首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海南霸王岭热带山地雨林森林循环与树种多样性动态   总被引:19,自引:0,他引:19  
通过对海南岛霸王岭热带山地雨林的调查 ,研究了热带山地雨林树种多样性特征随森林循环的动态变化规律。结果表明 :( 1 )热带山地雨林森林循环不同阶段斑块在森林景观中所占的面积比例分别是 :林隙阶段 ( G)占 38.5 0 % ,建立阶段 ( B)占 2 8.5 0 % ,成熟阶段 ( M)占 2 7.0 0 % ,衰退阶段 ( D)占 6 .0 0 %。 ( 2 )热带山地雨林中乔木树种的密度随森林循环的变化趋势是由 G→B→M呈现出逐渐增加的趋势 ,以成熟阶段达到最大 ,而到衰退阶段又趋于下降。灌木树种则表现出 G阶段斑块的密度最大 ,B阶段的最小 ,从 B到 M有所增加 ,到 D又稍有下降。 ( 3)热带山地雨林中不同高度级和不同径级的树木的密度在森林循环的不同阶段表现出不同的增减趋势 ,其随森林循环过程呈现出的动态变化可能与不同阶段斑块内的空间、环境及物种生物学特性有关。 ( 4 )热带山地雨林中树木的平均胸径、平均高、平均胸高断面积、平均单株材积随森林循环过程呈现出不断增加的趋势 ,其中平均胸径和平均高随森林循环的变化较为平缓 ,而平均胸高断面积和平均单株材积之变化较为陡急。 ( 5 )热带山地雨林森林循环不同阶段的物种多样性指数不同 ,其中 G和 B阶段的物种丰富度和多样性指数值较接近 ,M阶段的物种丰富度达到最大 ,D阶段则最小。  相似文献   

2.
3.
Predation is a key determinant of prey community structure, but few studies have measured the effect of multiple predators on a highly diverse prey community. In this study, we asked whether the abundance, species richness, and species composition of a species‐rich assemblage of termites in an Amazonian rain forest is more strongly associated with the density of predatory ants or with measures of vegetation, and soil texture and chemistry. We sampled termite assemblages with standardized hand‐collecting in 30 transects arranged in a 5 km × 6 km grid in a terra firme Amazonian rain forest. For each transect, we also measured vegetation structure, soil texture, and soil phosphorus, and estimated the density of predatory ants from baits, pitfall traps, and Winkler samples. Seventy‐nine termite species were recorded, and the total density of predatory ants was the strongest single predictor of local termite abundance (r = ?0.66) and termite species richness (r = ?0.44). In contrast, termite abundance and species richness were not strongly correlated with edaphic conditions (¦r¦ < 0.01), or with the density of non‐predatory ants (rabund = ?0.27; rs = ?0.06). Termite species composition was correlated with soil phosphorus content (r = 0.79), clay content (r = ?0.75), and tree density (r = ?0.42). Assemblage patterns were consistent with the hypothesis that ants collectively behaved as generalist predators, reducing total termite abundance, and species richness. There was no evidence that ants behaved as keystone predators, or that any single termite species benefited from the reduction in the abundance of potential competitors.  相似文献   

4.
Tree size, density, and species richness were established for three one-hectare plots of terra firme forest in central Amazonian Brazil. In the three hectares, 1916 individual trees with DBH 10 cm were sampled. A total of 58 families, 181 genera, and 513 species were determined. Hectare A had 285 species, 138 genera, and 47 families; hectare B 280 species, 123 genera, and 48 families; and hectare C 280 species, 125 genera, and 44 families. Comparably high species richness in Amazonia has heretofore only been reported from western Amazonia. This dispels the idea that high species richness can only develop in areas with rich soils and relatively high rainfall. It is suggested that such high species richness is the result of a combination of habitat heterogeneity and geological history. These high diversity forests, because they occur on nutrient poor soils, can be protected with little or no impact on development in the region because the soils are essentially useless for agriculture and for supporting long-term cattle pasture.  相似文献   

