首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nelumbo nucifera (Gaertn.) grows by extending a creeping rhizome through anaerobic sediments. Nodes form at intervals along the rhizome, each producing a single leaf, and gas canals channel air from the leaves throughout the petioles and rhizomes. The gas flow pathway was mapped by casting the canals in growing shoots with silicone and by blowing air through complexes of rhizomes and petioles. Air from a leaf flows to a rhizome through one of two petiolar canal pairs, joining with the lowermost of three canal pairs in the rhizome through a chamber in the node. The lowermost canal pair links these nodal chambers along the length of a rhizome, allowing air from a node to flow both forward, toward a growing shoot, and backward, toward preceding leaves. These linked chambers also connect with the middle pair of canals on their proximal side, enabling flow to proceed backward along the rhizome to an adjacent node. A chamber in the next node then diverts the flow into the upper canal pair. This pair leads to a third node and chamber from which the air vents to the atmosphere through the second petiolar canal pair. Thus, pressurised air from one leaf must flow backward through two nodes before it returns to the atmosphere. Forward flow also ventilates a shoot's growing tip, with air from the lowermost canal pair entering a chamber in the developing node which, as described above, connects with the middle canal. This allows the air to reverse direction at the tip and enter the vent flow pathway.  相似文献   

2.
W. Große  C. Bauch 《Plant Ecology》1991,97(2):185-192
Pressurized gas transport with flow rates of 1.1 to 1.81 gas h-1 plant-1 have been detected in the floating-leaved aquatic macrophyte Euryale ferox on sunny days. The younger leaves gave the highest pressurization, but the gas flow was initiated mainly by the middle-aged leaves of the plants. The gas through-flow was shown to be highly beneficial for floating-leaved plants. It improved the oxygen level in the aerenchyma of the submerged organs of Nymphaea alba and Nymphoides peltata, and doubled the ATP level in the root tissues. On the other hand, the sulphur dioxide fumigation experiments on Nymphaea odorata indicated that the pressurized gas transport may adversely affect the floating-leaved plants, due to an increased contamination of the leaves leading to increased photo bleaching and impaired photosynthesis.Abbreviations ATP adenosine triphosphate - FW fresh weight - SO2 sulphur dioxide  相似文献   

3.
Gaudet, John. (U. Rhode Island, Kingston.) Ontogeny of the foliar sclereids in Nymphaea odorata . Amer. Jour. Bot. 47(7): 525–532. Illus. I960.—The “diffused” idioblastic sclereids develop in the leaves of Nymphaea odorata Ait. during periods when leaves are forming on the shoot apex, and they are initiated by cells which are differentiated from other cells of the fundamental tissue by nuclear size. The ontogeny of the sclereids is similar in most cases, but differences are apparent among petiolar, laminar and stipular types, especially, when the adult morphology is considered. At maturity, the sclereids are usually pitted in the central portion, and they do not show “polarity” in the leaf or orientation near the tracheary elements, which occur in the same tissue. The “spicule-like” protuberances and the angular cross-sectional shape of the stipular sclereids are interpreted as evidence that growth of these sclereids was restricted as compared to other types of sclereids which were not restricted.  相似文献   

4.
The sacred lotus Nelumbo nucifera (Gaertn.) possesses a complex system of gas canals that channel pressurized air from its leaves, down through its petioles and rhizomes, before venting this air back to the atmosphere through large stomata found in the centre of every lotus leaf. These central plate stomata (CPS) lie over a gas canal junction that connects with two‐thirds of the gas canals within the leaf blade and with the larger of two discrete pairs of gas canals within the petiole that join with those in the rhizome. It is hypothesized that the lotus actively regulates the pressure, direction and rate of airflow within its gas canals by opening and closing these stomata. Impression casting the CPS reveal that they are open in the morning, close at midday and reopen in the afternoon. The periodic closure of the CPS during the day coincides with a temporary reversal in airflow direction within the petiolar gas canals. Experiments show that the conductance of the CPS decreases in response to increasing light level. This behaviour ventilates the rhizome and possibly directs benthic CO2 towards photosynthesis in the leaves. These results demonstrate a novel function for stomata: the active regulation of convective airflow.  相似文献   

