首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
Acetobacter diazotrophicus possesses a pyrroloquinoline quinone-linked glucose dehydrogenase (PQQ-GDH). The enzyme seemingly belongs to the type II PQQ-GDH enzymes and, at least under the culture conditions tested, the organism synthesizes enough PQQ to saturate the apo-enzyme. The synthesis of this enzyme is stimulated when the organism is grown under N2-fixing conditions. It is proposed that this enzyme may play an important role in providing extra energy in N2-fixing cells.  相似文献   

2.
We are studying the enzymatic modification of polycyclic aromatic hydrocarbons (PAHs) by the laccase from Coriolopsis gallica UAMH 8260. The enzyme was produced during growth in a stirred tank reactor to 15 units ml−1, among the highest levels described for a wild-type fungus; the enzyme was the major protein produced under these conditions. After purification, it exhibited characteristics typical of a white rot fungal laccase. Fifteen azo and phenolic compounds at 1 mM concentration were tested as mediators in the laccase oxidation of anthracene. Higher anthracene oxidation was obtained with the mediator combination of ABTS and HBT, showing a correlation between the oxidation rate and the mediator concentration. Reactions with substituted phenols and anilines, conventional laccase substrates, and PAHs were compared using the native laccase and enzyme preparations chemically modified with 5000 MW-poly(ethylene glycol). Chemically modified laccase oxidized a similar range of substituted phenols as the native enzyme but with a higher catalytic efficiency. The k cat increase by the chemical modification may be as great as 1300 times for syringaldazine oxidation. No effect was found of chemical modification on mediated PAH oxidation. Both unmodified and PEG-modified laccases increased PAH oxidation up to 1000 times in the presence of radical mediators. Thus, a change of the protein surface improves the mediator oxidation efficiency, but does not affect non-enzymatic PAH oxidation by oxidized mediators. Received 10 December 2001/ Accepted in revised form 20 July 2002  相似文献   

3.
Gluconacetobacter diazotrophicus was grown in chemostat under N2-fixing conditions at different culture pH values (from 2.5 to 7.5) with glucose as the C-source. Maximum glucose and oxygen utilization yields were observed at pH values between 5.0 and 6.5. Yields, although lower, were not severely affected at acidic (2.5–4.5) and moderate alkaline (7.5) pH values. But, at pH values just over 7.5, cultures became unstable and washed out. Maximum biomass yields coincided with optimal activity (and minimal synthesis) of pyrroloquinoline quinone (PQQ)-linked glucose dehydrogenase (PQQ-GDH). At external pH values of 7.0 and above, whereas PQQ-GDH was actively synthesized, a very low in situ activity could be detected. The lack of PQQ-GDH activity at moderate alkaline pH values seems to be the cause of lack of growth of this organism under these conditions.  相似文献   

4.
Microbial theophylline oxidase (ThOx) is a redox enzyme catalysing 8-hydroxylation of theophylline to form 1,3-dimethyluric acid. In this work, ThOx has been characterized as a fragile haem-containing protein complex composed of several non-covalently bound dynamic domains with molecular weights of around 60 and 210 kDa, and capable of formation of 1.5 MDa assemblies as well. The rate of theophylline oxidation by ThOx with the non-physiological electron acceptor ferricyanide was 0.17 s?1, approaching that with cytochrome c, 0.33 s?1. The apparent catalytic constant depended on the electron acceptor concentration. At concentrations lower than 0.2 mM the reaction did not fit the Michaelis–Menten scheme, and some non-catalytic processes dominated in the overall reaction. The kinetics of ThOx catalysis were also studied at electrodes modified with self-assembled monolayers (SAM) of hydroxyl- and amine-terminated alkanethiols. Different compositions of the SAM provide different orientations of ThOx on these layers. Depending on the orientation of ThOx onto the SAM-modified electrodes, the heterogeneous electron transfer (ET) constant, ks, which characterizes the ET reaction between the electrodes and the haem of ThOx (Eo/ of 87 mV (NHE)) was 0.4 s?1 and 3.2 s?1. Only the low-ET-rate orientation appeared to be productive for the electrocatalytic function of ThOx, giving a reaction similar to that with ferricyanide and cytochrome c. The apparent efficiency of ThOx bioelectrocatalysis in the absence of mediators was substantially lower than that mediated by ferricyanide or cytochrome c. This lower efficiency is consistent with a correspondingly lower amount of ThOx being in direct ET contact with the electrodes and thus involved in electrocatalysis.  相似文献   

