首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 940 毫秒
1.
The effects of plant genotype and environmental factors on tri‐trophic interactions have usually been investigated separately, limiting our ability to compare the relative strength of these effects as well as their potential to interactively shape arthropod communities. We studied the interactions among the herb Ruellia nudiflora, a seed predator, and its parasitoids using 14 maternal plant families grown in a common garden. By fertilizing half of the plants of each family and subsequently recording fruit number, seed predator number, and parasitoid number per plant, we sought to compare the strength of plant genetic effects with those of soil fertility, and determine if these factors interactively shape tri‐trophic interactions. Furthermore, we evaluated if these bottom–up factors influenced higher trophic levels through changes in abundance across trophic levels (density‐mediated) or changes in the function of species interactions (trait‐mediated). Plant genetic effects on seed predators and parasitoids were stronger than fertilization effects. Moreover, we did not find plant genetic variation for fertilization effects on fruit, seed predator, or parasitoid abundance, showing that each factor acted independently on plant resources and higher trophic levels. Both bottom–up forces were transmitted via density‐mediated effects where increased fruit number from fertilization and plant genetic effects increased seed predator and parasitoid abundance; however, seed predator attack was density‐dependent, while parasitoid attack was density‐independent. Importantly, there was evidence (marginally significant in one case) that fertilization modified the function of plant‐seed predator and seed predator–parasitoid interactions by increasing the number of seed predators per fruit and decreasing the number of parasitoids per seed predator, respectively. These findings show that plant genetic and soil fertility effects cascaded up this simple food chain, that plant genetic effects were stronger across all trophic levels, and that these effects were transmitted independently and through contrasting mechanisms.  相似文献   

2.
Herbivore-parasitoid interactions must be studied using a multitrophic and multispecies approach. The strength and direction of multiple effects through trophic levels may change across spatial scales. In this work, we use the herbaceous plant Ruellia nudiflora, its moth herbivore Tripudia quadrifera, and several parasitoid morphospecies that feed on the herbivore to answer the following questions: Do herbivore and parasitoid attack levels vary depending on the spatial scale considered? With which plant characteristics are the parasitoid and the herbivore associated? Do parasitoid morphospecies vary in the magnitude of their positive indirect effect on plant reproduction? We evaluated three approximations of herbivore and parasitoid abundance (raw numbers, ratios, and attack rates) at four spatial scales: regional (three different regions which differ in terms of abiotic and biotic characteristics); population (i.e. four populations within each region); patch (four 1 m2 plots in each population); and plant level (using a number of plant characteristics). Finally, we determined whether parasitoids have a positive indirect effect on plant reproductive success (seed number). Herbivore and parasitoid numbers differed at three of the spatial scales considered. However, herbivore/fruit ratio and attack rates did not differ at the population level. Parasitoid/host ratio and attack rates did not differ at any scale, although there was a tendency of a higher attack in one region. At the plant level, herbivore and parasitoid abundances were related to different plant traits, varying the importance and the direction (positive or negative) of those traits. In addition, only one parasitoid species (Bracon sp.) had a positive effect on plant fitness saving up to 20% of the seeds in a fruit. These results underline the importance of knowing the scales that are relevant to organisms at different trophic levels and distinguish between the specific effects of species.  相似文献   

3.
It is widely recognised that the interaction between plants and herbivores cannot be completely understood if the natural enemies of the latter are not included. Most studies looking at the effects of herbivores and their enemies on plant fitness only consider one herbivore species or guild; however, plants in nature usually face the attack of more than one herbivore guild simultaneously and these herbivores may have a non-additive effect on the attraction with bodyguards and plant fitness. In this study, we asked whether folivory affects the activity of parasitoids on seed predators and whether this effect cascades down to plant fitness. We assessed these questions in a tritrophic system: the plant Ruellia nudiflora, its pre-dispersal seed predators and the parasitoids of the latter. Plants were submitted to either 50 % artificial defoliation or no defoliation (control). The number of seeds, fruit production and parasitoid incidence was assessed periodically in both sets of plants. Parasitoids indirectly and positively affected seed number, while defoliation had a direct negative effect on the number of seeds and an indirect negative effect on parasitoid incidence. However, the combined effect of defoliation and seed predation increased the indirect positive effect of the parasitoids on seed production, which overcame the negative effects of defoliation.  相似文献   