5.
We experimentally determined the effects of water depth on seed germination and seedling growth and morphology, and we documented the transition from submerged to emergent plants in the white water lily, Nymphaea odorata. Seeds of N. odorata were germinated at 30, 60, and 90 cm water depth in outdoor mesocosms and percent germination and morphology measured after a month. The presence of self-seeded seedlings in pots at the same 3 water levels was also recorded over two years. To examine juvenile growth, seeds planted in soil were placed at the same mesocosm depths; germination and growth were monitored for three months, when the plants were harvested for morphological and biomass measurements. N. odorata germinated equally well in 30, 60 and 90 cm water; seedlings grew as submerged aquatics. After one month, seedlings in 90 cm water had less biomass than those in 30 cm (1.1 vs. 3.3 mg and 1.0 vs. 1.8 mg for different seed sources, respectively) and allocated relatively more biomass to shoots (97.5 vs. 67.8% and 73.1 vs. 58.0%, respectively). Seedlings in 60 cm water were intermediate. After 3 months of submerged growth, plant biomass remained less in 90 vs. 60 and 30 cm water (22.5 vs. 36.4 and 33.3 mg, respectively). Plants in 90 and 60 cm water had greater biomass allocation to shoots than plants in 30 cm water (85.7 and 72.6% vs. 64.4%, respectively) and produced larger laminae on longer petioles (lamina length = 33.3 vs. 25.2 mm in 90 vs. 30 cm; petiole length = 99.0 vs. 36.0 mm, respectively). After about 3 months, submerged plants produced floating leaves that had 39% shorter laminae but 267% to 1988% longer petioles than submerged leaves on the same plant. Lamina length to width allometric relations of submerged leaves were >1 at all water levels, distinguishing them from the equal allometry of adult floating leaves. The switch from production of submerged to emergent leaves resembles submergence-escape growth in other aquatics, but because the seedlings have been submerged throughout their life, submergence itself cannot be the stimulus to produce emergent leaves in these totally immersed plants. Our data show that N. odorata plants can establish from seeds in up to 90 cm water and that seedlings grow as submerged aquatics until they switch abruptly to production of floating leaves.  相似文献   

6.
A two-way gas transport system in Nelumbo nucifera   总被引:4,自引:1,他引:3  
Abstract The aquatic vascular plant Nelumbo nucifera Gaertn. is able to improve its oxygen supply to the submerged and buried organs by a thermo-osmotic gas transport. Investigations with tracer gas and oxygen measurements have shown that thermo-osmotic gas transport exists in N. nucifera when there is a temperature difference between the lacunar air of the leaves and the surrounding atmosphere. The gas transport was increased by up to 935% when a temperature difference of 2.9 ± 1.0 K was detected. Lacunar pressure of up to 166 ± 44 Pa was measured in both young and old leaves. In contrast to the flow-through ventilation system recently described for Nuphar lutea and Nymphoides peltata, a two-way flow in separate air canals in the petioles of both young and old Nelumbo leaves may carry oxygen-rich air down to the rhizome and excess air back to the atmosphere. Anatomical investigations have shown that, in Nelumbo, the two largest air canals of the petiole end directly under the mesh system of the centre plate. These large air canals are proposed to be predominant in the upward flow of air in sunlight. The other air canals of the petiole veer into the leaf blade well below the centre plate. The gas flow system through fresh leaves may carry as much as 10.3 ± 4.5 cm3 air per minute to the buried rhizome.  相似文献   

