首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small chloroplast open reading frame ORF43 (ycf7) of the green unicellular alga Chlamydomonas reinhardtii is cotranscribed with the psaC gene and ORF58. While ORF58 has been found only in the chloroplast genome of C.reinhardtii, ycf7 has been conserved in land plants and its sequence suggests that its product is a hydrophobic protein with a single transmembrane alpha helix. We have disrupted ORF58 and ycf7 with the aadA expression cassette by particle-gun mediated chloroplast transformation. While the ORF58::aadA transformants are indistinguishable from wild type, photoautotrophic growth of the ycf7::aadA transformants is considerably impaired. In these mutant cells, the amount of cytochrome b6f complex is reduced to 25-50% of wild-type level in mid-exponential phase, and the rate of transmembrane electron transfer per b6f complex measured in vivo under saturating light is three to four times slower than in wild type. Under subsaturating light conditions, the rate of the electron transfer reactions within the b6f complex is reduced more strongly in the mutant than in the wild type by the proton electrochemical gradient. The ycf7 product (Ycf7) is absent in mutants deficient in cytochrome b6f complex and present in highly purified b6f complex from the wild-type strain. Ycf7-less complexes appear more fragile than wild-type complexes and selectively lose the Rieske iron-sulfur protein during purification. These observations indicate that Ycf7 is an authentic subunit of the cytochrome b6f complex, which is required for its stability, accumulation and optimal efficiency. We therefore propose to rename the ycf7 gene petL.  相似文献   

2.
3.
Photosystem I comprises 13 subunits in Chlamydomonas reinhardtii, four of which-the major reaction center I subunits PsaA and PsaB, PsaC and PsaJ-are chloroplast genome-encoded. We demonstrate that PSI biogenesis involves an assembly-governed regulation of synthesis of the major chloroplast-encoded subunits where the presence of PsaB is required to observe significant rates of PsaA synthesis and the presence of PsaA is required to observe significant rates of PsaC synthesis. Using chimeric genes expressed in the chloroplast, we show that these regulatory processes correspond to autoregulation of translation for PsaA and PsaC. The downregulation of translation occurs at some early stage since it arises from the interaction between unassembled PsaA and PsaC polypeptides and 5' untranslated regions of psaA and psaC mRNAs, respectively. These assembly-dependent autoregulations of translation represent two new instances of a control by epistasy of synthesis process that turns out to be a general feature of protein expression in the chloroplast of C. reinhardtii.  相似文献   

4.
5.
Six chloroplast gene mutants of Chlamydomonas reinhardtii resistant to spectinomycin, erythromycin, or streptomycin have been assessed for antibiotic resistance of their chloroplast ribosomes. Four of these mutations clearly confer high levels of antibiotic resistance on the chloroplast ribosomes both in vivo. Although one mutant resistant to streptomycin and one resistant to spectinomycin have chloroplast ribosomes as sensitive to antibiotics as those of wild type in vivo, these mutations can be shown to alter the wildtype sensitivity of chloroplast ribosomes in polynucleotide-directed amino acid incorporation in vitro. Genetic analysis of these six chloroplast mutants and three similar mutants (Sager, 1972), two of which have been shown to affect chloroplast ribosomes (Mets and Bogorad, 1972; Schlanger and Sager, 1974), indicates that in Chlamydomonas at least three chloroplast gene loci can affect streptomycin resistance of chloroplast ribosomes and that two can affect erythromycin resistance. The three spectinomycin-resistant mutants examined appear to be alleles at a single chloroplast gene locus, but may represent mutations at two different sites within the same gene. Unlike wild type, the streptomycin and spectinomycin resistant mutants which have chloroplast ribosomes sensitive to antibiotics in vivo, grow well in the presence of antibiotic by respiring exogenously supplied acetate as a carbon source, and have normal levels of cytochrome oxidase activity and cyanide-sensitive respiration. We conclude that mitochondrial protein synthesis in these mutants is resistant to these antibiotics, whereas in wild type it is sensitive. To explain the behavior of these two chloroplast gene mutants as well as other one-step mutants which are resistant both photosynthetically and when respiring acetate in the dark, we have postulated that a mutation in a single chloroplast gene may result in alteration of both chloroplast and mitochondrial ribosomes. Mitochondrial resistance would appear to be the minimal necessary condition for survival of all such mutants, and antibiotic-resistant chloroplast ribosomes would be necessary for survival only under photosynthetic conditions.  相似文献   

