首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric carbon dioxide concentration is expected to rise in the coming decades. Rising atmospheric CO2 levels may alter plant‐insect‐parasitoid associations due to the indirect effects of CO2 enrichment on phytochemicals important for herbivore and parasitoid nutrition. Tritrophic effects of elevated CO2 on Bt cotton (GK‐12) and non‐transgenic (Simian‐3, or S3) cotton [Gossypium hirsutum L. (Malvaceae)], Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae), and its parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae), were examined in open‐top chambers. Significantly, longer egg‐adult developmental duration and higher mortality of nymphs were observed under elevated CO2 concentrations on both cotton cultivars during three successive generations. However, no significant differences were found in adult longevity, offspring sex ratio, and the number of eggs laid per female adult of B. tabaci fed on transgenic (GK‐12) or non‐transgenic cotton (S3) grown under elevated CO2. Abundance of B. tabaci adults increased from 10 to 120 per plant and then decreased to 40 per plant through the growing season, but no significant differences in density occurred between CO2 treatments and between cultivar treatments. Similarly, no significant differences were found in the developmental duration, parasitization rate, and adult emergence rate of E. formosa after parasitizing B. tabaci for three successive generations. Our results showed that the effects of transgenic Bt cotton did not significantly affect the development, survivorship, life span, or fecundity of B. tabaci and its parasitoids. Moreover, interactions between B. tabaci and E. formosa were not significantly affected by elevated CO2. These results suggest that the biological control of B. tabaci by E. formosa would not be influenced by transgenic Bt cotton and/or elevated CO2, indicating that the current risk management strategy regarding B. tabaci outbreaks and biocontrol by E. formosa will remain effective if the atmospheric CO2 level continues to rise.  相似文献   

2.
Abstract Effects of elevated CO2 (twice ambient vs. ambient) and Bt Cry1Ac transgene (Bt cotton cv. 33B vs. its nontransgenic parental line cv. DP5415) on the interspecific competition between two ecologically similar species of cotton aphid Aphis gossypii and whitefly biotype‐Q Bemisia tabaci were studied in open‐top chambers. The results indicated that elevated CO2 and Bt cotton both affected the population abundances of A. gossypii and biotype‐Q B. tabaci when introduced solely (i.e., without interspecific competition) or two species coexisted (i.e., with interspecific competition). Compared with ambient CO2, elevated CO2 increased the population abundances of A. gossypii and biotype‐Q B. tabaci as fed on Bt and nontransgenic cotton on 45 (i.e., seedling stage) and 60 (i.e., flowering stage) days after planting (DAP), but only significantly enhanced aphid abundance without interspecific competition on the 45‐DAP nontransgenic cotton and 60‐DAP Bt cotton, and significantly increased whitefly abundance with interspecific competition on the 45‐DAP Bt cotton and 60‐DAP nontransgenic cotton. In addition, compared with nontransgenic cotton at elevated CO2, Bt cotton significantly reduced biotype‐Q B. tabaci abundances without and with interspecific competition during seedling and flowering stage, while only significantly decreasing A. gossypii abundances without interspecific competition during the seedling stage. When the two insect species coexisted, the proportions of biotype‐Q B. tabaci were significantly higher than those of A. gossypii on Bt and nontransgenic cotton at the same CO2 levels, and elevated CO2 only significantly increased the percentages of biotype‐Q B. tabaci and significantly reduced the proportions of A. gossypii on seedling and flowering nontransgenic cotton. Therefore, the effects of elevated CO2 were favorable for biotype‐Q B. tabaci to out‐compete A. gossypii under the predicted global climate change.  相似文献   