5.
用巴拿马50 hm2森林动态监测样地内直径≥1 cm的树种资料,分析了该样地树种多度(个体数)和丰富度(物种数)及其方差和变异系数在6个取样尺度(5 m×5 m,10 m×10 m,20 m×20 m,25 m×25 m,50 m×50 m,100 m×100 m)的变化规律.结果显示:(1)由于多度的可加性,不同取样尺度在样地内树种多度的变化表现出一致性;随取样尺度的增加,多度方差呈线性增加,而变异系数呈线性减小.(2)丰富度随取样尺度的变化较为复杂,随取样尺度的增加,丰富度方差呈非线性变化,在取样尺度为25 m×25 m时方差最大;变异系数随取样尺度的增加而呈线性减小.研究表明,大尺度的多度值可以由小尺度的多度值通过外推法估计,而丰富度却不能,在生物多样性的保护和管理中不能简单地从一个取样尺度的生物丰富度推测另一个取样尺度丰富度.  相似文献   

6.
Most phenological studies to date have taken place in upland forest above the maximum flood level of nearby streams and rivers. In this paper, we examine the phenological patterns of tree assemblages in a large Amazonian forest landscape, including both upland (terra firme) and seasonally flooded (várzea and igapó) forest. The abundance of vegetative and reproductive phenophases was very seasonal in all forests types. Both types of flooded forest were more deciduous than terra firme, shedding most of their leaves during the inundation period. Pulses of new leaves occurred mainly during the dry season in terra firme, whereas those in the two floodplain forests were largely restricted to the end of the inundation period. Flowering was concentrated in the dry season in all forest types and was strongly correlated with the decrease in rainfall. The two floodplain forests concentrated their fruiting peaks during the inundation period, whereas trees in terra firme tended to bear fruits at the onset of the wet season. The results suggest that the phenological patterns of all forest types are largely predictable and that the regular and prolonged seasonal flood pulse is a major determinant of phenological patterns in várzea and igapó, whereas rainfall and solar irradiance appear to be important in terra firme. The three forest types provide a mosaic of food resources that has important implications for the conservation and maintenance of wide‐ranging frugivore populations in Amazonian forests.  相似文献   

7.
Global changes and associated droughts, heat waves, logging activities, and forest fragmentation may intensify fires in Amazonia by altering forest microclimate and fuel dynamics. To isolate the effects of fuel loads on fire behavior and fire‐induced changes in forest carbon cycling, we manipulated fine fuel loads in a fire experiment located in southeast Amazonia. We predicted that a 50% increase in fine fuel loads would disproportionally increase fire intensity and severity (i.e., tree mortality and losses in carbon stocks) due to multiplicative effects of fine fuel loads on the rate of fire spread, fuel consumption, and burned area. The experiment followed a fully replicated randomized block design (N = 6) comprised of unburned control plots and burned plots that were treated with and without fine fuel additions. The fuel addition treatment significantly increased burned area (+22%) and consequently canopy openness (+10%), fine fuel combustion (+5%), and mortality of individuals ≥5 cm in diameter at breast height (dbh; +37%). Surprisingly, we observed nonsignificant effects of the fuel addition treatment on fireline intensity, and no significant differences among the three treatments for (i) mortality of large trees (≥30 cm dbh), (ii) aboveground forest carbon stocks, and (iii) soil respiration. It was also surprising that postfire tree growth and wood increment were higher in the burned plots treated with fuels than in the unburned control. These results suggest that (i) fine fuel load accumulation increases the likelihood of larger understory fires and (ii) single, low‐intensity fires weakly influence carbon cycling of this primary neotropical forest, although delayed postfire mortality of large trees may lower carbon stocks over the long term. Overall, our findings indicate that increased fine fuel loads alone are unlikely to create threshold conditions for high‐intensity, catastrophic fires during nondrought years.  相似文献   

