首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1 We investigated the effects of grazing by black brant geese on Carex subspathacea lawns on the Yukon-Kuskokwim delta, Alaska.
2 We compared variation in growth and forage quality in both grazed and temporarily exclosed sites to determine responses of C. subspathacea to grazing at landscape scales within two nesting colonies that had experienced different population dynamics over recent decades.
3 Landscapes differed in forage quality, grazing patterns, and in the effect grazing had on C. subspathacea forage characteristics. We found no effect of grazing on net above-ground primary productivity ( NAPP ) over a wide range of natural grazing intensities at the landscape scale.
4 No differences in forage quality, NAPP , or response of C. subspathacea growth rates to grazing pressures could be detected between colonies. This suggests that goose grazing does not have deleterious effects on C. subspathacea in this ecosystem.
5 It has been suggested that gosling growth rates are sensitive to seasonal declines in forage availability and quality. Spatial variation in forage quality and availability per sampled area exceeded seasonal variation in these characteristics and is likely to have dramatic effects on gosling growth and recruitment rates.  相似文献   

2.
The abundance of greater white-fronted geese (Anser albifrons frontalis) on the Arctic Coastal Plain (ACP) of northern Alaska, USA, has more than tripled since the late 1990s; however, recent rate of annual population growth has declined as population size increased, which may indicate white-fronted geese on the ACP are approaching carrying capacity. We examined rates of gosling growth in greater white-fronted geese at 3 sites on the ACP during 2012–2014 to assist with predictions of future population trends and assess evidence for density-dependent constraints on recruitment. We marked goslings at hatch with individually coded webtags and conducted brood drives during early August to capture, measure, and weigh goslings. Annual estimates of gosling mass at 32 days old (range = 1,190–1,685) indicate that goslings had obtained >60% of asymptotic size. This rate of growth corresponds with that of other goose species and populations with access to high-quality forage and no limitations on forage availability, and is consistent with the overall increase in abundance of white-fronted geese at the ACP scale. Contrary to most previous investigations, age-adjusted mass of goslings did not decline with hatch date. Goslings grew faster in coastal areas than at inland freshwater sites. Taken together, these findings suggest forage was not limiting gosling growth rates in either ecosystem, but forage was of greater quality in coastal areas where goose foraging habitat is expanding because of permafrost subsidence. Spatial patterns of gosling growth corresponded with local-scale patterns of population density and population change; the areas with greatest rates of gosling growth were those with the greatest population density and rates of population increase. We found little evidence to suggest forage during brood rearing was limiting population increase of white-fronted geese on the ACP. Factors responsible for the apparent slowing of ACP-wide population growth are likely those that occur in stages of the annual cycle outside of the breeding grounds. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

3.
We conducted extensive behavioral and food sampling of Atlantic brant (Branta bernicla hrota) across their winter range and used time–activity budgets for brant to determine daily energy expenditure (DEE). Sampling occurred 1 December–31 May 2006–2008 in 11,225-km2 sites between Rhode Island and Virginia containing important estuarine and upland habitat. To calculate DEE we used instantaneous scan sampling to estimate time–activity budgets. We also determined foods eaten by brant and energy density of food plants. Last, we quantified body condition of brant, which differed among years, months, regions, and ages, and sexes. Overall DEE for brant was 1,530 ± 64 kJ/day. There was considerable variation in time–activity budgets among years, months, regions, habitat, tide, temperature, and time-of-day, but we detected no significant difference in DEE of brant between years or among regions. However, DEE in January (2,018 ± 173 kJ/day) was nearly double the DEE of brant in May (1,048 ± 137 kJ/day). Brant spent their time feeding (32.3%), swimming (26.2%), resting (16.2%), and flying (14.5%). The percent of brant foreguts sampled contained macroalgae (53%) eelgrass (Zostera marina; 18%), salt marsh cordgrass (Spartina alterniflora; 17%), and terrestrial grass (Poa. sp.) and clover (Trifollium sp.; 9%). Energy density differed by vegetation type: macroalgae (12.6 ± 0.1 kJ/g), eelgrass (14.1 ± 0.1 kJ/g), new-growth salt marsh cordgrass (16.9 ± 0.2 kJ/g), and terrestrial grass and clover (17.7 ± 0.1 kJ/g). Atlantic brant exhibited behavioral plasticity thereby allowing modification of daily activity budgets to meet seasonally varying energetic requirements associated with wintering and spring staging. Recognizing a variable DEE can be used along with eventual estimates of food biomass and total metabolizable energy on the landscape to calculate carrying capacity (goose use days) on state, region, or range-wide scales. © 2011 The Wildlife Society.  相似文献   