3.
With the cultivation of Bt cotton, the produced insecticidal Cry proteins are ingested by herbivores and potentially transferred along the food chain to natural enemies, such as predators. In laboratory experiments with Bollgard II cotton, concentrations of Cry1Ac and Cry2Ab were measured in Lepidoptera larvae (Spodoptera littoralis, Heliothis virescens), plant bugs (Euschistus heros), aphids (Aphis gossypii), whiteflies (Bemisia tabaci), thrips (Thrips tabaci, Frankliniella occidentalis), and spider mites (Tetranychus urticae). Tritrophic experiments were conducted with caterpillars of S. littoralis as prey and larvae of ladybird beetles (Harmonia axyridis, Adalia bipunctata) and lacewings (Chrysoperla carnea) as predators. Immunological measurements (ELISA) indicated that herbivores feeding on Bt cotton contained 5%–50% of the Bt protein concentrations in leaves except whiteflies and aphids, which contained no or only traces of Bt protein, and spider mites, which contained 7 times more Cry1Ac than leaves. Similarly, predators contained 1%–30% of the Cry protein concentration in prey. For the nontarget risk assessment, this indicates that Bt protein concentrations decrease considerably from one trophic level to the next in the food web, except for spider mites that contain Bt protein concentrations higher than those measured in the leaves. Exposure of phloem sucking hemipterans is negligible.  相似文献   

4.
The tomato Mi gene confers resistance to nematodes, Meloidogyne spp., and to the potato aphid, Macrosiphum euphorbiae (Thomas). Previous greenhouse choice assays with Bemisia tabaci (Gennadius) showed that tomato commercial varieties carrying this gene had significantly lower values of host suitability and whitefly reproduction than varieties lacking Mi. This indicated that Mi, or another gene in its region, could regulate partial resistance. In order to characterise this resistance, probing and feeding behaviour of Bemisia tabaci B-biotype was studied with DC Electrical Penetration Graph (EPG) technique on the near-isogenic tomato lines Moneymaker (without Mi) and Motelle (carrying Mi). Significant differences (P < 0.05) between tomato lines were found in EPG parameters related to epidermis and/or mesophyll tissues. On Motelle, a lower percentage of whiteflies achieved phloem phase and they made more probes before attaining first phloem phase, had a higher ratio (number of probes before first phloem phase)/(total number of probes), had a longer total duration of non-probing time, and a longer time before making the first intracellular puncture and before making the first phloem phase. In contrast, most of the parameters related to phloem phase were found not to differ significantly between these near-isogenic lines. The behavioural data strongly suggest that the partial resistance in the variety Motelle is due to factors in the epidermis and/or mesophyll that inhibit the whiteflies from reaching phloem sieve elements. However, once the stylets reach a sieve element, whitefly behaviour did not differ between the two varieties. Thus, phloem sap of the two varieties appears to be equally acceptable to the whiteflies. Further studies are necessary to provide a better understanding of these mechanisms of resistance to whiteflies in tomatoes.  相似文献   

5.
Superoxide dismutases (SODs) are a group of important antioxidant defense enzymes. In this study, a putative extracellular Cu/Zn superoxide dismutase (ecCuZnSOD) complementary DNA was cloned and characterized from the whitefly, Bemisia tabaci. Quantitative polymerase chain reaction analysis showed that the expression level of Bt‐ecCuZnSOD was more than 10‐fold higher in the invasive Middle East Asia Minor 1 (MEAM1) than in the native Asia II 3 species of the B. tabaci species complex. After exposure to low temperature (4 °C), the expression of Bt‐ecCuZnSOD gene was significantly up‐regulated in MEAM1 but not in Asia II 3. Furthermore, the expression level of B. tabaci intracellular CuZnSOD (Bt‐icCuZnSOD), Bt‐ecCuZnSOD and mitochondrial MnSOD (Bt‐mMnSOD) was compared after transferring MEAM1 and Asia II 3 whiteflies from favorable (cotton) to unfavorable host plants (tobacco). On cotton, both CuZnSOD genes were expressed at a higher level in MEAM1 compared with Asia II 3. Interestingly, after transferring onto tobacco, the expression of Bt‐ecCuZnSOD was significantly induced in Asia II 3 but not in MEAM1. On the other hand, while Bt‐mMnSOD was expressed equally in both species on cotton, Bt‐mMnSOD messenger RNA was up‐regulated in MEAM1 on tobacco. Consistently, enzymatic activity assays of CuZnSOD and MnSOD demonstrated that CuZnSOD might play an important protective role against oxidative stress in Asia II 3, whereas MnSOD activation was critical for MEAM1 whiteflies during host adaptation. Taken together, our results suggest that the successful invasion of MEAM1 is correlated with its constitutive high activity of CuZnSOD and inducible expression of MnSOD under stress conditions.  相似文献   