4.
Herbivore fitness can be altered by a combination of interacting organisms, such as its food plant, conspecifics, and predators/parasitoids. Here, we tested relative effects of plant species, herbivore intraspecific competition type, and spatial distribution of the herbivore among plant units on herbivore survival and whether parasitoids modified these effects. We used an endophagous bruchine seed predator Callosobruchus maculatus for the herbivore, and a braconid wasp Heterospilus prosopidis for the parasitoid. The survival rate of C. maculatus was measured for each of 16 combinations of two plants (bean species, Vigna unguiculata and V. radiata), two competition types of C. maculatus larvae (contest and scramble), two spatial distributions of hosts [sparse (1 C. maculatus larva per seed over 20 seeds) and dense (2 C. maculatus larvae per seed over ten seeds)], and with/without a parasitoid pair. In the absence of the parasitoid, C. maculatus survival rate was lower with V. radiata and in the contest type. With the parasitoid, the proportion parasitized hosts was independent of total host density. Neither the proportion of parasitized hosts nor host survival rate was affected by plant species or host strain, but they were affected by host spatial distribution. When host distribution was dense, a higher proportion of hosts were parasitized, and C. maculatus survival rate was lower. Here we discuss parasitoid potential as a selective agent for the sparse within-pod distribution of its hosts in the field.  相似文献   

5.
Ulf Sperens 《Oecologia》1997,109(3):368-373
Variation in fruit production and pre-dispersal seed predation by Argyresthia conjugella was studied in␣four populations of Sorbus aucuparia in northern Sweden.␣The number of infructescences, fruits per infructescence, consumed seeds and developed unattacked seeds per fruit were scored in marked trees from 1984 to 1990. The results showed that the number of fruits produced in each population determined the number of seed predators occurring in the host population, as the yearly number of seed predators was significantly and positively correlated with yearly number of fruits, in all but one population. The seed predators showed a delay in response to variation in number of fruits produced. This lag in response resulted in a large proportion of fruits being attacked and seeds consumed in a bad fruiting year that followed a good fruiting year, and vice versa. The proportion of fruits attacked and seeds consumed was largest in the population showing the greatest between-year variation in fruit production and lowest in the population showing the lowest between-year variation in fruit production. Furthermore, the individuals within the former population were synchronised, while they were not in the latter population. These results contradict one of the possible explanations of mast-seeding, where large synchronised between-year variation is supposed to reduce pre-dispersal seed predation. Instead, differences in attraction of the seed predator to differences in fruit crop size could explain the observed difference in seed predation between the two populations with opposite fruiting patterns. Within each population, irrespective of year, the proportion of fruits attacked and seeds consumed was independent of a tree's fruiting display. Therefore, trees with high fruit production, despite harbouring the largest number of seed predators, produced the largest number of developed seeds in absolute numbers, compared to trees that produced few fruits. Received: 25 February 1996 / Accepted: 30 November 1996  相似文献   

6.
Seed predators that severely affect seed germination rates are well known for many plant species. Here, we hypothesised that due to differences in resource allocation within fruits, seed predation can negatively affect non-predated seeds in infested fruits when predation occurs during fruit maturation (a ‘top-down’ effect). We addressed this question using a system of bruchid beetles on Mimosa trees and we also investigated whether seed quality (nitrogen concentration) affects beetle body mass, which would have implications for adult fitness (‘bottom-up’ effect). To assess spatial variation, bottom-up and top-down effects were investigated in two plant populations. Nitrogen concentration was significantly higher in seeds from non-infested fruits than from infested fruits. This supports the hypothesis that resource allocation may differ between seeds from infested and non-infested fruits. Germination experiments showed that seeds from non-infested fruits germinated better than non-predated seeds from infested fruits. It was also confirmed that seed quality affected bruchid body mass. There was also evidence that more resources were taken from well-developed seeds. These results showed that seed predation can damage non-predated seeds.  相似文献   