8.
Despite potential interactive effects of plant species and genotypic diversity (SD and GD, respectively) on consumers, studies have usually examined these effects separately. We evaluated the individual and combined effects of tree SD and mahogany (Swietenia macrophylla) GD on the arthropod community associated with mahogany. We conducted this study within the context of a tree diversity experiment consisting of 74 plots with 64 saplings/plot. We sampled 24 of these plots, classified as monocultures of mahogany or polycultures of four species (including mahogany). Within each plot type, mahogany was represented by either one or four maternal families. We surveyed arthropods on mahogany and estimated total arthropod abundance and species richness, as well as abundance and richness separately for herbivorous and predatory arthropods. Overall tree SD and mahogany GD had positive effects on total arthropod species richness and abundance on mahogany, and also exerted interactive effects on total species richness (but not abundance). Analyses conducted by trophic level group showed contrasting patterns; SD positively influenced herbivore species richness but not abundance, and did not affect either predator richness or abundance. GD influenced predator species richness but not abundance, and did not influence herbivore abundance or richness. There were interactive effects of GD and SD only for predator species richness. These results provide evidence that intra‐ and inter‐specific plant diversity exert interactive controls on associated consumer communities, and that the relative importance of SD and GD may vary among higher trophic levels, presumably due to differences in the underlying mechanisms or consumer traits.  相似文献   

9.
10.
We tested if logging enhances the recruitment of tree species by comparing young tree density in areas disturbed by logging with areas unaffected by logging 6 mo after logging in two Forest Reserves in Ghana. Analysis of 46 commercial timber species showed significantly higher postlogging recruitment in felling gaps and skid trails than in areas unaffected by logging. New seedlings substantially exceeded those lost due to logging operations. Species richness was significantly greater in areas disturbed by logging.  相似文献   

11.
西双版纳热带季节雨林的树种组成和群落结构动态   总被引:2,自引:0,他引:2  
胡跃华  曹敏  林露湘 《生态学报》2010,30(4):949-957
研究了西双版纳热带季节雨林1 hm2(hectare)动态监测样地1993年与2007年之间树种组成和群落结构的变化。对样地中胸径≥5 cm的乔木进行了每木调查。目前其树种组成的热带分布科、属所占比例分别为91%和94%,具有较高比例的热带植物区系性质。在1993年与2007年两次调查之间,树种数量由145种增至179种,仅有1到2个个体的稀有树种所占比例从54%降为51.1%。从森林的垂直结构来看,A、B、C三层的个体死亡率分别为12.8%、12.9%和19.0%,各层树木的增长率分别为-8.5%、-1.4%和44.8%。与此相对应,C层小径级的树木所占比例有较大提高。虽然小径级的树木在种类和数量上比例增大,但个体数量和种类组成相对稳定的A、B层优势树种变化不大,维持了群落结构的稳定性。14 a间,群落中新增加的具有先锋性质的树种不超过5个。1993年时,A、B两层尚有先锋树种存在,2007年已经从A、B两层中退出。因此,从14 a间树种组成和群落结构的变化来看,虽然具有树木的死亡和增补,但其物种成分和群落结构的总体格局没有明显的变化,处于动态平衡过程中。  相似文献   

12.
We studied the spatial heterogeneity of tree diversity, and of forest structure and productivity in a highly diverse tropical mountain area in southern Ecuador with the aim of understanding the causes of the large variation in these parameters. Two major environmental gradients, elevation and topography, representing a broad range of climatic and edaphic site conditions, were analyzed. We found the highest species richness of trees in valleys <2100 m. Valleys showed highest values of basal area, leaf area index and tree basal area increment as well. Tree diversity also increased from ridges to valleys, while canopy openness decreased. Significant relationships existed between tree diversity and soil parameters (pH, total contents of Mg, K, Ca, N and P), and between diversity and the spatial variability of pH and Ca and Mg contents suggesting a dependence of tree diversity on both absolute levels and on the small-scale heterogeneity of soil nutrient availability. Tree diversity and basal area increment were positively correlated, partly because both are similarly affected by soil conditions. We conclude that the extraordinarily high tree species richness in the area is primarily caused by three factors: (1) the existence of steep altitudinal and topographic gradients in a rather limited area creating a small-scale mosaic of edaphically different habitats; (2) the intermingling of Amazonian lowland plant species, that reach their upper distribution limits, and of montane forest species; and (3) the geographical position of the study area between the humid eastern Andean slope and the dry interandean forests of South Ecuador.  相似文献   

