首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To evaluate the joint and independent effects of spatial location, landscape composition and landscape structure on the distribution patterns of bird and carabid beetle assemblages in a mosaic landscape dominated by pine plantation forests. Location A continuous 3000‐ha landscape mosaic with native maritime pine Pinus pinaster plantations of different ages, deciduous woodlands and open habitats, located in the Landes de Gascogne forest of south‐western France. Methods We sampled breeding birds by 20‐min point counts and carabid beetles by pitfall trapping using a systematic grid sampling of 200 points every 400 m over the whole landscape. Explanatory variables were composed of three data sets derived from GIS habitat mapping: (1) spatial variables (polynomial terms of geographical coordinates of samples), (2) landscape composition as the percentage cover of the six main habitats, and (3) landscape structure metrics including indices of fragmentation and spatial heterogeneity. We used canonical correspondence analysis with variance partitioning to evaluate the joint and independent effects of the three sets of variables on the ordination of species assemblages. Moran's I correlograms and Mantel tests were used to assess for spatial structure in species distribution and relationships with separate landscape attributes. Results Landscape composition was the main factor explaining the distribution patterns of birds and carabids at the mesoscale of 400 × 400 m. Independent effects of spatial variables and landscape structure were still significant for bird assemblages once landscape composition was controlled for, but not for carabid assemblages. Spatial distributions of birds and carabids were primarily influenced by the amount of heathlands, young pine plantations, herbaceous firebreaks and deciduous woodlands. Deciduous woodland species had positive responses to edge density, while open habitat species were positively associated with mean patch area. Main conclusions Forest birds were favoured by an increase in deciduous woodland cover and landscape heterogeneity, but there was no evidence for a similar effect on carabid beetles. Fragmentation of open habitats negatively affected both early‐successional birds and carabids, specialist species being restricted to large heathlands and young plantations. Several birds of conservation concern were associated with mosaics of woodlands and grasslands, especially meadows and firebreaks. Conserving biodiversity in mosaic plantation landscapes could be achieved by the maintenance of a significant amount of early‐successional habitats and deciduous woodland patches within a conifer plantation matrix.  相似文献   

2.
Aim The woodland ecosystems of south‐eastern Australia have been extensively disturbed by agriculture and urbanization. Herein, the occurrence of birds in woodland remnants in three distinct landscapes was analysed to examine the effects of different types of landscape matrices on species richness vs. area and species richness vs. isolation relationships and individual species responses to woodland fragmentation. Location The study system comprised three distinct woodland landscapes of the northern Australian Capital Territory and bordering areas of New South Wales. These landscapes (termed agricultural, peri‐urban and urban) are located within 50 km of each other, have remnant fragments of similar age, size, isolation, woodland cover, elevation and climates. The major distinguishing feature of the three landscapes was the properties of the habitats surrounding the numerous woodland remnants. Methods Bird surveys, using an area‐search methodology, were conducted in 1999 and 2000 in 127 remnants in the three landscapes to determine bird species presence/absence. Each remnant was characterized by measures of remnant area, isolation and habitat complexity. To characterize differences between each landscape, we conducted an analysis of the amount of tree cover and human disturbance in each landscape using SPOT imagery and aerial photographs. Linear regressions of woodland‐dependent species richness vs. remnant area and remnant isolation for the three different landscapes were calculated to see if there were any apparent differences. Binomial logistic regressions were used to determine the relationships between the occurrence of each species and the size and isolation of woodland habitat, in each landscape. Results All the landscapes displayed a significant (P < 0.01) species vs. area relationship, but the slope of the urban relationship was significantly greater than those of the other landscapes. In contrast, only the agricultural landscape displayed a significant (P < 0.01) species richness vs. isolation relationship. When individual species were investigated, we found species that were: (1) apparently insensitive to reduction in remnant area and increase in isolation across all landscapes, (2) absent in small remnants in all landscapes, (3) absent in small remnants in all landscapes and also absent in isolated remnants in the agricultural landscape, (4) absent in isolated remnants in the agricultural landscape, and (5) absent in small remnants in the urban landscape. Threshold values (50% probability of occurrence) for area and isolation for individual species were highly variable across the three landscapes. Main conclusions These results indicate that woodland bird communities have a varying response to habitat fragmentation in different landscapes. Whilst we cannot be sure how representative our chosen landscapes are of other similarly composed landscapes, these results suggest that the type of landscape matrix may have a considerable influence on how bird species are affected by woodland fragmentation in the region. For instance, the properties of a matrix may influence both the resources available in the landscape as a whole for different bird species, and the connectivity (dispersal of birds), between woodland remnants. We encourage further research that examines these hypotheses and argue that the management of the matrix should be included in conservation strategies for fragmented landscapes.  相似文献   