7.
1. An increasing number of studies have addressed the mechanisms by which plant inter‐specific variation influence interactions at higher trophic levels, but little is known about the underlying plant traits driving these dynamics. 2. Here we investigated the effects of host plant species on herbivore‐parasitoid interactions and the underlying traits driving such effects. For this, we measured the abundance of seed‐eating bruchids and their parasitoids across seven sympatric populations of the bean species Phaseolus coccineus and Phaseolus vulgaris in Central Mexico. To investigate the mechanisms underlying differences between bean species in bruchid‐parasitoid interactions, we carried out two laboratory experiments to test whether bruchid and parasitoid performance differed between plant species. We also measured seed size and phenolic compounds to investigate if seed traits mediate bruchid‐parasitoid interactions by influencing herbivore susceptibility or resistance to parasitoids. 3. Field surveys revealed that the rate of parasitoid recruitment to bruchids was significantly higher on P. vulgaris than on P. coccineus. Subsequent laboratory bioassays indicated that bruchids developed more slowly and exhibited lower fitness on P. vulgaris seeds than on P. coccineus seeds. Accordingly, we found that bean species differed in seed size, with P. vulgaris having smaller (less nutritious) seeds, which explains why bruchid development was slower on this plant species. 4. These results provide a mechanism for why bruchids exhibited higher parasitism rates on seeds of P. vulgaris in the field which could be due to Slow‐Growth/High‐Mortality effects, a smaller physical refuge provided by the seed, or both factors. The roles of these mechanisms remain inconclusive without further study.  相似文献   

8.
Few studies have simultaneously addressed the effects of biotic and abiotic factors on pre-dispersal seed predation (PSP). Plant–seed predator interactions may be influenced by natural enemies and pollinators (the latter through changes in fruit or seed traits), and the activity of pre-dispersal seed predators and their natural enemies may both be affected by the abiotic environment. Additionally, in the case of cleistogamous plants with fruit dimorphism, PSP may be biased towards larger and more seeded chasmogamous (CH) fruits [relative to the smaller cleistogamous (CL) fruits], and the effects of biotic and abiotic factors may be contingent upon this fruit dimorphism. We studied PSP in the cleistogamous Ruellia nudiflora using a split-plot experimental design and asked the following: (1) is PSP biased towards CH fruits and is there an effect of pollen load on PSP? (2) Do parasitoids influence PSP and is their effect influenced by pollen load or fruit type? And (3) do light and water availability modify PSP and parasitoid effects? PSP was higher for CH relative to CL fruits, and under low water availability it was lower for pollen-supplemented CH fruits relative to open-pollinated CH fruits. Parasitoids were not influenced by abiotic conditions, but their negative effect on PSP was stronger for pollen-supplemented CH fruits. Overall, we show that fruit dimorphism, abiotic factors and natural enemies affect PSP, and that these effects can be non-additive.  相似文献   

9.
Spatio-temporal variation in seed predation may strongly influence both plant population dynamics and selection on plant traits. The intensity of seed predation may depend on a number of factors, but the relative importance of previous predator abundance (“local legacy”), spatial distribution of the host plant, environmental factors and plant characteristics has been explored in few species. We monitored seed predation in the perennial herb Primula farinosa, which is dimorphic for scape length, during 5 consecutive years, in a 10-km × 4-km area comprising 79 P. farinosa populations. A transplant experiment showed that the seed predator, the oligophagous tortricid moth Falseuncaria ruficiliana, was not dispersal limited at the spatial scale corresponding to typical distances between P. farinosa populations. Correlations between population characteristics and incidence and intensity of seed predation varied among years. The incidence of the seed predator was positively correlated with host population size and mean number of flowers, while intensity of seed predation in occupied patches was positively related to the frequency of the long-scaped morph in 2 years and negatively related to host population size in 1 year. In both scape morphs, predation tended to increase with increasing frequency of the long morph. There was no evidence of a local legacy; incidence and intensity of seed predation were not related to the abundance of the seed predator in the population in the previous year. Taken together, the results indicate that among-population variation in seed predation intensity is determined largely by patch selection and that the seed predator’s preference for tall and many-flowered inflorescences may not only affect selection on plant traits within host plant populations, but also the overall intensity of seed predation.  相似文献   