13.
Vascular epiphytes represent a highly diverse element of tropical rain forests, but they depend strongly on the structure and taxonomic composition of their tree communities. For conservation planning, it is therefore critical to understand the effect of host tree characteristics on epiphyte species richness in natural and anthropogenically transformed vegetation. Our study compares the effect of human land‐use on epiphyte diversity based on 220 study plots in a lowland rain forest and an Andean cloud forest in western Ecuador. We evaluate the relevance of host tree size and taxonomic identity for epiphyte species richness in contiguous primary forests, forest fragments, isolated remnant trees (IRTs), and secondary forests. At both study sites, epiphyte diversity was highest in primary forests, and it was lowest on IRTs and in secondary forests. Epiphyte species numbers of forest fragments were significantly reduced compared with the contiguous primary forest at the lowland study site, but not in the cloud forest area. Host tree size was a core predictor among secondary forests, but it had less significance within other habitat types. Taxonomic identity of the host trees also explained up to 61 percent of the variation in epiphyte diversity, especially for IRTs. The structural and taxonomic composition of the tree community in anthropogenically transformed habitat types proved to be fundamental to epiphyte diversity. This highlights the importance of deliberate selection of tree species for reforestation in conservation programs and the possible negative effects of selective logging in primary forests. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

14.
对韶关市小坑林场的山杜英Elaeocarpus sylvestris、樟树Cinnamomum camphora、黧蒴Castanopsis fissa、红椎Castanopsis hystrix和火力楠Michelia macclurei纯林的林下植被多样性进行研究。结果表明,山杜英林、樟树林、黧蒴林、红椎林、火力楠林下灌木层分别有12、7、16、10、9种植物,草本层分别有13、11、12、14、20种植物。5种阔叶林样地的物种多样性存在差异, 部分灌木层的物种多样性高于草本层的多样性。山杜英林灌木层的Shannon-Wiener多样性指数及均匀度指数(Jsw和Jsi)分别为2.51、0.70、0.86,高于其他树种的灌木层多样性指数,表明林分种类在林下植物分布格局中起着重要作用,山杜英林有利于林下植物的发育。  相似文献   

15.
Rivers in central Amazonia experience annual water-level fluctuations of up to 14m, flooding vast areas of adjacent forest for periods ranging from a few to 270 days per year. At different sites, variation in the duration and type of flooding results in a mosaic of habitats that includes lakes, grasslands, forests, and streams. To study the effects of flood duration on plant species richness and floristic composition, two river margin sites were surveyed on the rivers Jaú and Tarumã-Mirim. Both areas are seasonally flooded by blackwaters, and plots were made at different topographic levels (lower, middle and upper slopes). All woody plants with DBH>5cm were inventoried in five 10 × 40m plots in each of the three topographic levels, which varied in length of flood duration and mean water level. Plant species richness did not vary significantly between topographic levels, but species composition varied substantially. At both study sites, the species composition exhibited distinctive distribution patterns with respect to the three topographic levels and river site. Differences in the distribution of dominant species in both sites probably relate to the ability of species to withstand seasonal flooding, although other edaphic factors associated with the topographic levels may also be important, especially for less-dominant, locally rare, and habitat generalist species. Species composition overlap among topographic levels at the two sites was highly variable ranging from 15% to 43%. Knowledge about the complex pattern of species composition and distributions between and among topographic levels and river sites is important for the preservation of the diverse flora of the blackwater forests and for the creation of future conservation management plans and design of protected areas in this ecosystem that will maintain the biodiversity.  相似文献   

16.
Enumeration of a one hectare plot at 900 m a.s.l in Papua New Guinea revealed 693 individuals of 228 tree and liana species ≥ 10 cm DBH. A 0.1 hectare subplot contained 302 individuals of 106 species 2.5 ≥ DBH < 10 cm. Lauraceae, Moraceae, and Myristicaceae were the most important families in both size classes. This site is very diverse compared with other tropical forests, and like other species-rich sites worldwide, it has high aseasonal rainfall and high rates of natural disturbance.  相似文献   