6.
A chloroplast-encoded gene, designated chlB, has been isolated from Chlamydomonas reinhardtii, its nucleotide sequence determined, and its role in the light-independent reduction of protochlorophyllide to chlorophyllide demonstrated by gene disruption experiments. The C. reinhardtii chlB gene is similar to open reading frame 563 (orf563) of C. moewusii, and its encoded protein is a homolog of the Rhodobacter capsulatus bchB gene product that encodes one of the polypeptide components of bacterial light-independent protochlorophyllide reduction. To determine whether the chlB gene product has a similar role in light-independent protochlorophyllide reduction in this alga, a series of plasmids were constructed in which the aadA gene conferring spectinomycin resistance was inserted at three different sites within the chlB gene. The mutated chlB genes were introduced into the Chlamydomonas chloroplast genome using particle gun-mediated transformation, and homoplasmic transformants containing the disrupted chlB genes were selected on the basis of conversion to antibiotic resistance. Individual transformed strains containing chlB disruptions were grown in the dark or light, and 17 of the 18 strains examined were found to have a "yellow-in-the-dark" phenotype and to accumulate the chlorophyll biosynthetic precursor protochlorophyllide. RNA gel blot analysis of chlB gene expression in wild-type cells indicated that the gene was transcribed at low levels in both dark- and light-grown cells. The results of these studies support the involvement of the chlB gene product in light-independent protochlorophyllide reduction, and they demonstrate that, similar to its eubacterial predecessors, this green alga requires at least three components (i.e., chlN, chlL, and chlB) for light-independent protochlorophyllide reduction.  相似文献   

7.
来源于Pyrococcusfuriosus的耐高温α-淀粉酶是一种重要的酒精工业用酶,在植物中表达耐高温α-淀粉酶可以大大降低用植物秸秆生产酒精的成本。选择衣藻叶绿体基因组同源片段clpP-trnL-petB-chlL-rpl23-rpl2和壮观霉素抗性基因,构建了来源于Pyrococcusfuriosus的耐高温α-淀粉酶基因的衣藻叶绿体表达载体p64A。通过基因枪将其导入衣藻叶绿体中,经壮观霉素抗性(100mg/L)筛选,获得了9个抗性衣藻转化子。转化子经过抗性继代筛选后,经PCR、Southernblot检测分析及暗培养,证实耐高温α-淀粉酶基因已整合到衣藻叶绿体基因组中并得到表达。酶活性检测表明,转基因衣藻表达产物具有耐高温α-淀粉酶活性,每克鲜重衣藻最高达77.5u。实验结果证明在植物叶绿体中表达工业酶制剂是可行的。  相似文献   

8.
The entire coding region of chlL, an essential chloroplast gene required for chlorophyll biosynthesis in the dark in Chlamydomonas reinhardtii, was precisely replaced by either the Klebsiella pneumoniae nifH (encoding the structural component of nitrogenase Fe protein) or the Escherichia coli uidA reporter gene encoding beta-glucuronidase. Homoplasmic nifH or uidA transformants were identified by Southern blots after selection on minimal medium plates for several generations. All the uidA transformants had the "yellow-in-the-dark" phenotype characteristic of chlL mutants, whereas homoplasmic nifH transformants exhibited a partial "green-in-the-dark" phenotype. NifH protein was detected in the nifH transformants but not in the wild-type strain by Western blotting. Fluorescence emission measurements also showed the existence of chlorophyll in the dark-grown nifH transformants, but not in the dark-grown uidA transformants. The nifH transplastomic form of C. reinhardtii that lacks the chlL gene can still produce chlorophyll in the dark, suggesting that the nifH product can at least partially substitute for the function of the putative "chlorophyll iron protein" encoded by chlL. Thus, introducing nitrogen fixation gene directly into a chloroplast genome is likely to be feasible and providing a possible way of engineering chloroplasts with functional nitrogenase. Notably, to introduce foreign genes without also introducing selective marker genes, a novel two-step chloroplast transformation strategy has been developed.  相似文献   