4.
Changes in ecological conditions can induce changes in behavior and demography of wild organisms, which in turn may influence population dynamics. Black brant (Branta bernicla nigricans) nesting in colonies on the Yukon–Kuskokwim Delta (YKD) in western Alaska have declined substantially (~50%) since the turn of the century. Black brant are herbivores that rely heavily on Carex subspathacea (Hoppner's sedge) during growth and development. The availability of C. subspathacea affects gosling growth rates, which subsequently affect pre‐ and postfledging survival, as well as size and breeding probability as an adult. We predicted that long‐term declines in C. subspathacea have affected gosling growth rates, despite the potential of behavior to buffer changes in food availability during brood rearing. We used Bayesian hierarchical mixed‐effects models to examine long‐term (1987–2015) shifts in brant behavior during brood rearing, forage availability, and gosling growth rates at the Tutakoke River colony. We showed that locomotion behaviors have increased (β = 0.05, 95% CRI: 0.032–0.068) while resting behaviors have decreased (β = ?0.024, 95% CRI: ?0.041 to ?0.007), potentially in response to long‐term shifts in forage availability and brood density. Concurrently, gosling growth rates have decreased substantially (β = ?0.100, 95% CRI: ?0.191 to ?0.016) despite shifts in behavior, mirroring long‐term declines in the abundance of C. subspathacea (β = ?0.191, 95% CRI: ?0.355 to ?0.032). These results have important implications for individual fitness and population viability, where shifts in gosling behavior putatively fail to mitigate long‐term declines in forage availability.  相似文献   

5.
From 1976 onward, molting brant geese (Branta bernicla) within the Teshekpuk Lake Special Area, Alaska, shifted from inland, freshwater lakes toward coastal wetlands. Two hypotheses explained this redistribution: (1) ecological change: redistribution of molting brant reflects improvements in coastal foraging habitats, which have undergone a succession toward salt-tolerant plants due to increased coastal erosion and saltwater intrusion as induced by climate change or (2) interspecific competition: greater white-fronted geese (Anser albifrons) populations increased 12-fold at inland lakes, limiting food availability and forcing brant into coastal habitats. Both hypotheses presume that brant redistributions were driven by food availability; thus, body mass dynamics may provide insight into the relevance of these hypotheses. We compared body mass dynamics of molting brant across decades (1978, 1987–1992, 2005–2007) and, during 2005–2007, across habitats (coastal vs. inland). Brant lost body mass during molt in all three decades. At inland habitats, rates of mass loss progressively decreased by decade despite the increased number of greater white-fronted geese. These results do not support an interspecific competition hypothesis, instead suggesting that ecological change enhanced foraging habitats for brant. During 2005–2007, rates of mass loss did not vary by habitat. Thus, while habitats have improved from earlier decades, our results cannot distinguish between ecological changes at inland versus coastal habitats. However, we speculate that coastal forage quality has improved beyond that of inland habitats and that the body mass benefits of these higher quality foods are offset by the disproportionate number of brant now molting coastally.  相似文献   