5.
A novel pyrroloquinoline quinone dependent glucose dehydrogenase like enzyme (PQQ GDH) was isolated from Sorangium cellulosum So ce56. The putative coding region was cloned, over expressed in E. coli and the resulting enzyme was characterized. The recombinant protein has a relative molecular mass of 63 kDa and shows 43% homology to PQQ GDH-B from Acinetobacter calcoaceticus. In the presence of PQQ and CaCl2 the enzyme has dehydrogenase activity with the substrate glucose as well as with other mono- and disaccharides. The thermal stability and its pH activity profile mark the enzyme as a potential glucose biosensor enzyme. In order to decrease the activity on maltose, which is unwanted for a potential application in biosensors, the protein was rationally modified at three specified positions. The best variant showed a 59% reduction in activity on maltose compared to the wild type enzyme. The catalytic efficiency (k cat/K M) was reduced fivefold but the specific activity still amounted to 63% of the wild type activity.  相似文献   

6.
Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]–linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N2 or NH3). Its synthesis was stimulated by conditions of high energetic demand (i.e., N2-fixation) and/or C-limitation. Under C-excess conditions, PQQ-GDH synthesis increased with the glucose concentration in the culture medium. In batch cultures, PQQ-GDH was actively expressed in very early stages with higher activities under conditions of N2-fixation. Hexokinase activity was almost absent under any culture condition. Cytoplasmic nicotinamide adenine dinucleotide (NAD)–linked glucose dehydrogenase (GDH) was expressed in continuous cultures under all tested conditions, and its synthesis increased with the glucose concentration. In contrast, low activities of this enzyme were detected in batch cultures. Periplasmic oxidation, by way of PQQ-GDH, seems to be the principal pathway for metabolism of glucose in G. Diazotrophicus, and NAD-GDH is an alternative route under certain environmental conditions.  相似文献   

7.
Liu H  Guo J  Qu J  Lian J  Jefferson W  Yang J  Li H 《Biodegradation》2012,23(3):399-405
The accelerating effect of non-dissolved redox mediator (1,5-dichloroanthraquinone) on the biological denitrification was investigated in this paper using 1,5-dichloroanthraquinone immobilized by calcium alginate (CA) and a heterotrophic denitrification bacterium of Paracoccus versutus (GU111570). The results suggested that the denitrification rate was enhanced 2.1 fold by 25 mmol l−1 1,5-dichloroanthraquinone of this study, and a positive correlation was found for the denitrification rate and 1,5-dichloroanthraquinone concentrations from 0 to 25 mmol l−1. According to the change characteristic of NO3 and NO2 during the denitrification process, the tentative accelerating mechanism of the denitrification by redox mediators was put forward, and redox mediator might play the role of reduced cofactors like NADH, N(A)DH and SDH, or the similar ubiquinol/ubiquinone (Q/QH2) role during the denitrification process.  相似文献   