7.
Population changes of Sida crystallina, a filter feeding microcrustacean which attaches to aquatic macrophytes, were examined in Cochran Lake, Michigan during June and July, 1979. Population estimates were derived from organisms present in 10 samples of leaves of the water lily Nymphaea odorata collected every 3 days. Population densities of Sida responded both to food and predation by fish. Declines in average clutch size were associated with decreasing phytoplankton biomass and the increasing dominance of colonial green and blue-green algae, but were not significantly influenced by the densities of invertebrates on the plants. Largemouth bass fry (Micropterus salmoides) dramatically reduced the numbers of Sida and altered the age structure of the population in late June.  相似文献   

8.
The distribution of petiolar nectaries in 24 species of Ipomoea was investigated. Petiolar nectaries were found on 12 species (8 new reports, 4 confirmations of previous reports) and quoted from the literature as being found on 3 other species; they were absent from 9 species investigated. The structure of petiolar nectaries in the genus ranges from simple beds of superficial nectar-secreting trichomes (1 species), to slightly recessed “basin nectaries” (8 species), to “crypt nectaries,” which are structurally the most complex extrafloral nectaries known (3 species). (Structures were not determined for 3 species.) Petiolar nectaries are present in all subgenera, but all crypt nectaries occur in the same section (Eriospermum). Species with extrafloral nectaries tend to be perennial; species lacking extrafloral nectaries tend to be annual. There is no relationship between temperate or tropical habitat and presence of nectaries.  相似文献   

9.
Historically, the Florida Everglades was characterized by a corrugated landscape of shorter hydroperiod, elevated sawgrass (Cladium jamaicense) ridges and longer hydroperiod, deep water slough communities. Drainage and compartmentalization of the Everglades have fundamentally altered this pattern, and sawgrass ridge communities have expanded at the expense of deep water slough communities throughout much of the landscape. In this study we provide a simple isotopic and nutrient characterization of major components of the slough ecosystem to elucidate physiological and nutrient differences among species and to suggest pathways for organic matter decomposition that contribute to peat development in deep water sloughs. We examined carbon (C) and nitrogen (N) isotopes and C, N and phosphorus (P) concentrations of the floating-leaved macrophytes Nymphaea odorata and Nymphoides aquatica, the emergent macrophyte Eleocharis elongata, and the submerged species Utricularia foliosa and Utricularia purpurea, as well as soil and flocculent material from the southern Water Conservation Area 3-A. Flocculent material and soils had the highest N content (4.5 ± 0.2%) and U. foliosa and N. odorata had the highest P content (0.13 ± 0.01% to 0.12 ± 0.01%). The range for δ15N average ± SE values was 5.81 ± 0.29‰ (U. foliosa) to −1.84 ± 0.63‰ (N. odorata), while the range for δ13C values was −23.83 ± 0.12‰ (N. odorata) to −29.28 ± 0.34‰ (U. purpurea). Differences of up to 10‰ in C isotopic values of U. foliosa and N. odorata suggest fundamental physiological differences between these species. Along a degradation continuum, enrichment of 13C and 15N and extent of decomposition was negatively related to phosphorus concentrations. A two end-member 13C mixing model suggested that Utricularia species were the primary organic source for flocculent materials, whereas organic matter derived from root decomposition of N. odorata contributed to the progressively enriched δ13C values found with depth in soils. These results illustrate the fundamentally important roles of Nymphaea and Utricularia species in ecosystem dynamics of deep water sloughs.  相似文献   

10.
How does deep water rice solve its aeration problem   总被引:11,自引:0,他引:11       下载免费PDF全文
Raskin I  Kende H 《Plant physiology》1983,72(2):447-454
In partially flooded deep water rice (Oryza sativa L. cv Habiganj Aman II), continuous air layers trapped between the hydrophobic, corrugated surface of the leaf blades and the surrounding water constitute the major path of aeration. The conduction of gases through the internal air spaces of the leaf is negligible compared to the conduction of gases through the external air layers. The total volume of the air layers on both sides of a leaf blade is about 45% of the volume of the leaf blade itself. The size of the air layers around submerged leaf blades of cereals not adapted to conditions of partial flooding, e.g. of oats, barley, and wheat, is considerably smaller than that of rice. Gases move through the air layers not only by diffusion but also by mass flow. In darkness, air is drawn down from the atmosphere through the air layers along a pressure gradient created by solubilization of respiratory CO2 in the surrounding water. In light, photosynthetic O2 is expelled through the air layers to the atmosphere because the solubility of O2 in water is much lower than that of CO2. Air layers greatly increase the rate of photosynthetic carbon fixation by enlarging the surface of the gas-liquid interface available for CO2 uptake from the water. Air layers are vital for the survival of the partially submerged rice plant. When leaves are washed with a dilute solution of a surfactant (Triton X-100), no air layers are formed under water. Plants without air layers do not grow in response to submergence, and the submerged parts of the plant deteriorate as evident by rapid loss of chlorophyll and protein. Air layers provide a significant survival advantage even to completely submerged rice plants.  相似文献   