6.
Plant viruses can produce direct and plant-mediated indirect effects on their insect vectors, modifying their life cycle, fitness and behavior. Viruses may benefit from such changes leading to enhanced transmission efficiency and spread. In our study, female adults of Bemisia tabaci were subjected to an acquisition access period of 72 h in Tomato yellow leaf curl virus (TYLCV)-infected and non-infected tomato plants to obtain viruliferous and non-viruliferous whiteflies, respectively. Insects that were exposed to virus-infected plants were checked by PCR to verify their viruliferous status. Results of the Ethovision video tracking bioassays indicated that TYLCV induced an arrestant behavior of B. tabaci, as viruliferous whitefly adults remained motionless for more time and moved slower than non-viruliferous whiteflies after their first contact with eggplant leaf discs. In fact, Electrical Penetration Graphs showed that TYLCV-viruliferous B. tabaci fed more often from phloem sieve elements and made a larger number of phloem contacts (increased number of E1, E2 and sustained E2 per insect, p<0.05) in eggplants than non-viruliferous whiteflies. Furthermore, the duration of the salivation phase in phloem sieve elements (E1) preceding sustained sap ingestion was longer in viruliferous than in non-viruliferous whiteflies (p<0.05). This particular probing behavior is known to significantly enhance the inoculation efficiency of TYLCV by B. tabaci. Our results show evidence that TYLCV directly manipulates the settling, probing and feeding behavior of its vector B. tabaci in a way that enhances virus transmission efficiency and spread. Furthermore, TYLCV-B. tabaci interactions are mutually beneficial to both the virus and its vector because B. tabaci feeds more efficiently after acquisition of TYLCV. This outcome has clear implications in the epidemiology and management of the TYLCV-B. tabaci complex.  相似文献   

7.
The whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae), harbors primary and secondary endosymbionts. Previous research showed that the invasive B biotype and an indigenous non‐B biotype (named non‐B ZHJ‐1 population) of B. tabaci from Zhejiang, China, harbored different endosymbionts. To investigate the function of these endosymbionts in the two biotypes of B. tabaci, we fed adult whiteflies with three antibiotics, tetracycline, ampicillin trihydrate, and rifampicin, and evaluated the fitness of their offspring on cotton plants. These three antibiotics did not remove the primary endosymbiont Portiera aleyrodidarum but were capable of eliminating the secondary endosymbionts. In the B biotype, treatments of adults with tetracycline or ampicillin trihydrate accelerated development and increased the survival of their offspring, while treatment of adults with rifampicin significantly retarded the development of their offspring but did not affect their survival. In the non‐B ZHJ‐1 population, treatments of adults with tetracycline or ampicillin trihydrate also accelerated the development of their offspring but did not significantly affect their survival, while treatment of adults with rifampicin significantly retarded development and reduced the survival of their offspring. These results suggest that removal of some secondary endosymbionts and/or reduction of the primary endosymbiont from B. tabaci may produce both favorable and unfavorable effects on the fitness of the host insects.  相似文献   

8.
Encarsia formosa Gahan is a solitary endoparasitoid that is commercially reared and released for augmentative biological control of whiteflies including Bemisia tabaci (Gennadius). Bemisia tabaci biotypes B and Q are two most invasive species that greatly reduce crop yields in China by feeding on plant sap and by transmitting Tomato Yellow Leaf Curl Virus (TYLCV). The effects of TYLCV infection of tomato on E. formosa foraging on B. tabaci B and Q are unknown. In Y-tube olfactometer assays in the present study, E. formosa significantly preferred TYLCV-infected tomato plants over TYLCV-free plants. The wasp females also significantly preferred TYLCV-infected tomato plants infested with 3rd-instar nymphs of B. tabaci biotype Q over TYLCV-free plants with biotype Q nymphs. However, no significant differences were observed when B. tabaci biotype B was infested on tomato plants. The oviposition bioassays confirmed that TYLCV infection on tomato plants resulted in the recruitment of parasitoids. These results indicate that TYLCV-infection of tomato increase the foraging of E. formosa on B. tabaci, as differs on the B and Q biotypes.  相似文献   