8.
Unidirectional light-dependent proton translocation was demonstrated in a suspension of reconstituted reaction center (RC) vesicles supplemented with cytochromec and 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UQ0), a lipid-and water-soluble quinone. Proton translocation was detected only at alkaline pH. The pH dependence can be accounted for by the slow redox reaction between the reduced quinone (UQ0H2) and oxidized cytochromec. This conclusion is based on (i) the pH dependence of partial reactions of the reconstituted proton translocation cycle, measured either optically or electrometrically and (ii) titration studies with cytochromec and UQ0. At 250 and 25 µM UQ0 and cytochromec, respectively, maximal proton translocation was observed at pH 9.6. This pH optimum can be extended to a more acidic pH by increasing the concentration of the soluble redox mediators in the reconstituted cyclic electron transfer chain. At the alkaline side of the pH optimum, proton translocation appears to be limited by electron transfer from the endogenous primary to the secondary quinone within the RCs. The light intensity limits the reconstituted proton pump at the optimal pH. The results are discussed in the context of a reaction scheme for the cyclic redox reactions and the associated proton translocation events.Abbreviations RC reaction center - UQ0/UQ0H2 oxidized and reduced form of 2,3-dimethoxy-5-methyl-1,4-benzoquinone - D/D+ reduced and oxidized form of the primary electron donor of the RCs - CCCP carbonylcyanide-trichloromethoxy phenylhydrazone - UQA/UQ A oxidized and semiquinone form of the primary electron acceptor of the RCs - UQB/UQ B /UQBH2 oxidized, semiquinone, and reduced form of the secondary electron acceptor of the RCs - LDAO lauryldimethylamine-N-oxide During the course of this study K.J.H. was supported by a grant from the Netherlands Organization for the Advancement of Pure Research (Z.W.O.). This research was supported by grants from the National Institutes of Health (EY-02084) and from the Office of Naval Research (ONR-NOOO 14-79-C 0798) to M. Montal.  相似文献   

9.
Inhibition of electron flow from H2O to methylviologen by 3-(34 dichlorophenyl)-1,1 dimethyl urea (DCMU), yields a biphasic curve — an initial high sensitivity phase and a subsequent low sensitivity phase. The two phases of electron flow have a different pH dependence and differ in the light intensity required for saturation.Preincubation of chloroplasts with ferricyanide causes an inhibition of the high sensitivity phase, but has no effect on the low sensitivity phase. The extent of inhibition increases as the redox potential during preincubation becomes more positive. Tris-treatment, contrary to preincubation with ferricyanide, affects, to a much greater extent, the low sensitivity phase.Trypsin digestion of chloroplasts is known to block electron flow between Q A and Q B, allowing electron flow to ferricyanide, in a DCMU insensitive reaction. We have found that in trypsinated chloroplasts, electron flow becomes progressively inhibited by DCMU with increase in pH, and that DCMU acts as a competitive inhibitor with respect to [H+]. The sensitivity to DCMU rises when a more negative redox potential is maintained during trypsin treatment. Under these conditions, only the high sensitivity, but not the low sensitivity phase is inhibited by DCMU.The above results indicate the existence of two types of electron transport chains. One type, in which electron flow is more sensitive to DCMU contains, presumably Fe in a Q A Fe complex and is affected by its oxidation state, i.e., when Fe is reduced, it allows electron flow to Q B in a DCMU sensitive step; and a second type, in which electron transport is less sensitive to DCMU, where Fe is either absent or, if present in its oxidized state, is inaccessible to reducing agents.Abbreviations DCMU 3-(34 dichlorophenyl)-1, 1 Dimethyl urea - MV methyl viologen - PS II Photosystem II - Tris tris (hydroxymethyl)aminomethane  相似文献   

10.
Summary Quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni was immobilized on polypyrrole-coated track-etch and microporous membranes. On the track-etch membrane, 3.4 to 4.8 × 10–3 Units of enzyme/cm2 was immobilized whilst on the microporous membrane 0.05 U/cm2 was immobilized. The track-etch membrane was then used in electrochemical studies using ferricyanide as a redox mediator giving a maximum catalytic current of 0.022 mA/cm2 membrane with 1-pentanol as the substrate. The kinetic parameters (Km and Vmax) of the immobilized enzyme are of the same order of magnitude as those of the free enzyme.  相似文献   

11.
Pyrroloquinoline quinone (PQQ) is a novel redox cofactor and also exists in various foods. In vivo as well as in vitro experimental studies have shown that PQQ functions as an essential nutrient or antioxidant. Methylmercury (MeHg), as a highly toxic environmental pollutant, could elicit central nervous system (CNS) damage. Considering the antioxidant properties of PQQ, this study was aimed to evaluate the effect of PQQ on MeHg-induced neurotoxicity in the PC12 cells. The results showed that, after pre-treatment of PC12 cells with PQQ prior to MeHg exposure, the MeHg-induced cytotoxicity was significantly attenuated and then the percentage of apoptotic cells and the arrest of S-phase in cell cycle were correspondingly reduced. Moreover, PQQ significantly decreased the production of ROS, suppressed the lipid peroxidation and increased the antioxidant enzyme activities in PC12 cells exposed to MeHg. These observations highlighted the potential of PQQ in offering protection against MeHg-induced neuronal toxicity.  相似文献   