11.
Aquatic plants anchored in streams are under pressure from various constraints linked to the water flow and display strategies to prevent their damage or destruction. We assume that the responses of aquatic plants to fast‐water flow are a manifestation of a trade‐off consisting in either maximizing the resistance to damage (tolerance strategy) in minimizing the hydrodynamic forces (avoidance strategy), or both. Our main hypothesis was that Potamogeton alpinus demonstrate the avoidance strategy. We analyzed architecture traits of the modules of this clonal plant from slow‐ and fast‐flowing streams. In fast‐flowing waters, the avoidance strategy of P. alpinus is reflected by the following: (1) the presence of floating leaves that stabilize the vertical position of the stem and protect the inflorescence against immersion; (2) elongation of submerged leaves (weakens the pressure of water); and (3) shoot diameter reduction and increase in shoot density (weakens the pressure of water, increases shoot elasticity), and by contrast in slow‐water flow include the following: (4) the absence of floating leaves in high intensity of light (avoiding unnecessary outlays on a redundant organ); (5) the presence of floating leaves in low intensity of light (avoidance of stress caused by an insufficient assimilation area of submerged leaves).  相似文献   

12.
Structural features of the mature root cortex and its apoplasticpermeability to dyes have been determined for two dicotyledonouswetland plants of differing habitats: Nymphaea odorata, growingrooted in water and mud, and Caltha palustris, growing in temporalwetlands among cattails. In mature roots, movement of the apoplasticdyes, berberine and safranin, into the roots was blocked atthe hypodermis, indicating the presence of an exodermis. A hypodermiswith an exodermis, i.e. Casparian bands in the outermost uniseriatelayer plus suberin lamellae, is present in both species. InN. odorata, hypodermal walls are further modified with cellulosicsecondary walls. Roots of N. odorata and C. palustris have anendodermis with Casparian bands only. A honeycomb aerenchymais produced by differential expansion in N. odorata and includesastrosclereids and diaphragms, while roots of C. palustris haveno aerenchyma, but some irregular lacunae are found in old roots.These aspects of cortex structure are related to an open meristemorganization, with unusual patterns of cell divisions in certainground meristem cells (called semi-regular hexagon cells) ofN. odorata. The correlation between aerenchyma pattern and hypodermalstructure appears to be related to habitat differences.Copyright2000 Annals of Botany Company Caltha palustris, Nymphaea odorata, root development, cortex, endodermis, aerenchyma, exodermis, hypodermis, permeability, wetland plants  相似文献   

13.
The leaf-mining fly Calycomyza eupatorivora Spencer (Diptera: Agromyzidae) was released in the eastern coastal regions of South Africa for the biological control of the invasive shrub Chromolaena odorata (L.) King and Robinson. Despite widespread establishment, its ability to inflict sufficient foliar damage has been questioned. This laboratory study was initiated to provide some insight into how increasing fly populations (represented by 1, 5 and 10 mating pairs per plant) are likely to influence leaf-mining intensity and the levels of damage. On average, individual plants exposed to five mating pairs displayed significantly more larval mines (248) than those exposed to single pairs (69), while plants exposed to 10 mating pairs were intermediate (125). Similarly, at densities of five mating pairs per plant, the percentages of available leaves that were exploited peaked at 36%, while the percentages of available leaf area that were removed by larval leaf mining peaked at 22%. The non-linear relationship between leaf mining and fly density and the high percentages of unexploited leaves suggest that leaf mining may be influenced by leaf quality, the nature of which is currently unconfirmed. These results also suggest that the levels of leaf exploitation by C. eupatorivora will be too low to have any meaningful impact in the field. Field evaluations, to be reported in a later contribution, have indeed confirmed that the impact of C. eupatorivora on mature populations of C. odorata is negligible.  相似文献   

