似文献   

5.
We combined observations of bobcats (Lynx rufus) from bowhunters with remotely-sensed data to build models that describe habitat and relative abundance of this species in the agricultural landscape of Iowa, USA. We calculated landscape composition and configuration from publicly available land cover, census, road, hydrologic, and elevation data. We used multiple regression models to examine county-level associations between several explanatory variables and relative abundance of bobcats reported by surveyed bowhunters in each county. The most influential explanatory variables in the models were metrics associated with the presence of grassland, including Conservation Reserve, along with configuration of this perennial habitat with forests, although human population density and abundance of eastern cottontails (Sylvilagus floridanus) also correlated with abundance of bobcats. Validation of predictions against 3 years of independent data provided confidence in the models, with 66% of predictions within 1 bobcat/1,000 hunter-hours and 95% within 5 bobcats/1,000 hunter-hours of observed values. Once we accounted for landscape differences, no residual spatial trend was evident, despite relatively recent bobcat recolonization of Iowa. Models suggested that future range expansion of the bobcat population may be possible in some northern Iowa counties where habitat composition is similar to counties in southern Iowa where bobcats are abundant. Results from the county-level model have been useful to the Iowa Department of Natural Resources in evaluating the expansion of this once rare species and for delineating harvest opportunities. © 2011 The Wildlife Society.  相似文献   

6.
  1. Bobcats Lynx rufus and coyotes Canis latrans are two widespread mesopredators with a complex history of sympatry. The competitive interactions between these species are of interest to biologists due to the furbearer status of bobcats, the recent range expansion of coyotes, and the recolonisation of several parts of North America by bobcats following their extirpation. Although studies exploring the dynamics and competition between bobcats and coyotes span decades, there is a lack of understanding regarding what factors influence exploitative or interference competition, and what methodologies are conducive to identifying these types of competition.
  2. We gathered a comprehensive list of research papers (n = 41) exploring bobcat–coyote competitive interactions in North America. From them, we collected the following: study site characteristics, number and types of research methods, number and types of metrics explored, history of sympatry of the two species at the study location, presence of apex predators, and documentation of interference and/or exploitative competition.
  3. Using generalised linear models, we determined that interference competition between bobcats and coyotes was observed primarily in open habitat. However, habitat heterogeneity, the number of research methods and metrics used, presence of an apex predator, and history of sympatry could not be used to predict the occurrence of interference competition. Studies that included diet overlap were less likely to observe interference competition than studies that used other metrics to infer competition.
  4. Competitive interactions between coyotes and bobcats are largely a function of prey availability. Our findings suggest that habitat type may be a surrogate for prey availability, which many researchers mention, but do not explicitly measure. Future studies investigating bobcat–coyote interactions should include the quantification of prey densities to gain a more comprehensive understanding of the system at large, and should avoid using solely diet or habitat overlap as metrics to assess competition.
  相似文献   

7.
Human developments have detrimental effects on wildlife populations globally with carnivores being particularly sensitive. The bobcat (Lynx rufus) is often considered an adaptable mesocarnivore that occurs throughout varied landcover types within its wide distribution and may be less susceptible to the negative effects of development. Our objectives were to investigate the landscape occupancy dynamics of bobcats in a highly developed and densely populated region of the northeastern United States to evaluate the sensitivity of bobcat occurrence to natural and anthropogenic landscape features. We established a large-scale camera trapping survey throughout Rhode Island, USA, sampling from 2018 to 2020. Using dynamic occupancy models, we found initial site occupancy was positively influenced by the amount of forested wetland habitat, while increasing road density and shrub cover negatively influenced the probability of site colonization. Surprisingly, we found no hypothesized variables to influence site-level extirpation probability, or any seasonal effects on dynamic parameters. Lastly, we found that forest cover and road density negatively influenced the probability of detection. The probability of occupancy was high, >0.8, throughout much of the study area (49%), but we also found relatively high site transients, with the probability a site would change occurrence status from season to season at ≈0.27 in the majority of the study area (70%). Our results show that although bobcats can persist in human-dominated landscapes, they require contiguous natural areas to do so. Future expansion of road infrastructure may reduce habitat connectivity and increase road mortalities, thus jeopardizing the population.  相似文献   