6.
We examined individual heterogeneity in survival and recruitment of female Pacific black brant (Branta bernicla nigricans) using frailty models adapted to a capture–mark–recapture context. Our main objectives were (1) to quantify levels of heterogeneity and examine factors affecting heterogeneity, and (2) model the effects of individual heterogeneity on harvest dynamics through matrix models. We used 24 years of data on brant marked and recaptured at the Tutakoke River colony, AK. Multievent models were fit as hidden Markov chain using program E‐SURGE with an adequate overdispersion coefficient. Annual survival of individuals marked as goslings was heterogeneous among individuals and year specific with about 0.23 difference in survival between “high” (0.73)‐ and “low” (0.50)‐quality individuals at average survival probability. Adult survival (0.85 ± 0.004) was homogeneous and higher than survival of both groups of juveniles. The annual recruitment probability was heterogeneous for brant >1‐year‐old; 0.56 (±0.21) and 0.31 (±0.03) for high‐ and low‐quality individuals, respectively. Assuming equal clutch sizes for high‐ and low‐quality individuals and that 80% of offspring were in the same quality class as the breeding female resulted in reproductive values about twice as high for high‐quality individuals than low‐quality individual for a given class of individuals producing differential contributions to population growth among groups. Differences in reproductive values greatly increased when we assumed high‐quality individuals had larger clutch sizes. When we assumed that 50% of offspring were in the same quality class as their mothers and clutches were equal, differences in reproductive values between quality classes were greatly reduced or eliminated (breeders [BRs]). We considered several harvest scenarios using the assumption that 80% of offspring were in the same quality class as their mothers. The amount of compensation for harvest mortality declined as the proportion of high‐quality individuals in the harvest increased, as differences in clutch sizes between groups decreased and as the proportion of BRs in the harvest increased. Synthesis and applications. Harvest at the same proportional level of the overall population can result in variable responses in population growth rate when heterogeneity is present in a population. λ was <1.0 under every scenario when harvest rates were >10%, and heterogeneity caused as much as +2% difference in growth rates at the highest levels of proportional harvest for low‐quality individuals and the greatest differences in qualities between classes of individuals, a critical difference for a population with λ near 1.0 such as the brant. We observed less response in overall survival in the presence of heterogeneity because we did not observe heterogeneity in the annual survival of BRs. This analysis provides a comprehensive view of overall compensation at the population level and also constitutes the first example of a survival‐recruitment model with heterogeneity. Individual heterogeneity should be more explicitly considered in harvest management of vertebrates.  相似文献   

7.
Body mass declines during wing moult in numerous, but not all, populations of Anatidae. We assessed two leading hypotheses for body mass dynamics during wing moult: (1) body mass dynamics are adapted to attain a target body mass at the end of wing moult (restraint hypothesis) vs. (2) body mass dynamics reflect environmental constraint on the nutrient–energy balance during wing moult (constraint hypothesis). We used regressions of mass of breeding female Black Brant Branta bernicla nigricans on ninth primary length (a measure of moult stage) for each of 16 years to assess mass dynamics during wing moult and used regression equations to predict mass at the beginning and end of wing moult each year. We also included gosling mass at 30 days (an indicator of forage availability) in models of adult mass to assess how mass dynamics varied as a function of foraging conditions. Predicted body mass (± 95% CI) at the start of wing moult (ninth primary = 0 mm) varied significantly among years from 1032 ± 52 to 1169 ± 27 g. Similarly, predicted mass in late wing moult (ninth primary = 142 mm) ranged from 1048 ± 25 to 1222 ± 28 g. The rate of mass gain was significantly related to gosling mass at 30 days: interaction between adult ninth primary length and gosling mass = 0.0031 ± 0.0020 (P = 0.003). Females initiated wing moult at lower body masses, gained mass more rapidly and ended with wing moult heaviest when goslings were heaviest. Body mass dynamics of female Black Brant during wing moult were consistent with the constraint hypothesis. The positive association between gosling mass and rate of body mass gain by adult females during wing moult was also consistent with the constraint hypothesis.  相似文献   

8.
Offspring birth mass and growth rate represent important life history traits, which influence many vital population and individual characteristics, while offspring survival is a key factor in variation in female reproductive success. For a threatened population of pinnipeds, such as New Zealand sea lions, Phocarctos hookeri, (Grey, 1844, NZ sea lions), understanding individual life history parameters and population dynamics is vital for their management and conservation. This is the first study of the behaviour of females during parturition, pup birth mass and growth, and pre-weaning survival of NZ sea lions, Enderby Island, Auckland Islands during austral summer breeding seasons, 2001/2002 to 2003/2004. Pregnant females arrived ashore 2.1 ± 0.16 days prior to giving birth. After parturition, mothers suckled their pups for 8.6 ± 0.16 days before leaving on their first foraging trip. Male pups were born significantly heavier than female (males 10.6 ± 1.4 kg, females 9.7 ± 0.9 kg). Pups lost on average 48 ± 0.14 g per day mass during the early postpartum period (between birth and mothers first foraging trip). Pup mortality did not vary by pup sex, birth mass, date of birth or any maternal characteristics however it varied significantly between years due to a bacterial infection epidemic (Pup mortality at 60 days: 2001 32%; 2002 21%; 2003 12%). The absolute growth rate per day for pups was 151 g/day over all years. Pup growth rate measured as the slope of linear line fitted to pup mass by age was consistently higher for pups with heavier birth mass, male pups and during the 2002 season. High offspring mortality and slow growth rates coupled with maternal foraging behaviour at their physiological limits may reflect a threatened species which has limited ability for population growth in an environment which is at the extreme of their historical range and impacted upon by fisheries.  相似文献   