14.
1. The rate of grazing damage experienced by submersed and floating leaves of water lilies (Nuphar variegata and Nymphaea odorata) was monitored in lakes in the Upper Peninsula of Michigan, U.S.A. Herbivores damaged 0.2–1.7% of the leaf surface of water lilies per day. These grazing rates differed between plant species, between submersed and floating leaves, and between lakes. Some leaves had more than 60% of their surface damaged and an overall mean of 16% damage occurred during the 2–3 week monitoring period of this study. 2. Snapshot measurements of grazing damage on randomly collected submersed and floating leaves of Nuphar showed that submersed leaves were more damaged (11.0 ± 1.6%, n = 84) than floating leaves (3.8 ± 0.6%, n = 92). Overall, these 176 Nuphar leaves had 7.2% of their area damaged. 3. Five species of herbivorous insects were commonly found on water lilies (Nymphaeacea). One primarily aquatic insect (sensu 1 ), a caddisfly larva (Trichoptera: Limniphilidae), had a generalized diet of water lilies, other macrophytes, algae, and detritus. Four of the five insects were from primarily terrestrial insect groups (Coleoptera and Diptera;‘secondary invaders’, sensu 1 ) and consumed only water lilies in food preference experiments. 4. The feeding preferences of the generalist trichopteran were altered when the macrophytes were freeze-dried, ground into a powder, and reconstituted in an alginate gel. This suggests that plant structure may be an important feeding determinant for this insect. In contrast, a specialist weevil preferred its host plant in choice assays, regardless of whether fresh tissue or reconstituted macrophytes were used, suggesting this insect cued on a unique, non-structural property of its host plant. 5. These results suggest that herbivory on freshwater macrophytes is of a similar magnitude to that on terrestrial plants. The findings of this study are consistent with the hypothesis that herbivorous insects of primarily terrestrial groups have a narrower diet breadth than insects of primarily aquatic groups.  相似文献   

15.
Introduced submerged macrophytes have come to dominate many shallow water bodies in New Zealand, and are a common component of many lowland streams. We investigated the seasonal variation of macrophyte abundance, its influence on flow and channel volume, and the implications of this on stream habitat and functioning in Whakapipi Stream, a typical lowland stream draining a predominantly agricultural catchment.Abundance of macrophytes over the summer was primarily controlled by the phenological cycles of the two dominant species. Mean minimum total macrophyte biomass (36 g m–2) and cover (7%) occurred in winter (June and August, respectively), and mean maximum biomass (324 g m–2), and cover (79%) occurred in late summer (March and February respectively). Egeria densa comprised the majority of both cover and biomass during the study period, except early summer (December) when Potamogeton crispus was prevalent in the shallow stream reaches.Macrophyte beds had a major impact on summer stream velocities, reducing average velocities by an estimated 41%. Stream cross-sectional area was maintained at relatively stable levels similar to that recorded over winter, when stream discharge was in the order of seven times greater. The mean velocity distribution coefficient (), and Manning's roughness coefficient (n) were dependent on and displayed a positive linear relationship with macrophyte abundance. The velocity distribution coefficient is recommended as a better indicator of macrophyte effects on velocity in natural streams, as it does not assume uniform velocity, channel depth and slope within the stream reach.Our study shows that submerged macrophytes play an important structuring role within the stream during the summer period, where macrophyte beds act as semi-permeable dams, retarding flow velocities and increasing stream depth and cross-sectional area. This promotes habitat heterogeneity by creating a greater range of flow velocity variation, and also provides large stable low-flow areas. Other likely ecosystem effects resulting from macrophyte/velocity interactions include increased sedimentation, potential for nutrient processing and increased primary production, both by macrophytes and attached epiphyton. The complex architecture of submerged macrophytes and their influence on stream flow may also provide an increased diversity of habitat for other aquatic biota. We propose that management of degraded lowland streams such as the Whakapipi Stream to maintain stretches with moderate quantities of submerged macrophytes interspersed with shaded areas would optimise stream health during low summer flows.  相似文献   