10.
We investigated whether aphid presence and abundance influence the survival of an endophagous pre-dispersal seed predator of the same host plant. We studied a terrestrial community module consisting of one plant (Laburnum anagyroides) and four insect species/groups (an aphid, Aphis cytisorum, a pre-dispersal seed predator bruchid, Bruchidius villosus, aphid-attending ant species, and parasitoids of the bruchid). Two complementary investigations were carried out in parallel: (a) a plant-aphid-ant complex was experimentally manipulated by excluding aphids, ants, or both for 5 years to assess their impacts on the seed predator’s survival and parasitism rate; and (b) different aphid infestation levels on randomly selected infructescences were correlated with plant traits, nutrient allocation pattern, and variables of seed predator’s survival, such as the number of eggs laid and adults emerged influenced by parasitoid activity, for 7 years. We found that ants did not affect bruchid oviposition negatively, but egg-parasitism was significantly decreased by their presence. Plant traits, such as the number of seeds and seed mass, as well as seed predator performance were negatively affected by heavy aphid infestation. Seed predator -infested seeds had no effect on the mass of remaining seeds in the pods. This study suggests that aphids were nevertheless promoting bruchid abundance and survival, depending on their infestation rate.  相似文献   

11.
In the arms race between plants, herbivores, and their natural enemies, specialized herbivores may use plant defenses for their own benefit, and variation in plant traits may affect the benefits that herbivores derive from these defenses. Pieris brassicae is a specialist herbivore of plants containing glucosinolates, a specific class of defensive secondary metabolites. Caterpillars of P. brassicae are known to actively spit on attacking natural enemies, including their main parasitoid, the braconid wasp Cotesia glomerata. Here, we tested the hypothesis that variation in the secondary metabolites of host plants affects the efficacy of caterpillar regurgitant as an anti‐predator defense. Using a total of 10 host plants with different glucosinolate profiles, we first studied natural regurgitation events of caterpillars on parasitoids. We then studied manual applications of water or regurgitant on parasitoids during parasitization events. Results from natural regurgitation events revealed that parasitoids spent more time grooming after attack when foraging on radish and nasturtium than on Brassica spp., and when the regurgitant came in contact with the wings rather than any other body part. Results from manual applications of regurgitant showed that all parameters of parasitoid behavior (initial attack duration, attack interruption, grooming time, and likelihood of a second attack) were more affected when regurgitant was applied rather than water. The proportion of parasitoids re‐attacking a caterpillar within 15 min was the lowest when regurgitant originated from radish‐fed caterpillars. However, we found no correlation between glucosinolate content and regurgitant effects, and parasitoid behavior was equally affected when regurgitant originated from a glucosinolate‐deficient Arabidopsis thaliana mutant line. In conclusion, host plant affects to a certain extent the efficacy of spit from P. brassicae caterpillars as a defense against parasitoids, but this is not due to glucosinolate content. The nature of the defensive compounds present in the spit remains to be determined, and the ecological relevance of this anti‐predator defense needs to be further evaluated in the field.  相似文献   