8.
Abstract Understanding interactions among bobcats (Lynx rufus) may lend insight into less understood life history traits of the bobcat and improve management of the species. Moreover, data from manipulative experiments pertaining to bobcat ecology are largely absent from the scientific literature. Therefore, we investigated bobcat spatial organization and habitat use after an experimental population reduction on an 11,735-ha study site in southwestern Georgia, USA. In response to an approximate 50% population reduction, male bobcats shifted their space use (26.4 ± 1.7% more shift relative to baseline) more (F1,3 = 138.08, P=0.001) than males where no bobcat removal occurred (28.1 ± 5.5% less shift relative to baseline). Dispersion of radio locations for all female bobcats increased following the population reduction; however, females that were exposed to the removal of a potentially interacting male remained more (F1,14 = 6.78, P = 0.021) static (increase in dispersion = 7.8 ± 7.3%) than females that were not exposed to removed males (increase in dispersion 41.2 ± 11.1%). Male bobcats likely shifted their central tendency to increase breeding opportunities, whereas the difference in dispersion of female radio locations may be the result of decreased intraspecific competition. Alternatively, reduced dispersion of females following harvest of neighboring males may increase the likelihood that remaining males will interact with females for breeding purposes. Neither habitat use nor habitat selection differed as a function of removal, suggesting that density-dependent habitat selection was not occurring on our study site. Although it is generally accepted that male bobcats use space to increase breeding opportunities, our study suggests that male bobcats may also influence space use of females, but in counterintuitive ways. Because bobcat movements are altered by harvest of neighbors, we suggest that inferring habitat quality for bobcats based on their space use patterns should be avoided unless researchers incorporate knowledge of both short- and long-term population perturbations.  相似文献   

9.
ABSTRACT Controversy over bobcat (Lynx rufus) management in the northern Lower Peninsula of Michigan (NLP), USA, stimulated a need for information on the distribution of Michigan bobcats. From March 2003 to October 2004, we conducted a radiotelemetry and scentstation survey study of bobcats in the NLP. We developed a spatial model to predict bobcat distribution throughout the NLP based on bobcat area requirements, habitat and landscape variables derived from remotely sensed land-cover data, and a multivariate distance statistic. Bobcat 50% minimum convex polygon core areas were comprised of more lowland forest (51%), nonforested wetlands (9%), and streams (3%) than the surrounding NLP. The NLP was comprised primarily of upland forest (44%) and field (32%). Habitat in the northeast and central regions of the NLP was most similar to the habitat composition of bobcat core areas. This model will be useful in aiding Michigan wildlife management agencies with assessing the status and distribution of the NLP bobcat population by identifying areas important to bobcats and supporting the development of regional strategies for carnivore conservation.  相似文献   

10.
Bobcats are opportunistic felids occurring in a diverse range of habitats and with a widespread distribution from southern Canada to southern Mexico. To explore why the bobcat's distribution stops at the Isthmus of Tehuantepec, we modelled the ecological niches, projected as potential distributions, of the felid community (bobcat Lynx rufus, puma Puma concolor, jaguar Panthera onca, margay Leopardus wiedii, jaguarundi Herpailurus yagouaroundi, and ocelot Leopardus pardalis) in southern Mexico, using occurrence data, environmental maps, the computer algorithm GARP, and a GIS platform. The resulting geographical projection of the ecological niche of bobcats extends south of the Isthmus of Tehuantepec, suggesting that ecological conditions exist for the establishment of populations. The overlap of the modelled distribution of the bobcat was large with that of the puma (97%), but low with that of the ocelot (44%), margay (46%), jaguar (49%), and jaguarundi (52%), the latter three having relatively similar size and feeding habits to bobcats. Moreover, an independent analysis computing a geographic co‐occurrence index showed a similar trend of geographic avoidance (values 0.15), while all felids, except bobcats, showed a geographic co‐occurrence in southern Mexico (values ranging from ?1.91 to 4.71). The Isthmus of Tehuantepec, a lowland region with subtropical habitat, is unlikely to serve as a geographic and ecological barrier to bobcats. As mammal inventories have been conducted for over a century in this region with no records of bobcats, it is unlikely that bobcats are present but have just not been seen. Fossil records also provide no support for the presence of bobcats in that region in the past. Thus, competitive interactions with other felid species appear important in limiting the southern distribution of bobcats, preventing dispersal to a suitable but geographically reduced area south of the Isthmus of Tehuantepec.  相似文献   

11.
Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist.  相似文献   

12.
Bobcats (Lynx rufus) have been increasing in abundance in the northeast United States despite a corresponding trend of increased anthropogenic land uses. Inhabiting areas of high human land use can affect stress levels, and hence cortisol titers, for wildlife species by increasing frequency of human interaction and altering habitats. In turn, increased cortisol levels can have negative effects at the individual and population level including decreased immune function, slowed growth and tissue repair, reduced reproductive capacity, and nutritional deficiencies. We quantified cortisol in bobcats across New Hampshire and Vermont, USA, using hair samples, then explored associations between hair cortisol and various organismal, land use, land cover, and climatic variables at 2 different spatial scales. Hair cortisol differed by season and bobcat mass. On average, cortisol levels were higher in fall than in spring, and larger bobcats had lower cortisol levels. Anthropogenic land uses—especially residential and agricultural uses—were the most important predictors of hair cortisol at the town scale ( area = 93 km2). At a larger scale (Wildlife Management Units; area = 1,256 km2), temperature and precipitation were better predictors of hair cortisol, suggesting that extreme weather may have significant effects on bobcat population dynamics. Our results highlight the importance of landscape composition and local conditions in the sustainable management of furbearer populations. © 2021 The Wildlife Society.  相似文献   