9.
Ants use a great variety of recruitment methods to forage for food or find new nests, including tandem running, group recruitment and scent trails. It has been known for some time that there is a loose correlation across many taxa between species-specific mature colony size and recruitment method. Very small colonies tend to use solitary foraging; small to medium sized colonies use tandem running or group recruitment whereas larger colonies use pheromone recruitment trails. Until now, explanations for this correlation have focused on the ants'' ecology, such as food resource distribution. However, many species have colonies with a single queen and workforces that grow over several orders of magnitude, and little is known about how a colony''s organization, including recruitment methods, may change during its growth. After all, recruitment involves interactions between ants, and hence the size of the colony itself may influence which recruitment method is used—even if the ants'' behavioural repertoire remains unchanged. Here we show using mathematical models that the observed correlation can also be explained by recognizing that failure rates in recruitment depend differently on colony size in various recruitment strategies. Our models focus on the build up of recruiter numbers inside colonies and are not based on optimality arguments, such as maximizing food yield. We predict that ant colonies of a certain size should use only one recruitment method (and always the same one) rather than a mix of two or more. These results highlight the importance of the organization of recruitment and how it is affected by colony size. Hence these results should also expand our understanding of ant ecology.  相似文献   

10.
Restoring historical disturbance regimes to enhance habitat for grassland birds can conflict with livestock production goals and has been controversial because of uncertainty in the frequency and pattern of different disturbances prior to European settlement. We studied nesting habitat for the mountain plover (Charadrius montanus) in relation to prescribed fire, grazing by large herbivores (cattle), and grazing by black-tailed prairie dogs (Cynomys ludovicianus) in the shortgrass steppe of northeastern Colorado. Breeding mountain plovers primarily occurred on black-tailed prairie dog colonies or areas burned during the previous dormant season. Vegetation surrounding mountain plover nests and foraging locations was characterized by a fine-scale mosaic of prostrate (<4 cm tall) vegetated patches interspersed with >35% bare soil in a given square meter, with this fine-scale pattern distributed over a broad (>100-m radius) area. Mountain plovers rarely occupied grassland lacking prairie dogs or recent fire, but those that did selected sites with similar vegetation height and bare soil exposure as sites on burns and prairie dog colonies. Vegetation structure at mountain plover-occupied sites was also similar to random sites on burns and prairie dog colonies, but differed substantially from sites managed only with cattle. Intensive cattle grazing at twice the recommended stocking rate during spring (Mar–May) or summer (May–Oct) for 6 years produced significantly less bare soil than burns and prairie dog colonies, particularly following years with average or above-average precipitation. Thus, intensive cattle grazing did not substitute for prairie dog grazing or fire in terms of effects on vegetation structure and mountain plover habitat. Both prescribed burning and increased size and distribution of black-tailed prairie dog colonies appear to be effective and complementary means to manage for mountain plover breeding habitat in shortgrass steppe. Provision of mountain plover habitat has tradeoffs with traditional management for livestock production. Thus, managers need to clearly define desired outcomes for management to provide multiple ecosystem goods and services. © 2012 The Wildlife Society.  相似文献   

11.
We used a robust dataset of count and mark-resighting data for Pacific black brant from 1989–2004, and a novel mark-recapture model capable of analyzing such data, to calculate the annual variability and timing of brant as they migrated through the Parksville–Qualicum Beach area, a traditional spring staging site in coastal British Columbia, Canada. Our analysis indicated that the date of departure from this site to northern breeding sites advanced between 10 and 20 days over this period because of a combination of earlier arrival and shorter residence times. Given this change in migration behavior, and the potential implications for population dynamics, we recommend that targeted research on brant wintering, migration, and reproductive strategies should be examined within a greater Pacific-wide context. In this way, the consequences of proximate factors (e.g., disturbance, food, and climate) can be understood in terms of individual fitness and population dynamics. Finally, at the local level, conservation actions are needed to ensure the long term sustainability of Parksville–Qualicum Beach as an important spring staging site for Pacific black brant. © 2011 The Wildlife Society.  相似文献   