9.
Summary The ultrastructure of the endosymbionts of several populations of whitefly (Homoptera: Aleyrodidae) was examined using transmission electron microscopy. Consistent differences in morphology and relative number of endosymbionts were observed between species and biotypes of whitefly within the Bemisia taxon.Bemisia argentifolii (=B. tabaci B biotype) individuals from Hawaii, Florida, and Arizona contained two morphological types of microorganisms housed within the mycetocyte cells of immature whiteflies. In contrast, individuals from populations ofB. tabaci A biotype from Arizona and Mexico, andB. tabaci Jatropha biotype from Puerto Rico, consistently contained three distinct morphological types of microorganisms within their mycetocytes. Organisms fromB. tabaci A and Jatropha biotypes differed from each other in the relative frequency of each type of microorganism. These observations suggest that different whitefly biotypes may have variable combinations of micro-fauna, with some possibly unique to each group, and furthers the hypothesis that variation in whitefly endosymbionts may be associated with the development of biotypes.  相似文献   

10.
Eighteen populations of Bemisia tabaci, collected from different geographic locations (North & Central America, the Caribbean, Africa, the Middle East, Asia and Europe), were studied to identify and compare biological and genetic characteristics that can be used to differentiate biotypes. The morphology of the fourth instar/pupal stage and compound eye structures of adults were investigated using scanning electron microscopy and found to be typical of the species among all biotypes and populations studied. Setae and spines of B. tabaci larval scales from the same colony were highly variable depending on the host plant species or leaf surface characteristics. The location and the morphology of caudal setae, characteristic of all B. tabaci studied to date, were present in all colonies. However, differences in adult body lengths and in the ability to induce phy to toxic disorders in certain plant species were found between biotypes or populations. The recently identified “B” biotype, characterised by a diagnostic esterase banding pattern and by its ability to induce phytotoxic responses in squash, honeysuckle and nightshade was readily distinguished from non-“B” biotype populations. None of the non-“B” biotypes studied, were found to induce phytotoxic responses. Nine populations examined showed typical “B” biotype characteristics, regardless of country of origin. All tested populations, determined as “B” or “B”-like biotypes successfully mated with other “B” biotype colonies from different geographic areas. Non-“B” biotype colonies did not interbreed with other biotypes. The B. tabaci populations were tested for their ability to transmit 15 whitefly-transmitted geminiviruses (WTGs) from different geographic areas with a wide range of symptom types. All WTGs were transmitted by the “B” biotype colonies and by most non-“B” biotype colonies, with the exception of three viruses found in ornamental plants which were non-transmissible by any colony. Some non-“B” biotypes would not transmit certain geminiviruses and some geminiviruses were more efficiently transmitted than were others.  相似文献   

11.
Eretmocerus mundus Mercet is a parasitoidof Bemisia tabaci (Genn.) indigenous tothe Mediterranean and is used commercially foraugmentative biological control in Spain andelsewhere. A better understanding of thesuitability of different host instars wouldhelp optimize production and field application.Incidence of parasitism, development time,survivorship and sex ratio were evaluated whendifferent nymphal instars of the sweetpotatowhitefly Bemisia tabaci biotype `Q' wereoffered for parasitization. Experiments wereconducted on sweet pepper at 25 °C, 75%RH and 16:8 (L:D) photoperiod. E. mundusoviposited in all nymphal instars of B.tabaci except the mature 4th instar orpharate adult (previously designated, `pupa').Incidence of parasitism was greatest (33.8± 5.1 parasitized nymphs) and developmenttime shortest (14.1 ± 0.1 d) whenoviposition occurred under 2nd and3rd instar nymphs compared to 1st or4th instars. Survivorship (85%) andoffspring sex ratio (39.8% female) did notdiffer statistically for parasitoids developingin whiteflies that were parasitized asdifferent instars. Although 2nd and3rd instars were clearly the mostfavorable host stage for E. mundus, itscapacity to parasitize and develop on a widerange of host stages is a favorablecharacteristic for both rearing and fieldapplication.  相似文献   