12.
Seed production and predispersal seed predation in the shrub Acacia suaveolens were examined over 3 consecutive years in eight populations in south-eastern Australia. Seed-crop sizes varied both between and within populations of different ages. Seed production was maximal in the first one to four flowering seasons after establishment, and then declined with plant age. The size of the annual seed-crop was also influenced by rainfall for that year. Predispersal seed predation varies between populations over fruiting seasons with the initial large seed-crops resulting in predator satiation. Within one fruiting season, no significant variation in the extent of predispersal seed predation was found in any of three populations studied. There were two major forms of predispersal seed loss: toss of whole fruits to Melanterius corosus (Coleoptera: Curculionidae) and external insect seed grazers, and loss of individual seeds within fruits to M. corosus. Exclusion experiments showed that seeds lost to these predispersal seed predators would otherwise have been matured by the parent plant. The effects of predispersal seed predation cannot be directly related to seedling recruitment. Indirectly, such predation may influence the dispersion of seeds in the soil profile and hence, subsequent recruitment.  相似文献   

13.
Many species of Dipterocarpaceae and other plant families reproduce synchronously at irregular, multi‐year intervals in Southeast Asian forests. These community‐wide general flowering events are thought to facilitate seed survival through satiation of generalist seed predators. During a general flowering event, closely related Shorea species (Dipterocarpaceae) stagger their flowering times by several weeks, which may minimize cross pollination and interspecific competition for pollinators. Generalist, pre‐dispersal seed predators might also track flowering hosts and influence predator satiation. We addressed the question of whether pre‐dispersal seed predation differed between early and late flowering Shorea species by monitoring flowering, fruiting and seed predation intensity over two general flowering events at the Pasoh Research Forest, Malaysia. Pre‐dispersal insect seed predators killed up to 63 percent of developing seeds, with Nanophyes shoreae, a weevil that feeds on immature seeds being the most important predator for all Shorea species. This weevil caused significantly greater pre‐dispersal seed predation in earlier flowering species. Long larval development time precluded oviposition by adults that emerged from the earliest flowering Shorea on the final flowering Shorea. In contrast, larvae of weevils that feed on mature seeds before seed dispersal (Alcidodes spp.), appeared in seeds of all Shorea species almost simultaneously. We conclude that general flowering events have the potential to satiate post‐dispersal seed predators and pre‐dispersal seed predators of mature fruit, but are less effective at satiating pre‐dispersal predators of immature fruit attacking early flowering species.  相似文献   

14.
Insect seed predators are important agents of mortality for tropical trees, but little is known about the impact of these herbivores in rainforests. During 3 years at Khao Chong (KHC) in southern Thailand we reared 17,555 insects from 343.2 kg or 39,252 seeds/fruits representing 357 liana and tree species. A commented list of the 243 insect species identified is provided, with details about their host plants. We observed the following. (i) Approximately 43% of identified species can be considered pests. Most were seed eaters, particularly on dry fruits. (ii) Approximately 19% of parasitoid species (all Opiinae) for which we could determine whether their primary insect host was a pest or not (all Bactrocera spp. breeding in fruits) can be considered beneficials. (iii) The seeds/fruits of approximately 28% of the plant species in this forest were free of attack. Phyllanthaceae, Rubiaceae and Meliaceae were attacked relatively infrequently; in contrast, Annonaceae, Fabaceae, Sapindaceae and Myristicaceae were more heavily attacked. There was no apparent effect of plant phylogeny on rates of attack but heavily attacked tree species had larger basal area in the KHC plot than rarely attacked tree species. (iv) Insects reared from fleshy fruits were more likely to show relatively stable populations compared to insects reared from dry fruits, but this was not true of insects reared from dipterocarps, which appeared to have relatively stable populations throughout the study period. We tentatively conclude that insects feeding on seeds and fruits have little effect on observed levels of host abundance in this forest.  相似文献   