12.
ABSTRACT We analyzed 53 years of banding and band recovery data along with estimates of harvest and population size to assess the role of harvest and density dependence in survival patterns and population dynamics of black brant (Branta bernicla nigricans) over the period 1950–2003. The black brant population has declined steadily since complete annual surveys began in 1960, so the role of harvest in the dynamics of this population is of considerable interest. We used Brownie models implemented in Program MARK to analyze banding data. In some models, we incorporated estimated sport harvest to test hypotheses about the role of harvest in survival. We also examined the hypothesis of density-dependent regulation of mortality by incorporating estimates of population size as a covariate into models of survival. For a shorter period (1985–2003), we also assessed hypotheses about the role of subsistence harvest and predation as sources of mortality. The best supported model of variation in survival and band recovery allowed survival rates to vary among 2 age classes (juv, second-yr plus ad brant) and the 2 sexes. We constrained survival probabilities to be constant within decades but allowed them to vary among decades. We also constrained band recovery rates to be constant within decades and to vary in parallel among age and sex classes. We were limited to decade-specific estimates of survival and band recovery rates because some years before 1984 lacked any banding, and banding in some other years was sparse. A competitive model constrained survival estimates to be the same for males and females. No model containing harvest or population size was competitive with models lacking these covariates (relative quasi-Akaike's Information Criterion adjusted for small sample size [βQAICc] > 13). In the best supported model, band recovery rates declined from 0.038 ± 0.0028 (F) and 0.040 ± 0.0031 (M) to 0.007 ± 0.0007 (F) and 0.007 ± 0.0007 (M) between the 1950s and 2000s, a clear indication that harvest rates declined over this period. Survival rates increased from 0.70 ± 0.02 and 0.71 ± 0.02 for adult males and females, respectively, in the 1950s to 0.88 ± 0.009 and 0.88 ± 0.01 for males and females, respectively, in the 1990s. Survival rates in the 1990s were among the highest estimated for brant and did not increase in the 2000s with additional reductions in sport harvest. For the shorter data set from 1985 to 2003, models containing covariates for either sport or subsistence harvest were less competitive than models lacking these terms (βQAICc > 3). For the best model containing subsistence harvest, the estimate of β linking subsistence harvest to survival, although imprecisely estimated, was near zero (β = −0.04 ± 0.30), consistent with the hypothesis that subsistence harvest had little impact on survival during this period. We conclude that while harvest likely influenced survival and population dynamics in earlier decades, it is most likely that continued population decline at least since 1990 is a result of low recruitment.  相似文献   

13.
Habitat selection and spatial usage are important components of animal behavior influencing fitness and population dynamic. Understanding the animal–habitat relationship is crucial in ecology, particularly in developing strategies for wildlife management and conservation. As this relationship is governed by environmental features and intra‐ and interspecific interactions, habitat selection of a population may vary locally between its core and edges. This is particularly true for central place foragers such as gray and harbor seals, where, in the Northeast Atlantic, the availability of habitat and prey around colonies vary at local scale. Here, we study how foraging habitat selection may vary locally under the influence of physical habitat features. Using GPS/GSM tags deployed at different gray and harbor seals’ colonies, we investigated spatial patterns and foraging habitat selection by comparing trip characteristics and home‐range similarities and fitting GAMMs to seal foraging locations and environmental data. To highlight the importance of modeling habitat selection at local scale, we fitted individual models to colonies as well as a global model. The global model suffered from issues of homogenization, while colony models showed that foraging habitat selection differed markedly between regions for both species. Despite being capable of undertaking far‐ranging trips, both gray and harbor seals selected their foraging habitat depending on local availability, mainly based on distance from the last haul‐out and bathymetry. Distance from shore and tidal current also influenced habitat preferences. Results suggest that local conditions have a strong influence on population spatial ecology, highlighting the relevance of processes occurring at fine geographical scale consistent with management within regional units.  相似文献   