3.
The Mediterranean climate region of central Chile is rich in biodiversity and contains highly productive agricultural lands, which creates challenges for the preservation of natural habitats and native biodiversity. Ecological data and studies for the region are also limited, making informed conservation in agricultural landscapes difficult. The increasing availability of remotely sensed data provide opportunities to relate species occurrences to measures of landscape heterogeneity even when field measures of habitat structure are lacking. When working with such remotely sensed data, it’s important to select appropriate measures of heterogeneity, including common metrics of landscape composition as well as frequently overlooked shape metrics. In this contribution we combine bird surveys with multispectral satellite imagery to develop boosted regression tree models of avian species richness, and of habitat use for 15 species across a mixed vineyard-matorral landscape in central Chile. We found a range of associations between individual species and land cover types, with the majority of species occurring most frequently in remnant habitats and ecotones rather than the interiors of large vineyard blocks. Models identified both metrics of landscape composition and patch shape as being important predictors of species occurrence, suggesting that shape metrics can complement more commonly used metrics of landscape composition. Vineyards that include corridors or islands of remnant habitat among vine blocks may increase the amount of area available to many species, although some species may still require large tracts of intact natural habitat to persist.  相似文献   

4.
Sensitivity to habitat fragmentation often has been examined in terms of thresholds in landscape composition at which a species is likely to occur. Observed thresholds often have been low or absent, however, leaving much unexplained about habitat selection beyond initial thresholds of occurrence, even for species with strong habitat preferences. We examined responses to varying amounts of tree cover, a widely influential measure of habitat loss, for 40 woodland bird species in a mixed woodland/grassland landscape in eastern North Dakota, USA. We used LOESS smoothing to describe incidence for each species at three scales: within 200, 400, and 1200 m around sample locations. For the 200‐m scale, we also calculated the most‐preferred range of tree cover (within which at least half of observations were predicted to occur) for each species. Only 10 of 40 species had occurrence thresholds greater than about 10% tree cover. After initial occurrence, species showed three general patterns: some increased monotonically with tree cover; some increased up to an asymptote; some peaked at intermediate amounts of tree cover and then declined. These patterns approximate selection for interior woodlands and for edge‐rich environments, but incidence plots provide greater detail in landscape‐scale selection than do those categories. For most species, patterns persisted at larger scales, but for some, larger scales had distinctly different patterns than local scales. Preferred ranges of tree cover varied from <20% tree cover (common grackle, Quiscalus quiscula) to >60% (veery, Catharus fuscescens). We conclude that incidence patterns provide more information on habitat selection than do threshold measures for most species: in particular, they differentiate species preferring concentrated woodlands from those preferring mixed landscapes, and they show contrasting degrees of selectiveness. [Correction added on 16 October 2012, after first online publication: the Abstract section has been reworded].  相似文献   

5.
《Ecography》2002,25(2):161-172
Fire is a key mechanism creating and maintaining habitat heterogeneity in Mediterranean landscapes by turning continuous woody landscapes into mosaics of forests and shrublands. Due to the long historical role of fires in the Mediterranean, we hypothesised a moderate negative effect of this type of perturbation on forest bird distribution at a landscape level. We conducted point bird censuses in Aleppo pine forest patches surrounded by burnt shrublands and studied the relationships between three ecological groups of bird species (forest canopy species, forest understorey species, and ubiquitous species) and the features of local habitat, whole patch and surrounding landscape. We used a multi-scale approach to assess the effects of landscape variables at increasing spatial scales on point bird richness. Regarding local habitat components, canopy species were positively associated with tall pines while understorey species with the cover of shrubs and plants from holm-oak forests. Forest birds were positively related to patch size and irregular forest shapes, that is, with high perimeter/size ratios. Thus, these species did not seem to perceive edges as low quality but rather favourable microhabitats. We did not detect any negative effect of isolation or cover of woodlands in the landscape on the presence of forest species after local habitat factors had been accounted for. Finally, only local habitat factors entered the model for ubiquitous species. We suggest that mosaic-like landscapes shaped by fires in the Mediterranean basin are not strongly associated with negative effects fragmentation on forest birds other than those related with habitat loss.  相似文献   