9.
Insecticidal protein gene CrylA (c) from Bacillus thuringiensis (Bt toxin gene) was placed under the control of psbA5'- and 3'- regulatory regions of rice (Oryza sativa L. ) chloroplast to construct Bt expression cassette, which was ligated with selectable marker aadA cassette and homology regions of tobacco ( Nicotiana tabacum L. ) chloroplast genome to generate transformation vector pTRS8. Leaves of tobacco plant cv. NC89 were transformed with particle bombardment method, plastid transformants were selected by their resistance to 500 mg/L of spectinomycin. Some transplastomic plants were toxic to the third-instar larvae of Helicoverpa zea, and the growth of the survived insects was remarkably inhibited. Genetic and molecular analyses of T1 and T2 progenies of plants with highly efficient insect resistance showed that Bt toxin gene had been inherited in progenies, and spectinomycin resistance was inherited maternally.  相似文献   

10.
The product of the chloroplast ycf10 gene has been localized in the inner chloroplast envelope membrane (Sasaki et al., 1993) and found to display sequence homology with the cyanobacterial CotA product which is altered in mutants defective in CO2 transport and proton extrusion (Katoh et al., 1996a,b). In Chlamydomonas reinhardtii, ycf10, located between the psbI and atpH genes, encodes a putative hydrophobic protein of 500 residues, which is considerably larger than its higher plant homologue because of a long insertion that separates the conserved N and C termini. Using biolistic transformation, we have disrupted ycf10 with the chloroplast aadA expression cassette and examined the phenotype of the homoplasmic transformants. These were found to grow both photoheterotrophically and photoautotrophically under low light, thereby revealing that the Ycf10 product is not essential for the photosynthetic reactions. However, under high light these transformants did not grow photoautotrophically and barely photoheterotrophically. The increased light sensitivity of the transformants appears to result from a limitation in photochemical energy utilization and/or dissipation which correlates with a greatly diminished photosynthetic response to exogenous (CO2 + HCO3-), especially under conditions where the chloroplast inorganic carbon transport system is not induced. Mass spectrometric measurements with either whole cells or isolated chloroplasts from the transformants revealed that the CO2 and HCO3- uptake systems have a reduced affinity for their substrates. The results suggest the existence of a ycf10-dependent system within the plastid envelope which promotes efficient inorganic carbon (Ci) uptake into chloroplasts.  相似文献   

11.
We have engineered and analyzed a chloroplast mutant of Chlamydomonas reinhardtii that lacks ycf8, the chloroplast open reading frame 8, which is highly conserved in location and predicted amino acid sequence in land plants and C.reinhardtii. The ycf8 sequence was replaced with the aadA cassette which confers resistance to spectinomycin when expressed in the chloroplast. Although the mutant is able to grow phototrophically, photosystem II function and cell growth are impaired under stress conditions such as high light intensity and diminished chloroplast protein synthesis induced by spectinomycin. Use of an antibody generated against the ycf8 product has revealed that this hydrophobic polypeptide is associated with photosystem II, based on its severely reduced levels in various photosystem II-deficient mutants and on its copurification with photosystem II. This protein, therefore, appears to be (i) a novel photosystem II subunit and (ii) required for maintaining optimal photosystem II activity under adverse growth conditions.  相似文献   

12.
定点整合抗虫基因到油菜叶绿体基因组并获得转基因植株   总被引:16,自引:1,他引:15  
以基因枪法进行了油菜叶绿体基因组的定点转化,载体pNRAB携带抗壮观霉素的筛选标记基因aadA和抗虫基因cry1Aα10,基因的两侧被添加了可用于同源重组的叶绿体DNA序列,基因枪轰击过的油菜子叶柄经植株再生和壮观霉素筛选,获得了36株抗性植株,PCR检测和Southern杂交显示,其中4株的叶绿体基因组已被转化,外源基因已被定点整合进叶绿体基因组的rps7和ndhB基因之间。用转基因植株的叶片饲喂二龄小菜蛾,1周后幼虫死亡率达33%-47%,存活幼虫的生长明显减慢,转基因油菜的叶片受害较轻。  相似文献   