15.
The predator satiation hypothesis states that synchronous periodic production of seeds is an adaptive strategy evolved to reduce the pressure of seed predators. The seed production pattern is crucial to the predator satiation hypothesis, but there are few studies documenting the success of individuals that are in synchrony and out of synchrony with the whole population. This study is based on long-term data on seed production of Sorbus aucuparia and specialised pre-dispersal seed predation by Argyresthia conjugella, in a subalpine spruce forest in the Western Carpathians (Poland). At the population level, we tested whether functional and numerical responses of predators to the variation of fruit production operate. At the individual level, we tested whether individuals with higher interannual variability in their own seed crops and higher synchrony with the population have higher percentages of uninfested fruits. The intensity of pre-dispersal seed predation was high (average 70 %; range 19–100 %). There were both functional and numerical responses of predators to the variation of fruit production at the population level. We found that individuals that were expected to be preferred under seed predator pressure had higher reproductive success. With increasing synchrony of fruit production between individual trees and the population, the percentage of infested fruits decreased. There was also a negative relationship between the interannual variation in individual fruit production and the percentage of infested fruits. These results confirm selection for individuals with a masting strategy. However, the population does not seem well adapted to strong seed predation pressure and we suggest that this may be a result of prolonged diapause of A. conjugella.  相似文献   

16.
Herbivorous insects in natural and agricultural systems experience variation in parasitoid attack on different plant species due to direct and indirect plant influences on parasitoids. Lygus hesperus is a native polyphagous mirid that suffers up to 100% parasitism by the native egg parasitoid Anaphes iole in certain weed hosts, but with inundative releases in commercial strawberries, we achieve <65% L. hesperus suppression. We examined L. hesperus egg distribution in individual strawberry plants and parasitism by A. iole of eggs in different strawberry plant structures to determine whether plant-related factors affected parasitoid performance in strawberries. L. hesperus laid more eggs (46.5% of all eggs laid) in the fruit (between the achenes [seeds] in the fleshy receptacle) than in the petiole (23.3%), leaflet (20.3%), peduncle (6.2%), or calyx (3.7%). In a no-choice test, parasitism by A. iole was higher in the petiole (96.7%), calyx (91.9%), and leaflet (85.2%) than in the fruit (51.8%), in which the achenes appeared to hinder parasitoid access to host eggs. In addition, in young fruits in which the interachene distance was minimum, parasitism was considerably lower (25.4%) than in fruits in which receptacle swelling had resulted in interachene distances that were medium (65.7% parasitism) or large (77.1% parasitism). Our results suggest that strawberry fruits can provide refugia from parasitism by A. iole and that maximum protection occurs when the achenes are contiguous. The presence of refugia in strawberries limits the impact of augmentative biological control with A. iole, highlighting the need for its integration with other strategies to effectively suppress L. hesperus in strawberries.  相似文献   

17.
J. Daniel Hare 《Oecologia》1980,46(2):217-222
Summary Burr size is the major factor affecting variation in the intensity of predation by two species of insect on the seeds of the cocklebur, Xanthium strumarium. Mean burr size varied among 10 adjacent local populations studied over three years, as did intensity of seed predation. Seed predation was more intense in populations with low mean burr length and declined linearly with increasing burr length under field and experimental conditions. Seed predation thus is a selective factor influencing the evolution of both burr size and correlated protective characteristics such as burr spine length and wall thickness. As in some other plants, morphological rather than chemical features appear to pose the major barrier to attack by host-specific seed predators. The advantage of more highly developed tissues protecting seeds may occur at the expense of total seed production.  相似文献   

18.
The role of natural enemy diversity in biological pest control has been debated in many studies, and understanding how interactions amongst predators and parasitoids affect herbivore populations is crucial for pest management. In this study, we assessed the individual and combined use of two species of natural enemies, the parasitoid Aphidius ervi Haliday, and the predatory brown lacewing Micromus variegatus (Fabricius), on their shared prey, the foxglove aphid, Aulacorthum solani (Kaltenbach), on sweet pepper. We hypothesized that the presence of intraguild predation (IGP) and predator facilitation (through induced aphid dropping behaviour) might have both negative and positive effects on aphid control, respectively. Our greenhouse trial showed that overall, the greatest suppression of aphids occurred in the treatment with both the parasitoid and the lacewing. While the combination of lacewings and parasitoids significantly increased aphid control compared to the use of parasitoids alone, the effect was not significantly different to the treatment with only predators, although there was a clear trend of enhanced suppression. Thus, the combined effects of both species of natural enemies were between additive and non‐additive, suggesting that the combination is neither positive nor negative for aphid control. High levels of IGP, as proven in the laboratory, were probably compensated for by the strong aphid suppression provided by the lacewings, whether or not supplemented with some level of predator facilitation. For aphid management over a longer time scale, it might still be useful to combine lacewings and parasitoids to ensure stable and resilient aphid control.  相似文献   