16.
Mentha aquatica L. was grown at different nutrient availabilities in water and in air at 60% RH. The plants were kept at 600 mmol m?3 free CO2 dissolved in water (40 times air equilibrium) and at 30 mmol m?3 CO2 in air to ensure CO2 saturation of growth in both environments. We quantified the transpiration-independent water transport from root to shoot in submerged plants relative to the transpiration stream in emergent plants and tested the importance of transpiration in sustaining nutrient flux and shoot growth. The acropetal water flow was substantial in submerged Mentha aquatica, reaching 14% of the transpiration stream in emergent plants. The transpiration-independent mass flow of water from the roots, measured by means of tritiated water, was diverted to leaves and adventitious shoots in active growth. The plants grew well and at the same rates in water and air, but nutrient fluxes to the shoot were greater in plants grown in air than in those that were submerged when they were rooted in fertile sediments. Restricted O2 supply to the roots of submerged plants may account for the smaller nutrient concentrations, though these exceeded the levels required to saturate growth. In hydroponics, the root medium was aerated and circulated between submerged and emergent plants to minimize differences in medium chemistry, and here the two growth forms behaved similarly and could fully exploit nutrient enrichment. It is concluded that the lack of transpiration from leaf surfaces in a vapour-saturated atmosphere, or under water, is not likely to constrain the transfer of nutrients from root to shoot in herbaceous plants. Nutrient deficiency under these environmental conditions is more likely to derive from restricted development and function of the roots in waterlogged anoxic soils or from low porewater concentrations of nutrients.  相似文献   

17.
Although zonation patterns of the standing vegetation along a water depth gradient in wetlands have been well described, few studies have explored whether such patterns also occur in the seed bank. This study examined patterns of the seed bank along a water depth gradient in three vegetation types (submerged zone, floating-leaved zone, and emergent zone) of a subtropical lakeshore marsh, Longgan Lake, China. Submerged zone is the deepest water and never exposed its soil to air, and was dominant by submerged species; floating-leaved zone is waterlogged soil even during drawdown and was dominant by Nelumbo nucifera; emergent zone is rarely exceeded 1 m water depth during the wet season (summer and autumn), and the marsh soil was usually exposed to air during drawdown (winter and spring), and is dominant by Zizania latifolia, Polygonum hydropiper and Scirpus yagara. It was found that many species were ubiquitous in the seed bank. Frequency of distribution and densities of the dominant species, however, varied significantly from zone to zone. A total of 22 species was recorded in submerged zone, 20 in floating-leaved zone, and 29 in emergent zone. Germinated seedling density was 1,580, 8,994 and 20,424 seedlings m−2 in submerged zone, floating-leaved zone, and emergent zone, respectively. Submerged and floating-leaved species were significantly abundant in the submerged zone, while the emergent species were found predominantly in the emergent zone. A fern species, Ceratopsis pterioides, was the most abundant seedling in seed banks from all three zones. A TWINSPAN dendrogram and CCA ordination diagram clearly showed separation of species among sites with the emergent zone being well separated from the submerged zone and floating-leaved zone, thus revealing marked zonal patterns in species distributions in the seed bank. This pattern of zonation reflected the pattern in the standing vegetation.  相似文献   