6.
Importance of patch scale vs landscape scale on selected forest birds   总被引:8,自引:0,他引:8  
The management and protection of natural areas have primarily occurred in isolation from surrounding land management. The structure of surrounding land cover, however, may be important to the abundance and reproductive success of birds within a habitat patch. We investigated the relative importance of forest patch area, within patch habitat and surrounding landscape forest cover on the abundance of three Neotropical migrant bird species thought to be area-sensitive (ovenbird [ Seiurus aurocapillus ], wood thrush [ Hylocichla mustelina ] and red-eyed vireo [ Vireo olivaceus ]), and on pairing success of the ovenbird. We selected 31 isolated forest patches of differing sizes, and three 80-ha plots in continuous forest each centered within non-overlapping 200-ha landscapes, such that patch area and landscape forest cover were uncorrelated among landscapes. Each study plot was surveyed to estimate abundances of territorial males and ovenbird pairing success. Landscape forest cover ( p <0.05) explained the most variation in ovenbird abundance, while percent deciduous forest cover within patches ( p <0.05) and patch size ( p <0.05) explained the most variation in red-eyed vireo and wood thrush abundance, respectively. Patch size was a significant ( p <0.05) predictor of abundance for all three study species; however, density for all species decreased significantly ( p <0.05) with patch size. Ovenbird pairing success was higher in continuous forest plots than in forest patches ( p =0.018). This study's findings suggest that the relative importance of within patch characteristics, patch size and landscape forest cover varies for different bird species, and that conservation efforts would benefit from the inclusion of all three factors.  相似文献   

7.
Spatial analysis of remotely-sensed land cover data in conjunction with species distribution atlases can reveal large-scale relationships between animal taxa and their habitats. We investigated the historical distribution patterns of three declining woodland birds, the Marsh Tit (Poecile palustris), Willow Tit (Poecile montana) and Lesser Spotted Woodpecker (Dendrocopos minor), in relation to a parsimonious landscape metric for describing habitat availability in Britain. Bird distributions were derived from two field-based atlas surveys, conducted in 1968–1972 and 1988–1991, and used to classify areas of the landscape for each species as retained, lost or gained between atlas periods, or unoccupied in both. We used remotely-sensed land cover data from 1990 to compare percentage habitat cover between landscape areas classified by bird occupation, and regional summary data from national woodland inventories to investigate changes in habitat cover and bird distributions. Percentage habitat cover was a sufficient landscape metric to explain the distribution pattern of all three bird species; habitat cover was greatest in areas where each species was retained between atlas surveys, significantly less in areas from which species were lost, and least in areas that remained unoccupied. Reductions in Marsh Tit distribution were less in regions that showed greater increases in habitat cover, but there was no such relationship for other species. Results indicated that spatial studies could be used to infer aspects of the spatial ecology of species where field data is lacking: by comparing distribution patterns with the relatively well-studied Marsh Tit, we found support for the assumption that the Lesser Spotted Woodpecker occupies very large territories in Britain, and provided evidence that the spatial habitat requirements of the Marsh Tit could be used as a proxy for the data-poor Willow Tit. The results showed that the habitat cover required to retain each species in the landscape had increased over time, illustrating how spatial studies can be used to identify priorities for further research and suggest conservation measures for declining species, and these are discussed.  相似文献   

8.
Aim To compare bird abundances in woodlands along gradients from the city centre to the peri‐urban area. To evaluate the importance of the proportion of woodland within the city and in the peri‐urban landscape to forest bird communities breeding in urban woodlands. To test whether fragmentation effects on birds were linked to the type of peri‐urban matrix. Location A total of 34 Swedish cities with > 10,000 inhabitants in south‐central Sweden. The study area covered 105,000 km2, in which 84% of the Swedish population of 9.1 million lives. Methods Repeated point count surveys were conducted in 2004 in a total of 474 woodlands. General linear models were used to test for possible differences in abundance along urban to peri‐urban gradients, and to regress bird abundances in local urban woodlands on: (1) total woodland cover in the city, (2) total woodland cover in the peri‐urban landscape, (3) the interaction between woodland cover in the city and in the peri‐urban area, (4) region, and (5) human density. Results More than 12,000 individuals of 100 forest bird species were recorded. Of the 34 most common species detected, 13 bird species had higher abundances in urban than in peri‐urban woodlands, and seven species showed the opposite trend. The bird community of urban woodlands was characterized by species associated with deciduous forests and tree nesters, whereas the bird community of peri‐urban woodlands was characterized by species associated with coniferous woodland and ground nesters. Twelve species were significantly linearly associated with the proportion of urban woodland and/or the proportion of peri‐urban woodland, and a further eight species were associated with the interaction between these two factors. Local breeding bird abundances of four species were significantly positively associated with the proportion of urban woodland only in farmland‐dominated landscapes. Main conclusions Fragmentation effects on some urban birds are linked to the type of peri‐urban matrix. In farmland landscapes, peri‐urban woodlands may have been too scarce to act as a source of bird immigrants to fragmented urban woodlands. To maintain populations of specialized forest birds within cities in landscapes dominated by agriculture, it is of paramount importance to conserve any remaining urban woodlands.  相似文献   