17.
Our understanding of geographic patterns of species diversity and the underlying mechanisms is increasing rapidly, whereas the temporal variation in these patterns remains poorly understood. We examined the seasonal species richness and species turnover patterns of non‐volant small mammals along three subtropical elevational gradients in southwest China. Small mammal diversity was surveyed in two seasons (early wet season and late wet season) using a standardized sampling protocol. The comparison of species richness patterns between two seasons indicated a temporal component in magnitude and shape, with species richness at high elevations clearly increased during the late wet season. Species richness demonstrated weak correlations with modelled temperature and precipitation. The elevational pattern of species turnover measured by Chao‐Sørenson similarity index also changed seasonally, even though the temporal pattern varied with scale. Species turnover between neighboring elevations at high elevations was slower in the late wet season. Meanwhile, there was an acceleration of species turnover along the whole range of the gradient. The seasonal change in species diversity patterns may be due to population‐level increases in abundance and elevational migration, whereas seasonal variation in factors other than temperature and precipitation may play a greater role in driving seasonal diversity patterns. Our study strongly supports the seasonality in elevational patterns of small mammal diversity in subtropical montane forests. Thus it is recommended that subsequent field surveys consider temporal sampling replicate for elevational diversity studies.  相似文献   

18.
If secondary succession can accumulate species rapidly, then tropical secondary forests may have an important role to play in the conservation of biodiversity. Data on the floristic composition of forest stands in the Central Catchment Nature Reserve, Singapore, have been analysed to investigate the diversity of approximately 100-year-old tropical secondary forest. Classification using TWINSPAN indicated that three floristic communities could be recognized from 59 0.2 ha plots enumerated for trees >30 cm gbh. These were two types of secondary forest, both dominated by Rhodamnia cinerea (Myrtaceae), and dryland primary forest. The secondary forest was developed on land abandoned after use for agriculture at the end of the 19th century. The 16 primary forest plots contained a total of 340 species, more than the 281 recorded from the 43 plots of the two secondary forest types combined. The mean species number per plot in the more diverse of the two secondary forests was only about 60% of the primary forest. Thus the secondary forest, despite a century or so for colonization by species and the presence of contiguous primary forest, was still significantly less diverse than primary forest areas. It is concluded that secondary forest cannot be assumed to accrete biodiversity rapidly in the tropics, and may not be of direct value in conservation. However, other indirect roles, such as providing resources for native animals, and buffering and protecting primary forest fragments may make the protection of secondary forest worthwhile.  相似文献   

19.
大气氮沉降或人类活动导致生态系统氮输入增加,可能会提高土壤氮含量水平,促进优势种的生长和减少环境异质性,从而使物种共存的生态位减少,群落物种多样性降低。为研究土壤氮含量的增加对森林群落乔木树种多样性的影响,本研究在西双版纳热带季节雨林随机设置了14个1 ha的样方,对各样方土壤总氮( TN)含量、乔木树种丰富度以及西双版纳热带季节雨林20 ha动态监测样地中各样方乔木树种及建群种望天树( Parashorea chinensis)生物量进行了调查。结果表明:土壤氮含量与乔木树种丰富度具有显著负相关而与群落及建群种望天树生物量具有显著正相关。我们推测其机制可能是:土壤氮含量增加促进了建群种望天树等的生长及群落生物量的积累,减少树种共存的生态位,由于竞争排斥等原因而导致群落树种丰富度降低。因此,减少生态系统人为氮输入,对于保护西双版纳热带季节雨林乔木树种多样性具有重要意义。  相似文献   

20.
Diversity of arboreal carabid beetles was sampled by fumigation in 100 3 × 3 m stations within a 100 × 1000 m terra firme forest plot in Ecuadorian Amazonia. Nine sampling dates from January 1994 to October 1996 yielded 2329 individuals belonging to 318 species of which more than 50 percent were undescribed species. A high percentage of the species sampled were rare; the proportion that occurred once per sampling date (singletons) ranged from 50.0 to 62.5 percent. Estimates of species richness were from 82 to 282 species of arboreal carabids in the study plot on a given sampling date. Most richness values were greater than 173 species. Species accumulation curves attained asymptotes for all but one sampling date, indicating that an adequate level of sampling effort was used to characterize the diversity of carabid fauna. Total accumulation curves based on pooled data failed to reach asymptotes. There was a high turnover in species composition between sampling dates; less than 50 percent of the species between the majority of sampling dates were shared, suggesting that the total species pool may be extremely large. Although species composition changed seasonally, species richness varied little. Spatial autocorrelation analysis revealed that the structure of this species assemblage was significantly patterned at distances below 280 m. Taken together, the large percentage of undescribed species, die failure of the overall species accumulation curves to level off, and the high turnover in species composition indicate that the species diversity of carabid beetles is far higher than previously thought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号