12.
All pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases contain an unusual disulfide ring formed between adjacent cysteine residues. A mutant enzyme that is lacking this structure was generated by replacing Cys105 and Cys106 with Ala in quinoprotein ethanol dehydrogenase (QEDH) from Pseudomonas aeruginosa ATCC17933. Heterologously expressed quinoprotein ethanol dehydrogenase in which Cys-105 and Cys-106 have been replaced by Ala (Cys105Ala/Cys106Ala apo-QEDH) was successfully converted to enzymatic active holo-enzyme by incorporation of its cofactor PQQ in the presence of Ca2+. The enzymatic activity of the mutant enzyme in the artificial dye test with N-methylphenazonium methyl sulfate (PMS) and 2,6-dichlorophenol indophenol (DCPIP) at pH 9 did not depend on an activating amine which is essential for wild type activity under these conditions. The mutant enzyme showed increased Michaelis constants for primary alcohols, while the affinity for the secondary alcohol 2-propanol was unaltered. Surprisingly, for all substrates tested the specific activity of the mutant enzyme in the artificial dye test was higher than that found for wild type QEDH. On the contrary, in the ferricyanide test with the natural electron acceptor cytochrome c 550 the activity of mutant Cys105Ala/Cys106Ala was 15-fold lower than that of wild type QEDH. We demonstrate for the first time unambiguously that the unusual disulfide ring is essential for efficient electron transfer at pH 7 from QEDH to its natural electron acceptor cytochrome c 550.  相似文献   

13.
In bioelectrochemical studies, redox mediators such as methylene blue, natural red, and thionine are used to studying the redox characteristics of enzymes in the living cell. Here we show that nitrogenase activity in Azotobacter vinelandii is completely inhibited by oxidized methylene blue (MBo) when the concentration of this mediator in the medium is increased up to 72 M. This activity in A. vinelandii is somewhat inhibited by a coenzyme, ascorbic acid (AA). However, the nitrogenase activity within the A. vinelandii cell is unchanged even for a high concentration of oxidized natural red (NRo) alone. Interestingly, these mediators and AA do not have the capacity to inhibit the H2 uptake activity of the hydrogenase in A. vinelandii. Average active rates of 66 nM H2 evolved/mg cell protein/min from the nitrogenase and 160 nM H2-uptake/mg cell protein/min from the hydrogenase in A. vinelandii are found in aid of the activities of the enzymes for H2 evolution and for H2 uptake are compared. The activities of both enzymes in A. vinelandii are strongly inhibited by thionine having high oxidative potential. Mechanisms of various mediators acting in vivo for both enzymes in A. vinelandii are discussed.  相似文献   

14.
High sensitive biosensors for heterocyclic compounds determination were built using oxidases-catalyzed hexacyanoferrate(III) reduction in the presence of these compounds. As oxidases Aspergillus niger glucose oxidase and recombinant Microdochium nivale carbohydrate oxidase were used. The biosensors were build using graphite electrodes and entrapped solution of the oxidases. The sensitivity of the biosensors achieves 5.2-14.5 microA microM-1 cm-2. The detection limit of some heterocyclic compounds was 0.2 microM. The sensitivity of biosensors was 300-10,000 times larger in comparison to hexacyanoferrate(III). To background the scheme of biosensors action kinetics of synergistic substrates oxidation was investigated in homogenous solution. The measurements showed that the rate of the reduction of low reactive substrate (hexacyanoferrate(III)) increased due to synergistic action of high reactive substrates (oxidized heterocyclic compounds). The modeling revealed the limiting step of the process. The increase of hexacyanoferrate(III) reduction rate is determined by the rate of reduced enzymes interaction with oxidized heterocyclic compound. The oxidation of heterocyclic compounds (mediators) with hexacyanoferrate(III) does not limit the process. The analysis of macrokinetics of biosensors action showed that synergistic effect may be realized and high biosensors sensitivity may be achieved if diffusion module of the enzyme reaction with the oxidized mediator and of a cross reaction is larger than 0.5. The calculated relative sensitivity is about three times higher in comparison to experimentally determined that may be caused by the limited stability of oxidized heterocyclic compounds and/or some external diffusion limitation of substrates.  相似文献   