9.
Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1) How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2) Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3) Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha) over two time periods across a large (6,800 km2) agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.  相似文献   

10.
Aim Urbanization is a leading threat to global biodiversity, yet little is known about how the spatial arrangement and composition of biophysical elements – buildings and vegetation – within a metropolitan area influence habitat selection. Here, we ask: what is the relative importance of the structure and composition of these elements on bird species across multiple spatial scales? Location The temperate metropolitan area of Cincinnati, Ohio, USA. Methods We surveyed breeding birds on 71 plots along an urban gradient. We modelled relative density for 48 bird species in relation to local woody vegetation composition and structure and to tree cover, grass cover and building density within 50–1000 m of each plot. We used an information‐theoretic approach to compare models and variables. Results At the proximate scale, native tree and understory stem frequency were the most important vegetation variables explaining bird distributions. Species’ responses to landscape biophysical features and spatial scales varied. Most native species responded positively to vegetation measures and negatively to building density. Models combining both local vegetation and landscape information represented best or competitive models for the majority of species, while models containing only local vegetation characteristics were rarely competitive. Smaller spatial scales (≤ 500 m) were most important for 36 species, and eight species had best models at larger scales (> 500 m); however, several species had competitive models across multiple scales. Main conclusions Habitat selection by birds within the urban matrix is the result of a combination of factors operating at both proximate and broader spatial scales. Efforts to manage and design urban areas to benefit native birds require both fine‐scale (e.g., individual landowners and landscape design) and larger landscape actions (e.g., regional comprehensive planning).  相似文献   

11.
12.
The abundance of woodland birds in fragmented forest landscapes may depend on the properties of patch networks. Understanding the consequences of deforestation on woodland birds, therefore, necessarily requires determining which changes in landscape structure make a major contribution to the degradation and subdivision of patch networks. In this study, we addressed how accelerated deforestation in central Chile has modified the landscape structure and function for thorn-tailed rayaditos—a woodland specialist bird. Using a graphical approach based on the habitat use and movement patterns of rayaditos, we quantified the reduction of the internal connectivity of components (i.e., connected patch networks) in the last two decades and determined the main mechanisms responsible for this connectivity loss. Forest cover decreased 61.7 % between 1989 and 2009. The component size, the fraction of components with ≥1 occupied patches and the number of patches per component experienced a large decline during the study period. Over time, most forest cover (ca. 80 %) was contained in only two components. The connectivity of components decreased steeply by 90 %. Only the loss of large patches made a highly significant contribution to explaining changes in connectivity, while the removal of stepping stones was marginally significant. The conversion of forest both to shrubland and to peri-urban areas were the only land-use variables explaining connectivity change with effects that changed over time. Conservation measures to ensure persistence of rayaditos populations in central Chile should be focused on the retention of key elements for connectivity.  相似文献   

13.
Conceptualising landscapes as a mosaic of discrete habitat patches is fundamental to landscape ecology, metapopulation theory and conservation biology. An emerging question in ecology is: when is the discrete patch model more appropriate than alternative and conceptually appealing models such as the continuum model? There is limited empirical testing of the utility of alternative landscape models compared to the discrete patch model for a range of species. In this paper, we constructed three alternative sets of models for testing the effect of landscape structure on diversity and abundance of a suite of woodland birds in a savanna landscape of northern Australia: the null model (only site‐scale habitat variables, landscape context not important), the continuum model, and the discrete patch model. We utilised high‐spatial resolution satellite images to quantify spatial gradients in tree cover density (the continuum model), and to then aggregate the fine‐scale heterogeneity in tree cover into discrete patches of trees, with grass cover forming the “matrix” (the discrete patch‐model). We then evaluated the relative importance of the alternative models using generalised linear models and an information theoretic approach. We found that the importance of the models varied among species, with no single model dominant. Species that move between open grassy areas and woody shelter responded well to the continuum model, reflecting the importance of gradients in density of forage (grasses) and cover (trees), while the discrete model performed best for species that forage in all vegetation strata, and nest predominantly in dense woody vegetation. This finding supports a pluralistic approach, highlighting the need for adopting and testing more than one landscape model in savanna landscapes, and in other landscapes that do not have a well defined patch structure.  相似文献   