12.
Abstract To better understand the etiology of begomovirus epidemics in regions under invasion we need to know how indigenous and invasive whitefly vectors respond to virus infection. We investigated both direct and indirect effects of infection with Tomato yellow leaf curl virus (TYLCV) on the performance of the invasive Q biotype and the indigenous Asian ZHJ2 biotype of whitefly Bemisia tabaci. The Q biotype performed better than the ZHJ2 biotype on either uninfected or virus‐infected tomato plants. However, virus‐infection of host plants did not, or only marginally affected, the performance of either biotype of whiteflies in terms of fecundity, longevity, survival, development and population increase. Likewise, association of the vectors with TYLCV did not affect fecundity and longevity of the Q or ZHJ2 biotypes on cotton, a non‐host of TYLCV. These results indicate that the alien Q biotype whitefly, but not the indigenous ZHJ2 biotype, is likely to become the major vector of TYLCV in the field and facilitate virus epidemics.  相似文献   

13.
Stylet penetration behaviors of cotton aphids Aphis gossypii Glover on a transgenic cotton line "GK-12" expressing Bt toxic protein of Cry1A (Bt cotton) and a non-Bt conventional cotton line "Simian-3" (CK cotton) were recorded with the direct current electrical penetration graph (DC-EPG) technique. Cotton aphids reared on Bt cotton (abbreviated as Bt-aphids) and its parental non-Bt control line (CK-aphids) for more than 20 generations each, were used for recordings on two cotton lines. Among 47 selected parameters reflecting the activities of aphid stylets within plant tissues, there were eight parameters of CK-aphids showing significant differences between the performances of CK-aphids on Bt cotton and CK cotton, while for Bt-aphids, all the parameters were statistically equal between the performances on the two cotton lines. All parameters with significant differences indicated that CK-aphids could penetrate into Bt cotton more easily, but the phloem saps of Bt cotton were not as good as those of regular cotton for CK-aphids. Based on the present results, we concluded that there were some factors in Bt cotton affecting penetration behaviors of CK-aphids, but it just took several generations for CK-aphids to completely adapt Bt cotton, and Bt-aphids could feed on two cotton lines without difficulty.  相似文献   

14.
The solenopsis mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae), is a polyphagous insect known to cause severe damage to cotton (especially transgenic varieties) in South Asia, and currently poses a serious threat in Asia and potentially elsewhere. Stylet penetration behavior of P. solenopsis on cotton was monitored using the electrical penetration graph (EPG) technique (DC system) and the EPG characteristics were compared with those previously published from Phenacoccus manihoti Matile‐Ferrero and Planococcus citri (Risso). We identified and further characterized typical waveforms of A, B, C, and pd (together pathway), E1 and E2 (phloem), F (derailed stylet mechanics), and G (xylem). Five novel EPG aspects were distinguished in the EPG waveforms from P. solenopsis: (1) obvious B waveforms occurred following waveform A, (2) during waveform C, some aphid‐like E1e waveforms were observed, (3) prolonged potential drops (pd) up to >1 h occurred with two continuously alternating sub‐phases pd1 and pd2, (4) the pd1 waveform always occurred as the first waveform related to phloem sieve elements, preceding the other phloem waveforms (E), the labeling of which we changed to achieve a better comparison to the aphid E waveforms, and (5) waveform F, related to derailed stylet mechanics occurred but was not reported from other mealybugs so far. This is mainly a waveform morphology study to extend existing knowledge on mealybug EPGs to investigate mealybug‐host plant interactions. Further experimental verification of waveform correlations with plant tissue positions of stylet tips and insect activities is still needed.  相似文献   