15.
The potentiating effects of cyanide on the inhibition of rat liver mitochondrial monoamine oxidase-A & B and of ox liver mitochondrial MAO-B by pheniprazine [(1-methyl-2-phenylethyl)hydrazine] has been studied. Pheniprazine was shown to behave as a mechanism-based MAO inhibitor. For rat liver MAO-B, the initial non-covalent step was characterized by dissociation constant (K i) of 2450 nM and the first-order rate constant (k +2) for the covalent adduct formation was 0.16 min−1. As a reversible inhibitor it was selective towards rat liver MAO-A (K i = 420 nM) but the rate of irreversible inhibition of that enzyme was considerably slower (k +2 = 0.06 min−1). MAO-B from ox liver more closely resembled MAO-A from the rat in sensitivity to reversible inhibition by pheniprazine (K i = 450 nm) but it was closer to rat liver MAO-B in rate of irreversible inhibition (k +2 = 0.29 min−1). The K i values were significantly decreased in the presence of KCN but there was little effect on the k +2 values. However, sensitivities of the different enzymes to KCN varied widely and considerably higher concentrations of KCN were required for this effect to be apparent with the rat liver mitochondrial MAO-A than with MAO-B from rat and ox liver. The kinetic behaviour of cyanide activation was consistent with partial (non-essential) competitive activation in all cases. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

16.
The mediation of redox reactions through bilayer lipid membranes was studied. With an appropriate choice of electron acceptors the redox process can be limited either by the chemical reaction rate between the mediator and the reactants or by the shuttle frequency of the mediator through the membrane. Both modes were demonstrated for redox reactions mediated by 2,6 dichlorobenzoquinone (DCBQ) and by alpha-tocopherol with ascorbate entrapped inside vesicles using ferricyanide (a mild oxidant) or hexachloroiridate (a strong oxidant) in the external solution. The redox processes were reaction rate-limited and diffusion-limited for ferricyanide and hexachloroiridate, respectively. The kinetics of the redox processes in the diffusion- and the reaction rate-limited modes allows the determination of the shuttle frequencies and of the interfacial reaction rates of the mediators, respectively. The shuttle frequencies of DCBQ and alpha-tocopherol were approximately 8 and 0.08 s-1, respectively, in L-alpha-dipalmitoyl phosphatidylcholine (DPPC) cholesterol vesicles at 25 degrees C. Interfacial reaction rates between the mediators and ferricyanide were about two- and tenfold lower compared with bulk reaction rates for DCBQ (water) and tocopherol (50% ethanol solution), respectively, i.e., tocopherol is relatively less accessible to aqueous oxidants at the membrane interface. Tocopherol and oxidized tocopherol are reversible hydrophobic redox couples that interact very rapidly with strong oxidants. In both modes of mediation DCBQ was more effective than alpha-tocopherol.  相似文献   

17.
Pyrroloquinoline quinone (PQQ), an aromatic tricyclic o-quinone, was identified initially as a redox cofactor for bacterial dehydrogenases. Although PQQ is not biosynthesized in mammals, trace amounts of PQQ have been found in human and rat tissues because of its wide distribution in dietary sources. Importantly, nutritional studies in rodents have revealed that PQQ deficiency exhibits diverse systemic responses, including growth impairment, immune dysfunction, and abnormal reproductive performance. Although PQQ is not currently classified as a vitamin, PQQ has been implicated as an important nutrient in mammals. In recent years, PQQ has been receiving much attention owing to its physiological importance and pharmacological effects. In this article, we review the potential health benefits of PQQ with a focus on its growth-promoting activity, anti-diabetic effect, anti-oxidative action, and neuroprotective function. Additionally, we provide an update of its basic pharmacokinetics and safety information in oral ingestion.  相似文献   