18.
Changes attending leaf development in the mechanical behavior and elastic moduli of the petioles of Populus tremuloides Michx. were examined in terms of total leaf weight (Wt), lamina and petiole weight (Wl and Wp), petiolar length (L), and lamina surface area (A). A primary concern was the extent to which two elastic moduli (Young's modulus E and the shear modulus G) of petioles changed over time and were correlated with one another. E and G were measured by means of multiple resonance frequency spectra, and together with the dimensions of cross sections through petioles, these two elastic moduli were used to estimate the stiffness of petioles in simple bending and torsion. Petiolar bending was predicted by means of a model incorporating expressions for both the bending stiffness (El) and torsional rigidity (GJ), where I is the second moment of area and J is the torsional constant. The predictions from these models were compared to observed petiolar bendings due to Wl. Additionally, the frequency of the oscillatory motion of leaves (placed in a wind tunnel with a 1 m sec-1 ambient wind speed, directed normal to the blade of the leaf) was determined. Results indicate that L, A, Wl, Wp, and Wt were positively correlated with the age of leaves (crudely estimated as a function of leaf plastochron index, LPI); these morphometric parameters were also correlated with the magnitudes of E and G. Also, G was positively and linearly correlated with E, and was, on the average, an order of magnitude less than E. EI and GJ were positively correlated with LPI. The relationships among E, G, EI, C and Wl, Wp, Wt are discussed in terms of leaf allometries.  相似文献   

19.
To reveal the mechanism of transpiration by hydrophytes in the field, it is necessary to evaluate the transpiration rate without the effect of the evaporation from the water surface. In order to test the suitability for evaluating the transpiration rate of lotus (Nelumbo nucifera Gaertn.) leaves in the field, stem heat-balance method was applied and the obtained sap-flow rate was compared with the transpiration rate measured by weighing and with the overall canopy evapotranspiration rate by means of the eddy covariance technique. The transpiration rate estimated with the sap-flow measurements showed good agreement with that obtained from the weighing method. Lotus has many air canals in its petiole to carry oxygen-rich air to the rhizome and methane- and carbon dioxide-rich air back to the atmosphere, but there was little effect of the mass flow of air through these canals on the sap-flow rates. In the field observations, the canopy evapotranspiration rate (0.28 mm h−1 at maximum) was nearly equal to the sum of the transpiration rate from all sunlit leaves (0.30 mm h−1), and the contribution of the transpiration from shaded leaves and evaporation from the water surface was considered to be minor in the seasons when the leaves were fully developed. Evaluation of bulk leaf conductance revealed that the conductance in the leaf boundary layer of lotus could be low (ca. 0.23 mol m−2 s−1) because of its large leaf area. The low conductance in the leaf boundary layer would increase leaf temperature, which, in turn, would generate air circulation within the plant's ventilation system. Because there was a linear relationship between transpiration rate and the leaf-to-air vapor-pressure deficit, with no apparent maximum, high vapor-pressure deficits (3.4 kPa at maximum) did not appear to cause significant stomatal closure in lotus plants. The stomata of lotus leaves play a role as air inlets to carry oxygen-rich air to the rhizome, so their low sensitivity would help to increase air intake.  相似文献   

20.
Pot experiments laid out in a complete randomised design were conducted in the screen house of the Department of Crop Protection, University of Agriculture, Abeokuta, Ogun State, Nigeria to determine the effects of organic fertiliser and Chromolaena odorata residue at 1% w/w on the pathogenicity of Meloidogyne incognita infecting maize. M. incognita significantly reduced the plant height, number of leaves per plant, leaf area, cob weight and grain yield of maize by 6.89, 15.18, 20, 63.92 and 56.16% respectively. C. odorata residue and organic fertiliser significantly suppressed M. incognita galling, inhibited the nematode fecundity and reduced the number of eggs and juveniles on maize. A remarkable increase in plant height, number of leaves per plant, leaf area, cob weight and grain yield were observed on maize plants treated with the mixture of C. odorata and organic fertiliser despite the nematode infection. The observation from this study suggests that C. odorata in combination with organic fertiliser is a viable option for the control of M. incognita on maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号