15.
The continuous rise of CO2 concentrations in the atmosphere is reducing plant nutritional quality for herbivores and indirectly affects their performance. The whitefly (Bemisia tabaci, Gennadius) is a major worldwide pest of agricultural crops causing significant yield losses. This study investigated the plant‐mediated indirect effects of elevated CO2 on the feeding behavior and life history of B. tabaci Mediterranean species. Eggplants were grown under elevated and ambient CO2 concentrations for 3 weeks after which plants were either used to monitor the feeding behavior of whiteflies using the Electrical Penetration Graph technique or to examine fecundity and fertility of whiteflies. Plant leaf carbon, nitrogen, phenols and protein contents were also analyzed for each treatment. Bemisia tabaci feeding on plants exposed to elevated CO2 showed a longer phloem ingestion and greater fertility compared to those exposed to ambient CO2 suggesting that B. tabaci is capable of compensating for the plant nutritional deficit. Additionally, this study looked at the transmission of the virus Tomato yellow leaf curl virus (Begomovirus) by B. tabaci exposing source and receptor tomato plants to ambient or elevated CO2 levels before or after virus transmission tests. Results indicate that B. tabaci transmitted the virus at the same rate independent of the CO2 levels and plant treatment. Therefore, we conclude that B. tabaci Mediterranean species prevails over the difficulties that changes in CO2 concentrations may cause and it is predicted that under future climate change conditions, B. tabaci would continue to be considered a serious threat for agriculture worldwide.  相似文献   

16.
The commercial adoption of transgenic Bacillus thuringiensis (Bt) cotton (Bollgard II®) reduced the use of insecticides to control Helicoverpa spp. However, the ineffectiveness of the Bt toxin against sucking pests such as silverleaf whiteflies (Bemisia tabaci) resulted in a marked increase in B. tabaci populations and in the use of insecticides to control this pest. The effect of the entomopathogenic fungus Aspergillus sp. BC 639 on B. tabaci and beneficial insects (predominantly predatory insects) was studied in commercial cotton field trials. The results showed that oil-based extracts of the entomopathogenic fungus BC 639 control the number of B. tabaci adults and nymphs in commercial transgenic cotton crops. The BC 639 fungus caused 60.0%, 67.2%, and 68.8% mortality in adults, and 54.6%, 62.3%, and 51.7% in nymphs at 7, 14, and 21 days after treatment, respectively, relative to the unsprayed controls. The effect of BC 639 at concentrations of 125, 250, and 500?ml/ha on low-density B. tabaci (~10 nymphs/leaf) did not differ significantly from that of the commercial insecticide (pyriproxifen). However, at higher densities (>50 nymphs per leaf), low concentrations of BC 639 (125 and 250?ml/ha) were not as effective as 500?ml/ha BC 639 in successfully controlling the pest. A simple graphic analysis suggested that the more B. tabaci nymphs per leaf, the fewer adults per leaf, and that once the number of nymphs increased to ~70 per leaf, a negative feedback regulatory effect reduced the survivorship of the nymphs and adults and/or caused the emigration of the adults from the contaminated leaves in search of new resources. Therefore, the ability of BC 639 to control B. tabaci adults and nymphs with minimal effects on predatory insects indicates its potential utility in supplementing integrated pest management programmes for cotton crops.  相似文献   

17.
Worldwide, the most two important cryptic species of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) are MEAM1 (Middle East–Asia Minor 1, “B” biotype) and MED (Mediterranean, “Q” biotype). Although both B. tabaci MEAM1 and MED are polyphagous, they differ greatly in host choice and performance on various host plants. MEAM1 prefer to settle and perform better than MED on cabbage (Brassica oleracea), for example, but the underlying mechanism is largely unexplored. In the present study, we first measured the contents of the main secondary insect-resistant substances (glucosinolates and phenolics) and main nutrients (soluble proteins, total amino acids and total nitrogen) in five cabbage genotypes. We then examined the settling and oviposition choices of MEAM1 and MED on the five cabbage genotypes, respectively. The settling and oviposition preferences of both MEAM1 and MED were negatively related to the content of total phenolics rather than to the content of glucosinolates or main nutrients. Furthermore, our results showed that MEAM1 ranked the host quality of the cabbage genotypes more accurately than MED. The results at least in part indicate that total phenolics rather than glucosinolates mediate the host choice of B. tabaci MEAM1 and MED on the five cabbage genotypes.  相似文献   