18.
Flavodoxins are small flavin mononucleotide (FMN)‐containing proteins that mediate a variety of electron transfer processes. The primary sequence of flavodoxin from Fusobacterium nucleatum, a pathogenic oral bacterium, is marked with a number of distinct features including a glycine to lysine (K13) substitution in the highly conserved phosphate‐binding loop (T/S‐X‐T‐G‐X‐T), variation in the aromatic residues that sandwich the FMN cofactor, and a more even distribution of acidic and basic residues. The Eox/sq (oxidized/semiquinone; ?43 mV) and Esq/hq (semiquinone/hydroquinone; ?256 mV) are the highest recorded reduction potentials of known long‐chain flavodoxins. These more electropositive values are a consequence of the apoprotein binding to the FMN hydroquinone anion with ~70‐fold greater affinity compared to the oxidized form of the cofactor. Inspection of the FnFld crystal structure revealed the absence of a hydrogen bond between the protein and the oxidized FMN N5 atom, which likely accounts for the more electropositive Eox/sq. The more electropositive Esq/hq is likely attributed to only one negatively charged group positioned within 12 Å of the FMN N1. We show that natural substitutions of highly conserved residues partially account for these more electropositive reduction potentials.  相似文献   

19.
A cytochrome P450BM3‐catalyzed reaction system linked by a two‐step cofactor regeneration was investigated in a cell‐free system. The two‐step cofactor regeneration of redox cofactors, NADH and NADPH, was constructed by NAD+‐dependent bacterial glycerol dehydrogenase (GLD) and bacterial soluble transhydrogenase (STH) both from Escherichia coli. In the present system, the reduced cofactor (NADH) was regenerated by GLD from the oxidized cofactor (NAD+) using glycerol as a sacrificial cosubstrate. The reducing equivalents were subsequently transferred to NADP+ by STH as a cycling catalyst. The resultant regenerated NADPH was used for the substrate oxidation catalyzed by cytochrome P450BM3. The initial rate of the P450BM3‐catalyzed reaction linked by the two‐step cofactor regeneration showed a slight increase (approximately twice) when increasing the GLD units 10‐fold under initial reaction conditions. In contrast, a 10‐fold increase in STH units resulted in about a 9‐fold increase in the initial reaction rate, implying that transhydrogenation catalyzed by STH was the rate‐determining step. In the system lacking the two‐step cofactor regeneration, 34% conversion of 50 μM of a model substrate (p‐nitrophenoxydecanoic acid) was attained using 50 μM NADPH. In contrast, with the two‐step cofactor regeneration, the same amount of substrate was completely converted using 5 μM of oxidized cofactors (NAD+ and NADP+) within 1 h. Furthermore, a 10‐fold dilution of the oxidized cofactors still led to approximately 20% conversion in 1 h. These results indicate the potential of the combination of GLD and STH for use in redox cofactor recycling with catalytic quantities of NAD+ and NADP+. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
The purified polyethylene glycol (PEG) dehydrogenase from cells of a synergistic mixed culture of Flavobacterium and Pseudomonas species showed a similar absorption spectrum to those of other quinoproteins reported so far. The prosthetic group of the PEG dehydrogenase after extraction with cold methanol and purification by DEAE-Sephadex A-25 column chromatography and Sephadex G-25 gel filtration showed the same elution profiles as those of authentic pyrrolo-quinoline quinone (PQQ). Absorption and fluorescence spectra of the purified prosthetic group and its prosthetic group capability for glucose dehydrogenase indicated that it was identical with authentic PQQ.

The enzyme was induced during bacterial cell growth on a medium containing PEG 6000 as a sole source of carbon. The purified enzyme oxidized primary alcohols of C2-C16 and the corresponding aldehydes of C4-C7. The enzyme also reacted with nonionic surfactants containing PEG residues. The enzyme reduced 2,6-dichlorophenolindophenol (DCIP) and the Km value for DCIP was calculated to be 1.4 × 10?4m. The DCIP reductase activity was inhibited by carbonyl reagents like semicarbazide, hydrazine, hydroxylamine and 1,4-benzoquinone. 1,4-Benzoquinone inhibited the DCIP reductase activity competitively as to DCIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号