14.
In 1998–2001, I studied disturbance effects on the population structure and dynamics of a grassland strict biennial Pedicularis sylvatica, and on the species demography (monthly dynamics of seedling recruitment in 1998 and within- and between-year survival in 1998–2000). In two Czech populations, I established three experimental disturbance regimes: (1) a gap treatment, that simulated grazing by clipping vegetation and creating small gaps, (2) a mowing treatment, where I clipped the vegetation, and (3) a no management treatment, where I left the vegetation untreated. The number of recruiting seedlings varied greatly by year, and demographic structure of populations showed significant year-to-year oscillations in mean seedling numbers, from low (3 ± 0.7 s.e. per 0.25 m2 plot) to high (103 ± 20). Inversely in the same years and plots, mean adult numbers in populations oscillated from high (12 ± 2) to low (0.7 ± 0.3). Disturbance effects were only important for seedling recruitment in early census dates in all years. In 1998, most seedlings recruited in April–May in gaps in both sites, but most died before winter. Within- and between-year survival was not affected by disturbance regimes but fluctuated significantly among years. Between-year survival increased with increasing size of the overwintering bud and was higher in disturbance treatments. Since the oscillations in population structure did not significantly vary in response to experimental disturbances, population dynamics may be driven endogenously rather than by disturbance events. The weak disturbance effects on species demography may also indicate population resilience to changes in habitat quality. However, since disturbances promoted seedling recruitment, grazing or mowing regimes are strongly recommended, as they create regeneration opportunities and maintain habitat quality, meeting the species long-term conservation goals.  相似文献   

15.
We studied the effects of grazing by Black Brant (Branta bernicla nigricans) geese (hereafter Brant) on plant community zonation and gosling growth between 1987 and 2000 at a nesting colony in southwestern Alaska. The preferred forage of Brant, Carex subspathacea, is only found as a grazing lawn. An alternate forage species, C. ramenskii, exists primarily as meadow but also forms grazing lawns when heavily grazed. We mowed plots of ungrazed C. ramenskii meadows to create swards that Brant could select and maintain as grazing lawns. Fecal counts were higher on mowed plots than on control plots in the year after plots were mowed. Both nutritional quality and aboveground biomass of C. ramenskii in mowed plots were similar to that of C. subspathacea grazing lawns. The areal extent of grazing lawns depends in part on the population size of Brant. High Brant populations can increase the areal extent of grazing lawns, which favors the growth of goslings. Grazing lawns increased from 3% to 8% of surface area as the areal extent of C. ramenskii meadows declined between 1991 and 1999. Gosling mass was lower early in this time period due to density dependent effects. As the goose population stabilized, and area of grazing lawns increased, gosling mass increased between 1993 and 1999. Because larger goslings have increased survival, higher probability of breeding, and higher fecundity, herbivore-mediated changes in the distribution grazing lawn extent may result in a numerical increase of the population within the next two decades.  相似文献   

16.
In populations of colony‐breeding marine animals, foraging around colonies can lead to intraspecific competition. This competition affects individual foraging behavior and can cause density‐dependent population growth. Where behavioral data are available, it may be possible to infer the mechanism of intraspecific competition. If these mechanics are understood, they can be used to predict the population‐level functional response resulting from the competition. Using satellite relocation and dive data, we studied the use of space and foraging behavior of juvenile and adult gray seals (Halichoerus grypus) from a large (over 200,000) and growing population breeding at Sable Island, Nova Scotia (44.0 oN 60.0 oW). These data were first analyzed using a behaviorally switching state‐space model to infer foraging areas followed by randomization analysis of foraging region overlap of competing age classes. Patterns of habitat use and behavioral time budgets indicate that young‐of‐year juveniles (YOY) were likely displaced from foraging areas near (<10 km) the breeding colony by adult females. This displacement was most pronounced in the summer. Additionally, our data suggest that YOY are less capable divers than adults and this limits the habitat available to them. However, other segregating mechanisms cannot be ruled out, and we discuss several alternate hypotheses. Mark–resight data indicate juveniles born between 1998 and 2002 have much reduced survivorship compared with cohorts born in the late 1980s, while adult survivorship has remained steady. Combined with behavioral observations, our data suggest YOY are losing an intraspecific competition between adults and juveniles, resulting in the currently observed decelerating logistic population growth. Competition theory predicts that intraspecific competition resulting in a clear losing competitor should cause compensatory population regulation. This functional response produces a smooth logistic growth curve as carrying capacity is approached, and is consistent with census data collected from this population over the past 50 years. The competitive mechanism causing compensatory regulation likely stems from the capital‐breeding life‐history strategy employed by gray seals. This strategy decouples reproductive success from resources available around breeding colonies and prevents females from competing with each other while young are dependent.  相似文献   