13.
14.
15.
R M Wynn  J Omaha  R Malkin 《Biochemistry》1989,28(13):5554-5560
Photosystem I (PSI) complexes have been isolated from two cyanobacterial strains, Synechococcus sp. PCC 7002 and 6301. These complexes contain six to seven low molecular mass subunits in addition to the two high molecular mass subunits previously shown to bind the primary reaction center components. Chemical cross-linking of ferredoxin to the complex identified a 17.5-kDa subunit as the ferredoxin-binding protein in the Synechococcus sp. PCC 6301-PSI complex. The amino acid sequence of this subunit, deduced from the DNA sequence of the gene, confirmed its identity as the psaD gene product. A 17-kDa subunit cross-links to the electron donor, cytochrome c-553, in a manner analogous to the cross-linking of plastocyanin to the higher plant PSI complex. Using antibodies raised against the spinach psaC gene product (a 9-kDa subunit which binds Fe-S centers A and B), we identified an analogous protein in the cyanobacterial PSI complex.  相似文献   

16.
17.
Unusual chloroplast transformants of Chlamydomonas reinhardtii that contain 2000 copies of a mutant version of the chloroplast atpB gene, maintained as an extrachromosomal tandem repeat, have recently been described. In this paper studies have been undertaken to (i) address possible mechanisms for generating and maintaining the amplified DNA and (ii) determine whether it is possible to use chloroplast gene amplification to overexpress chloroplast or foreign genes. Data presented here indicate that high copy number transformants harbor characteristic rearrangements in both copies of the chloroplast genome large inverted repeat. These rearrangements appear to be a consequence of, or required for, maintenance of the amplified DNA. In an attempt to mimic the apparently autonomous replication of extrachromosomal DNA in the chloroplast, transformation was carried out with a plasmid that lacked homology with the chloroplast genome or with the same plasmid carrying a putative chloroplast DNA replication origin ( oriA ). Transformants were recovered only with the plasmid containing oriA , and all transformants contained an integrated plasmid copy at oriA , suggesting that establishment or maintenance of the extrachromosomal tandem repeat requires conditions that were not replicated in this experiment. To determine whether other genes could be maintained at high copy number in the chloroplast, plasmids carrying the wild-type atpB gene or the bacterial aadA gene were introduced into a high copy number transformant. Surprisingly, the copy number of the plasmid tandem repeat declined rapidly after the secondary transformation events, even when strong selective pressure for the introduced gene was applied. Thus, chloroplast transformation can either create or destabilize high copy number tandem repeats.  相似文献   

18.
19.
Variants of BamHI endonuclease in which the glutamate 113 residue has been changed to lysine or the aspartate 94 to asparagine were shown to behave as repressor molecules in vivo. This was demonstrated by placing a BamHI recognition sequence, GGATCC, positioned as an operator sequence in an antisense promoter for the aadA gene (spectinomycin resistance). Repression of this promoter relieved the inhibition of expression of spectinomycin resistance. This system was then used to select new binding proficient/cleavage deficient BamHI variants. The BamHI endonuclease gene was mutagenized either by exposure to hydroxylamine or by PCR. The mutagenized DNA was reintroduced into E. coli carrying the aadA gene construct, and transformants that conferred spectinomycin resistance were selected. Twenty Spr transformants were sequenced. Thirteen of these were newly isolated variants of the previously identified D94 and E113 residues which are known to be involved in catalysis. The remaining seven variants were all located at residue 111 and the glutamate 111 residue was shown to be involved with catalysis.  相似文献   

20.
Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires theintroduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins ormetabolic pathways.In order to accomplish the expression of multiple genes in a single transformationevent,we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonasreinhardtii chloroplast expression vector,resulting in papc-S.The constructed vector was then introducedinto the chloroplast of C.reinhardtii by micro-particle bombardment.Polymerase chain reaction and Southernblot analysis revealed that the two genes had integrated into the chloroplast genome.Western blot andenzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria couldbe correctly expressed in the chloroplasts of C.reinhardtii.The expressed foreign protein in transformantsaccounted for about 2%-3% of total soluble proteins.These findings pave the way to the reconstitution ofmulti-subunit proteins or metabolic pathways in transgenic C.reinhardtii chloroplasts in a single transformationevent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号