14.
Species occurrence is influenced by a range of factors including habitat attributes, climate, weather, and human landscape modification. These drivers are likely to interact, but their effects are frequently quantified independently. Here, we report the results of a 13‐year study of temperate woodland birds in south‐eastern Australia to quantify how different‐sized birds respond to the interacting effects of: (a) short‐term weather (rainfall and temperature in the 12 months preceding our surveys), (b) long‐term climate (average rainfall and maximum and minimum temperatures over the period 1970–2014), and (c) broad structural forms of vegetation (old‐growth woodland, regrowth woodland, and restoration plantings). We uncovered significant interactions between bird body size, vegetation type, climate, and weather. High short‐term rainfall was associated with decreased occurrence of large birds in old‐growth and regrowth woodland, but not in restoration plantings. Conversely, small bird occurrence peaked in wet years, but this effect was most pronounced in locations with a history of high rainfall, and was actually reversed (peak occurrence in dry years) in restoration plantings in dry climates. The occurrence of small birds was depressed—and large birds elevated—in hot years, except in restoration plantings which supported few large birds under these circumstances. Our investigation suggests that different mechanisms may underpin contrasting responses of small and large birds to the interacting effects of climate, weather, and vegetation type. A diversity of vegetation cover is needed across a landscape to promote the occurrence of different‐sized bird species in agriculture‐dominated landscapes, particularly under variable weather conditions. Climate change is predicted to lead to widespread drying of our study region, and restoration plantings—especially currently climatically wet areas—may become critically important for conserving bird species, particularly small‐bodied taxa.  相似文献   

15.
During the springs of 1995–1997, we studied birds and landscapes at 70 sites in the Chihuahuan Desert to assess relations between bird community structure and landscape patchiness. Within each of two spatial extents (1‐km and 2‐km‐radius areas centered on each site), we measured the number of patches of individual land‐cover types and the total number of patches of all land‐cover types. Mean bird richness, and the mean abundance and probability of occurrence of most bird species were significantly correlated with one or more of these variables. Contrary to evidence from other systems, positive association with landscape patchiness did not increase with the degree to which species were habitat generalists, was not negatively related to body size, and did not differ between neotropical migrants and nonmigrants. For the communities’ primary constituent species as a group, the strength of positive and negative associations with patchiness did not differ between landscape extents. Within the 1‐km but not the 2‐km extent, habitat specialists were more positively and negatively associated with patchiness than were habitat generalists. In general, however, neither habitat breadth, body size, nor migratory status seemed to be responsible for associations with landscape patchiness. Mean richness, and the mean abundance and probability of occurrence of most species were significantly correlated with patchiness within one or both extents, and patchiness of all of the most extensive land‐cover types was influential. The simplest explanation for most of the bird‐patchiness relations we found is that the associations reflected species‐specific habitat needs. Through effects on avian richness, abundance, and occurrence, landscape patchiness affected bird community structure. A more complete understanding of the effects of landscape patchiness on bird community structure is likely to emerge when ecologists study the patchiness of major land‐cover types at various spatial extents.  相似文献   

16.
In fragmented landscapes the relationship between the probability of occurrence of single species and the amount of suitable habitat is usually not proportional, with a threshold habitat level below which the population becomes extinct. Ecological theory predicts that, although the reduction in species’ occurrence probabilities (and eventually the extinction threshold) is a direct consequence of habitat loss, habitat fragmentation might reduce species’ occurrence probabilities and affect the location of this threshold by reducing its predicted occurrence to lower levels of habitat amount. However, little is known about the validity of this extinction threshold hypothesis. Here, we performed analyses on the relationships between the probability of occurrence of eight tree species and the availability of forest habitat for two different empirical scenarios of low and moderate to high fragmentation. We partitioned the effects of habitat amount versus fragmentation by using two metrics: (1) the percentage of forest cover, and (2) the proportion of this percentage occurring in the largest forest patch. We find that, although decreasing forest cover had negative effects on the occurrence of tree species irrespective of fragmentation levels, forest fragmentation significantly modified the response pattern in six tree species, although only one species confirmed the extinction threshold hypothesis, which we interpret as a consequence of high degree of forest specialism and low dispersal ability. For most species, fragmentation either had positive effects or did not affect significantly the species’ probability of occurrence. This indicates that the effects of habitat fragmentation on tree species are weak relative to the effects of habitat amount, which is the main determinant of the reduction in species’ occurrence probabilities, and eventually species extinction, in fragmented landscapes.  相似文献   