17.
Recruitment is a critical parameter governing population dynamics and influences population persistence. Understanding the drivers of recruitment is therefore important for conservation, especially for long‐lived mammals such as large carnivores, which have low reproductive rates, rendering them prone to extinction. Using cheetahs (Acinonyx jubatus) as a model species, I investigated the variation in cub recruitment in relation to habitat and the abundance of tourists and predators. Per litter, female cheetahs on average raised 1.71 ± 1.35 cubs to independence, but this varied depending on the presence of open habitat and the abundance of tourists, both of which had a negative effect on cub recruitment. More specifically, female cheetahs that were mostly found in open habitats on average raised 1.69 ± 0.14 cubs per litter to independence compared to 3.04 ± 0.26 cubs in denser habitat. Similarly, female cheetahs that were exposed to high tourist abundance on average raised 0.21 ± 0.72 cubs to independence compared to 2.32 ± 0.11 cubs in low tourism areas. Neither lion nor spotted hyaena abundance had an impact on the number of cubs that were recruited. Based on these findings, I recommend that the importance of a heterogeneous environment should be taken into consideration in habitat management, restoration efforts, and reintroduction programs. In addition, tourist quotas should be put in place in high visitation areas and strict wildlife viewing guidelines, such as number of vehicles, tourist behavior, time spent, and distance to a sighting, should be enforced. Cub recruitment is an important component of species persistence and incorporating these findings could aid conservation efforts for species that are increasingly under threat.  相似文献   

18.
To be successful, marine predators must alter their foraging behavior in response to changes in their environment. To understand the impact and severity of environmental change on a population it is necessary to first describe typical foraging patterns and identify the underlying variability that exists in foraging behavior. Therefore, we characterized the at‐sea behavior of adult female California sea lions (n = 32) over three years (2003, 2004, and 2005) using satellite transmitters and time‐depth recorders and examined how foraging behavior varied among years. In all years, sea lions traveled on average 84.7 ± 11.1 km from the rookery during foraging trips that were 3.2 ± 0.3 d. Sea lions spent 42.7% ± 1.9% of their time at sea diving and displayed short (2.2 ± 0.2 min), shallow dives (58.5 ± 8.5 m). Among individuals, there was significant variation in both dive behavior and movement patterns, which was found in all years. Among years, differences were found in trip durations, distances traveled, and some dive variables (e.g., dive duration and bottom time) as sea lions faced moderate variability in their foraging habitat (increased sea‐surface temperatures, decreased upwelling, and potential decreased prey abundance). The flexibility we found in the foraging behavior of California sea lions may be a mechanism to cope with environmental variability among years and could be linked to the continuing growth of sea lion populations.  相似文献   

19.
Reclamation of coal mine lands in the eastern United States creates pockets of grassland habitat in an otherwise predominantly forested region. These sites may represent an opportunity for pollinator conservation if they provide valuable foraging habitat for wild bees. To determine site characteristics that influence bee success on reclamation lands, we monitored growth and reproduction of 24 commercially reared bumble bee (Bombus impatiens) colonies placed on 12 former coal mines (aged 2 to 30+ years post‐reclamation) in Ohio, U.S.A. Twenty colonies survived the duration of the experiment (May–August 2014). All colonies produced both new queens (mean 21.0 ± 37.0 SD) and males (36.5 ± 36.5), in proportion to overall colony size. Results of generalized linear models indicate that colony growth and reproduction increased with floral diversity and species turnover, and declined with site area and the proportion of forest in the surrounding landscape. The sex ratio of reproductive offspring was significantly more male‐biased on sites with low flower diversity, underscoring the importance of floral diversity for meeting the higher resource demands of queen production. Floral resource composition and consistency were influenced by site age and surrounding landscape. Older sites had higher floral diversity and species turnover throughout the season than younger sites, and included high‐quality native bee forage plants. We discuss the implications of this study for reclamation project managers seeking to promote bee reproduction and conservation.  相似文献   

20.
Ceratozamia zaragozae has been considered to be the most threatened cycad species in its genus since only 50 individuals were reported for the only known population in the state of San Luis Potosí, México. In this report we present information on newly discovered populations, as well as data on their population structure and spatial distribution. Six different populations were found, one of which is located in a Natural Protected Area. Population density was low (0.05 ± 0.038 ind/m2) and populations exhibited an unconventional ecological affinity for the genus, occurring on igneous soils in oak and pine-oak forests at elevations over 2000 m. Populations showed heterogeneous growth rates (λ = 0.89 ± 0.49). Spatial clustering patterns in all populations indicated adequate recruitment, low survival of juveniles, and spatial dependence between seedlings/juveniles and reproductive adults. We recommend the ex-situ cultivation of the species and the establishment of corridors between areas of habitat, in order to secure the preservation of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号