13.
14.
Considerable uncertainty often exists in estimates of demographic parameters based on data collected from harvested furbearer species. We used molecular genetic techniques to estimate rates of error in 2 methods of sex determination of harvested bobcats (Lynx rufus): manual examination of the carcass (field sex) and laboratory-based maximum canine root area (MRA sex). Error rates were high for both sexing techniques, and were associated with age and an age–sex interaction for the field and MRA sexing methods, respectively. These findings do not support the use of the field methods for identifying sex of harvested bobcats. The MRA method may be effective for determining sex of older bobcats but is limited by considerable overlap between sexes in juveniles and yearlings. If critical demographic parameters are estimated from harvest data, efforts should be made to identify and reduce rates of error before data are used to assess population status. © 2011 The Wildlife Society.  相似文献   

15.
An accurate understanding of harvest trends is required for effective wildlife management. Trapper harvest data represent valuable long-term data for evaluating patterns and trends for wildlife species at broad spatiotemporal scales. Inferring accurate trends from harvest data, however, first requires identifying and controlling for confounding factors that vary independent of abundance. We investigated trends in 43 years of trapper harvest data (1976–2018) from Illinois, USA, for red fox (Vulpes vulpes), gray fox (Urocyon cinereoargenteus), and coyote (Canis latrans) while controlling for factors that may affect trapper effort, including number of effective (i.e., successful) trappers, pelt price, gasoline price, winter unemployment, and winter weather conditions. Annual trapper harvest for red and gray foxes declined and was affected by gasoline price and winter unemployment, whereas annual trapper harvest for coyotes increased and was not strongly affected by other covariates. After adjusting for pelt price, harvest of red foxes was relatively stable, but harvest of gray foxes declined and harvest of coyotes increased. Effects of covariates on harvest per successful trapper varied by species; nevertheless, we detected an increasing trend for coyotes and decreasing trends for gray foxes and red foxes. Concordance across indices for gray foxes and coyotes was consistent with hypothesized declines for gray foxes and increases for coyotes in the midwestern United States. Trends for red foxes varied depending on how we accounted for potential confounding factors and it is unclear if these trends suggest population declines or distribution shifts to urban areas with reduced trapping susceptibility. Our results highlight the importance of understanding sources of variation in harvest data and that their effects can vary across species. © 2020 The Wildlife Society.  相似文献   

16.
We investigated factors facilitating coexistence of pumas (Puma concolor), coyotes (Canis latrans), and bobcats (Lynx rufus) in the arid San Andres Mountains of south-central New Mexico, during the season (winter and spring, prior to the annual monsoon) of greatest resource stress. We established a camera-trapping grid in the San Andres, 2007–2011, and modeled occupancy of the three carnivores as a function of habitat, prey, and presence of the other carnivore species. Species interaction factors were >1.3 for each pair of carnivores, and the presence of the other carnivore species never significantly influenced occupancy of any other carnivore. Similarly, occupancy of the San Andres landscape was positively correlated among all carnivores. Occupancy of pumas was most influenced by proximity of water; coyote occupancy was influenced by terrain ruggedness and presence of medium (primarily lagomorph) prey, and bobcat occupancy was influence primarily small prey and proximity to water. The three carnivores also did not show temporal partitioning in use of habitats. Rather than segregation driven by competition, predation, or despotism, our results appeared to reflect preferences for differing habitat characteristics between ambush and cursorial predators and preferred habitats for travel.  相似文献   

17.
Despite a broad distribution, general habitat requirements, and a large dispersal potential, bobcats (Lynx rufus) exhibit a genetic division that longitudinally transects central North America. We investigated (1) whether the climate of the Last Glacial Maximum (LGM; 21 kya) isolated bobcats into refugia and also whether the current climate influences gene flow between the segregate populations and (2) whether the geographical patterns in cranial morphology reflect population identity. We created ecological niche models (ENMs) to evaluate climatic suitability and to estimate distributions of the disparate populations under both historical (LGM) and contemporary conditions. We used two‐dimensional geometric morphometric methods to evaluate variations in the cranium and mandible. These variations were then regressed across geographical variables to assess morphological differences throughout the range of the bobcat. ENMs projected onto LGM climate provided evidence of refugia during the LGM via increased suitability in the north‐west and south‐east portions of this species' range. Contemporarily, our models suggest that the Great Plains may be restricting bobcat migration and gene flow, effectively maintaining disparate populations. Morphological analyses identified a significant linear trend in shape variation across latitudinal and longitudinal gradients rather than distinct morphological divergence between lineages. Similar shape variations, however, did converge in approximate locations of assumed refugia. The findings of the present study provide a robust assessment of the biogeographical considerations for the population genetic structure of bobcats.  相似文献   