18.
Two whitefly biotypes of Bemisia tabaci, from either the Eastern or Western Hemisphere, respectively, were compared with respect to their competency to ingest and their efficiency to transmit the New World begomovirus, Chino del tomate virus (CdTV). The AZ A biotype of B.tabaci originates from the arid southwestern USA and northwestern Mexico, while the B biotype has an origin in the Middle East or Northern Africa. The ability of these two vector biotypes to ingest and subsequently to transmit CdTV were evaluated for an acquisition‐access period (AAP) that ranged from 0 to 72 h, followed by a 48 h inoculation‐access period (IAP). Individual adult whiteflies were monitored for CdTV ingestion using polymerase chain reaction (PCR) to detect the viral coat protein gene (AV1 ORF), and transmission efficiency (frequency) was determined by allowing potentially viruliferous whiteflies access to tomato seedlings following each experimental AAP. PCR results for individual adult whiteflies indicated that CdTV was ingested from infected tomato plants by both biotypes 93% of the time. Transmission frequencies by both vector biotypes increased with longer AAPs. However, the AZ A biotype transmitted CdTV 50% of the time, compared to only 27% for the B biotype. Evidence that virus was ingested with equal competency by the A and B biotypes confirmed that both vectors were capable of ingesting CdTV from tomato at the same frequency, even when the AAP was 0.5 h. Consequently, either the acquisition and/or transmission stages of the pathway, rather than ingestion competency, were responsible for differences in vector‐mediated transmissibility. Detection frequency of CdTV, after 48 h AAP, by PCR in single females of AZ B biotype was significantly higher than males.  相似文献   

19.
Abstract Plant allocation to defensive compounds by elevated CO2‐grown non‐transgenic and transgenic Bt cotton in response to infestation by cotton aphid, Aphis gossypii (Glover) in open‐top chambers under elevated CO2 were studied. The results showed that significantly lower foliar nitrogen concentration and Bt toxin protein occurred in transgenic Bt cotton with and without cotton aphid infestation under elevated CO2. However, significantly higher carbon/nitrogen ratio, condensed tannin and gossypol were observed in transgenic Bt cotton “GK‐12” and non‐transgenic Bt cotton ‘Simian‐3’ under elevated CO2. The CO2 level and cotton variety significantly influenced the foliar nitrogen, condensed tannin and gossypol concentrations in the plant leaves after feeding by A. gossypii. The interaction between CO2 level × infestation time (24 h, 48 h and 72 h) showed a significant increase in cotton condensed tannin concentrations, while the interaction between CO2 level × cotton variety significantly decreased the true choline esterase (TChE) concentration in the body of A. gossypi. This study exemplified the complexities of predicting how transgenic and non‐transgenic plants will allocate defensive compounds in response to herbivorous insects under differing climatic conditions. Plant defensive compound allocation patterns and aphid enzyme changes observed in this study appear to be broadly applicable across a range of plant and herbivorous insect interactions as CO2 atmosphere rises.  相似文献   

20.
The development period, survival rate, longevity and fecundity of two whiteflies, Bemisia tabaci B‐biotype and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) were compared under different temperature laboratory conditions (15°C, 18°C, 21°C and 24°C). Egg development of B. tabaci B‐biotype was significantly longer compared with that of T. vaporariorum at 15°C, 18°C and 24°C. Significantly longer pseudo‐pupae development and lower survival rate were found in B. tabaci B‐biotype at 15°C compared with those at 18°C, 21°C and 24°C. Significantly higher fecundity was found in B. tabaci B‐biotype at 24°C compared with that at 15°C, 18°C and 21°C. However, the fecundity of T. vaporariorum was significantly lower at 24°C relative to that at 15°C, 18°C and 21°C. Significantly shorter 1st instar larval development was found in T. vaporariorum compared with that of B. tabaci at 15°C and 18°C. Significantly longer 2nd instar larval development was found in B. tabaci and T. vaporariorum at 15°C compared with that at 18°C, 21°C and 24°C. However, significantly shorter 3rd instar larval development was found in T. vaporariorum compared with that of B. tabaci at 15°C, 18°C and 24°C. The adaptive divergence of tolerance to relatively low temperature may be an important factor that results in the interspecific differentiation between the seasonal dynamics of these two whiteflies in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号