19.
Chemical information influences the behaviour of many animals, thus affecting species interactions. Many animals forage for resources that are heterogeneously distributed in space and time, and have evolved foraging behaviour that utilizes information related to these resources. Herbivore‐induced plant volatiles (HIPVs), emitted by plants upon herbivore attack, provide information on herbivory to various animal species, including parasitoids. Little is known about the spatial scale at which plants attract parasitoids via HIPVs under field conditions and how intraspecific variation in HIPV emission affects this spatial scale. Here, we investigated the spatial scale of parasitoid attraction to two cabbage accessions that differ in relative preference of the parasitoid Cotesia glomerata when plants were damaged by Pieris brassicae caterpillars. Parasitoids were released in a field experiment with plants at distances of up to 60 m from the release site using intervals between plants of 10 or 20 m to assess parasitism rates over time and distance. Additionally, we observed host‐location behaviour of parasitoids in detail in a semi‐field tent experiment with plant spacing up to 8 m. Plant accession strongly affected successful host location in field set‐ups with 10 or 20 m intervals between plants. In the semi‐field set‐up, plant finding success by parasitoids decreased with increasing plant spacing, differed between plant accessions, and was higher for host‐infested plants than for uninfested plants. We demonstrate that parasitoids can be attracted to herbivore‐infested plants over large distances (10 m or 20 m) in the field, and that stronger plant attractiveness via HIPVs increases this distance (up to at least 20 m). Our study indicates that variation in plant traits can affect attraction distance, movement patterns of parasitoids, and ultimately spatial patterns of plant–insect interactions. It is therefore important to consider plant‐trait variation in HIPVs when studying animal foraging behaviour and multi‐trophic interactions in a spatial context.  相似文献   

20.
The effect of seed predation by phytophagous/parasitoid wasps on the reproductive output of aloes is relatively unknown. In this study, conducted at a nature reserve in Pretoria East, South Africa, the range of insects utilising Aloe pretoriensis (Asphodelaceae) fruits and/or seeds and the impact of this usage on its reproductive output were investigated. Using a GLMM, we explored the effects of morphological features (e.g. floral display size) and selected ecological factors (viz. distance between the aloes and conspecifics and other surrounding vegetation) on fruit utilisation and seed predation. A variety of insect visitors to A. pretoriensis (mainly bees and wasps) were identified including a number of seed predators and parasitoids. Evidence of phytophagy in dissected flowers showed increasing evidence of fruit utilisation and seed predation over an 8‐week period. Emergence boxes with infructescences revealed a range of insect phytophages (and their associated parasitoids) in the aloe fruits and seeds: the drosophilid fly, Apenthecia and six species of wasp – five of them associated with ultilisation of aloe fruits/seeds for the first time: Eurytoma aloineae (Chalcididae), Mesopolobus sp., Pteromalus sp., and c.f. Chlorocytus in the Pteromalidae, Bracon sp. (Braconidae) and Pediobius (Eulophidae). Fruit set ranged between 48% and 93%, with an average of 76%, while average percentage utilisation of fruits was 29%, ranging between 7% and 68%. Average seed set was 23 seeds per fruit and average percentage seed predation 21% (range: 0–51%). Fruit utilisation was found to be significantly negatively correlated with distance to the nearest flowering bush (usually Helichrysum kraussii), but display size did not significantly affect fruit utilisation, nor did distance to conspecifics. Aloe pretoriensis thus serves as host to a variety of phytophagous insects and their associated parasitoids, which impacts considerably on its reproductive output with possible implications for the future conservation of this aloe species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号