17.
Landscape features are often used as surrogates for biodiversity. While landscape features may perform well as surrogates for coarse metrics of biodiversity such as species richness, their value for monitoring population trends in individual species is virtually unexplored. We compared the performance of a proposed habitat surrogate for birds, percentage cover of vegetation overstory, for two distinct aspects of bird assemblages: community diversity (i.e. species richness) and population trends. We used four different long-term studies of open woodland habitats to test the consistency of the relationship between overstory percentage cover and bird species richness across a large spatial extent (>1000 km) in Australia. We then identified twelve bird species with long-term time-series data to test the relationship between change in overstory cover and populations trends. We found percentage cover performed consistently as a surrogate for species richness in three of the four sites. However, there was no clear pattern in the performance of change in percentage cover as a surrogate for population trends. Four bird species exhibited a significant relationship with change in percentage overstory cover in one study, but this was not found across multiple studies. These results demonstrate a lack of consistency in the relationship between change in overstory cover and population trends among bird species, both within and between geographic regions. Our study demonstrates that biodiversity surrogates representing community-level metrics may be consistent across regions, but provide only limited information about individual species population trends. Understanding the limitations of the information provided by a biodiversity surrogate can inform the appropriate context for its application.  相似文献   

18.
Species distribution models are often used to study the biodiversity of ecosystems. The modelling process uses a number of parameters to predict others, such as the occurrence of determinate species, population size, habitat suitability or biodiversity. It is well known that the heterogeneity of landscapes can lead to changes in species’ abundance and biodiversity. However, landscape metrics depend on maps and spatial scales when it comes to undertaking a GIS analysis.We explored the goodness of fit of several models using the metrics of landscape heterogeneity and altitude as predictors of bird diversity in different landscapes and spatial scales. Two variables were used to describe biodiversity: bird richness and trophic level diversity, both of which were obtained from a breeding bird survey by means of point counts. The relationships between biodiversity and landscape metrics were compared using multiple linear regressions. All of the analyses were repeated for 14 different spatial scales and for cultivated, forest and grassland environments to determine the optimal spatial scale for each landscape typology.Our results revealed that the relationships between species’ richness and landscape heterogeneity using 1:10,000 land cover maps were strongest when working on a spatial scale up to a radius of 125–250 m around the sampled point (circa 4.9–19.6 ha). Furthermore, the correlation between measures of landscape heterogeneity and bird diversity was greater in grasslands than in cultivated or forested areas. The multi-spatial scale approach is useful for (a) assessing the accuracy of surrogates of bird diversity in different landscapes and (b) optimizing spatial model procedures for biodiversity mapping, mainly over extensive areas.  相似文献   

19.
《Acta Oecologica》1999,20(1):1-13
We have investigated the effects of landscape traversed and roadside structure on the use of highway verges by birds. Three contrasted landscapes were chosen in terms of human land use and vegetation structure: an intensive farmland, a pine plantation, and a matoral. The roadside sections varied in vegetation structure, width and profile. We recorded birds present in roadsides and adjacent habitats by transect counts over all seasons. Roadside bird species appeared for a great part similar to those of adjacent habitats. However, diversity and abundance in verges did not depend on that of adjacent habitats. Woody roadsides were comparable to hedges, as trees (and shrubs) in verges enhanced species richness and abundance of birds in the farmland and woodland sites. Width and profile of verges had less influence. In all sites, typical species of the habitat traversed partly avoided roadsides. On the contrary, numerous species associated with ‘rare’ habitats in one site preferred roadsides, provided that verge vegetation contrasted with the dominant habitat. It is concluded that birds responses to highways can vary greatly with landscape traversed and verge vegetation. Highway verges could be favorable to birds, if they constitute a complementary habitat to the dominant habitat within a landscape.  相似文献   

20.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号