18.
Sexual size dimorphism might be influenced by environmental constraints on sexual selection or by intraspecific competition between males and females. We studied bobcats (Lynx rufus) in collections of museum specimens from western North America to examine these hypotheses. Structural body size was estimated from several measurements of the skull, ln-transformed and indexed through principal components analysis. Sexual dimorphism in body size was estimated from the difference in size index of males and females, and compared to geographic and climatic variables associated with biotic provinces (ecoregions). Of several climatic variables that were associated with bobcat body size, only seasonality of climate was associated with sexual dimorphism. Sexual size dimorphism, longitude, elevation, and seasonality were intercorrelated. As longitude decreased (moving inland from west-coastal ecoregions), sexual dimorphism decreased with the increased elevation and seasonality of continental climates of the Rocky Mountains. We suggest that increased seasonality and the need for fasting endurance by females may place constraints on the degree of sexual dimorphism in bobcats. Sexual dimorphism of body size and sexual size dimorphism of trophic structures (teeth) exhibited a strong positive association over geography, thus indirectly supporting the hypothesis that intrasexual competition for prey could account for the geographic variation in sexual size dimorphism. Thus, both environmental constraints on sexual selection of body size and intersexual competition were supported as possible explanations of the degree of sexual size dimorphism that occurs in populations of bobcats.  相似文献   

19.
Understanding the types and magnitude of human‐caused mortality is essential for maintaining viable large carnivore populations. We used a database of cause‐specific mortality to examine how hunting regulations and landscape configurations influenced human‐caused mortality of North American gray wolves (Canis lupus). Our dataset included 21 studies that monitored the fates of 3564 wolves and reported 1442 mortalities. Human‐caused mortality accounted for 61% of mortality overall, with 23% due to illegal harvest, 16% due to legal harvest, and 12% the result of management removal. The overall proportion of anthropogenic wolf mortality was lowest in areas with an open hunting season compared to areas with a closed hunting season or mixed hunting regulations, suggesting that harvest mortality was neither fully additive nor compensatory. Proportion of mortality from management removal was reduced in areas with an open hunting season, suggesting that legal harvest may reduce human‐wolf conflicts or alternatively that areas with legal harvest have less potential for management removals (e.g., less livestock depredation). Proportion of natural habitat was negatively correlated with the proportion of anthropogenic and illegal harvest mortality. Additionally, the proportion of mortality due to illegal harvest increased with greater natural habitat fragmentation. The observed association between large patches of natural habitat and reductions in several sources of anthropogenic wolf mortality reiterate the importance of habitat preservation to maintain wolf populations. Furthermore, effective management of wolf populations via implementation of harvest may reduce conflict with humans. Effective wolf conservation will depend on holistic strategies that integrate ecological and socioeconomic factors to facilitate their long‐term coexistence with humans.  相似文献   

20.
Urbanization can result in the fragmentation of once contiguous natural landscapes into a patchy habitat interspersed within a growing urban matrix. Animals living in fragmented landscapes often have reduced movement among habitat patches because of avoidance of intervening human development, which potentially leads to both reduced gene flow and pathogen transmission between patches. Mammalian carnivores with large home ranges, such as bobcats (Lynx rufus), may be particularly sensitive to habitat fragmentation. We performed genetic analyses on bobcats and their directly transmitted viral pathogen, feline immunodeficiency virus (FIV), to investigate the effects of urbanization on bobcat movement. We predicted that urban development, including major freeways, would limit bobcat movement and result in genetically structured host and pathogen populations. We analysed molecular markers from 106 bobcats and 19 FIV isolates from seropositive animals in urban southern California. Our findings indicate that reduced gene flow between two primary habitat patches has resulted in genetically distinct bobcat subpopulations separated by urban development including a major highway. However, the distribution of genetic diversity among FIV isolates determined through phylogenetic analyses indicates that pathogen genotypes are less spatially structured-exhibiting a more even distribution between habitat fragments. We conclude that the types of movement and contact sufficient for disease transmission occur with enough frequency to preclude structuring among the viral population, but that the bobcat population is structured owing to low levels of effective bobcat migration resulting in gene flow. We illustrate the utility in using multiple molecular markers that differentially detect movement and gene flow between subpopulations when assessing connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号