首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Cre/loxP site-specific recombination system combined with embryonic stem cell-mediated technologies has greatly expanded our capability to address normal and disease development in mammals using genetic approaches. The success of this emerging technology hinges on the production of Cre-expressing transgenic lines that provide cell type-, tissue-, or developmental stage-specific recombination between loxP sites placed in the genome. Here we describe and characterize the production of a double-reporter mouse line that provides a convenient and reliable readout of Cre recombinase activity. Throughout all embryonic and adult stages, the transgenic animal expresses the lacZ reporter gene before Cre-mediated excision occurs. Cre excision, however, removes the lacZ gene, allowing expression of the second reporter, the human alkaline phosphatase gene. This double-reporter transgenic line is able to indicate the occurrence of Cre excision in an extremely widespread manner from early embryonic to adult lineages. It will be a valuable reagent for the increasing number of investigators taking advantage of the powerful tools provided by the Cre/loxP site-specific recombinase system.  相似文献   

2.
Conditional gene targeting using the Cre/loxP system enables specific deletion of a gene in a tissue of interest. For application of Cre-mediated recombination in pigment cells, Cre expression has to be targeted to pigment cells in transgenic mice. So far, no pigment cell-specific Cre transgenic line has been reported and we present and discuss our first results on use of Cre recombinase in pigment cells. A construct was generated where Cre recombinase is controlled by the promoter of the mouse dopachrome tautomerase (Dct) gene. The construct was functionally tested in vitro and introduced into mice. Following breeding to two reporter mouse strains, we detected Cre recombinase activity in telencephalon, melanoblasts, and retinal pigment epithelium (RPE). Our data demonstrate the feasibility of pigment cell-specific Cre/loxP-mediated recombination.  相似文献   

3.
4.
位点特异重组系统由重组酶和相应的重组酶识别位点组成,通过两者间的相互作用,实现外源基因精确整合与切除等一系列遗传操作.主要可分为Cre/lox系统、FLP/frt系统、R/RS系统和Gin/gix系统.目前,研究最充分应用最广泛的位点特异重组系统为Cre/lox系统.此系统为位点特异重组系统家族中的一员,由38.5kDCre重组酶和34bplox位点组成,最早被应用于动物转基因研究,包括基因敲除、基因激活、基因易位等.近年来,随着研究的深入,Cre/lox系统被逐步应用到植物研究中,并在诸多领域取得重大进展.本文总结归纳了Cre/lox系统在定点整合、定点切除以及叶绿体转化等方面的最新研究成果,旨在为利用Cre/lox系统构建环境安全和高效表达的植物遗传转化体系提供参考.  相似文献   

5.
We describe the generation of transgenic mouse lines expressing Cre recombinase in epithelial cells of the lactating mammary gland. As an expression vector, we used a P1-derived bacterial artificial chromosome (PAC) which harbors the gene for the secretory milk protein, whey acidic protein (Wap). Using homologous recombination in E. coli, the PAC was modified to carry the improved coding sequence of Cre recombinase (iCre). Transgenic lines carrying the WAPiCre PAC express Cre recombinase efficiently in the majority of mammary epithelial cells upon lactation. Of only four transgenic lines produced, three express Cre recombinase to a high efficiency. LoxP-flanked DNA sequences are recombined in virtually all epithelial cells of WAPiCre transgenic mice at lactation day 3.  相似文献   

6.
Here we describe the generation of a double-fluorescent Cre/loxP indicator system. This protocol involves (i) all cloning steps to generate the plasmid vector (3-5 months); (ii) a guide to prepare high-efficiency transformation competent E. coli; (iii) generation of double-fluorescent reporter cell lines (3-4 weeks); and (iv) the functional testing of the indicator cell lines by application of cell-permeable Cre recombinase. The indicator is designed to monitor recombination events by switching the fluorescence light from red to green. The red fluorescence, indicating the nonrecombined state, is accompanied by the expression of a resistance gene against the antibiotic blasticidin. Appearance of green fluorescence concomitantly with the activation of puromycin-acetyltransferase monitors the recombination of the indicator construct by the Cre recombinase. In summary, we have developed a plasmid vector allowing a fast, stable and straightforward generation of transgenic clones. The expression of red fluorescent protein enables the selection of positive clones upon transfection and significantly shortens the time for identification of stable clones. This feature and the option to select for recombined cells by puromycin application are advantages compared with other alternative methods. Moreover, we developed a method utilizing cell-permeable Cre protein to validate the transgenic clones. Ultimately, this powerful methodology facilitates Cre/loxP-based applications such as cell lineage tracking or monitoring of cell fusion.  相似文献   

7.
We constructed an expression vector of Flp recombinase modified by adding a nuclear localization signal. Injection of the expression vector into fertilized eggs of the C57BL/6 strain yielded transgenic mouse lines expressing the Flp recombinase transgene in the testis. We crossed the transgenic mice to reporter mice carrying the neomycin phosphotransferase gene flanked by target sites of Flp recombinase. Examination of the deletion of the neomycin phosphotransferase gene in the progeny showed that Flp-mediated recombination took place efficiently in vivo in FLP66 transgenic mouse line. These results suggest that the Flp recombinase system is effective in mice and in combination with the Cre recombinase system extends the potentials of gene manipulation in mice. One of the useful applications of FLP66 transgenic mouse line is the removal of marker genes from mice manipulated for the conditional gene targeting with the Cre/loxP system in the pure C57BL/6 genetic background.  相似文献   

8.
Cre recombinase has been extensively used for genome engineering in transgenic mice yet its use in other species has been more limited. Here we describe the generation of transgenic chickens expressing Cre recombinase. Green fluorescent protein (GFP)-positive chicken primordial germ cells were stably transfected with β-actin-Cre-recombinase using phiC31 integrase and transgenic chickens were generated. Cre recombinase activity was verified by mating Cre birds to birds carrying a floxed transgene. Floxed sequences were only excised in offspring from roosters that inherited the Cre recombinase but were excised in all offspring from hens carrying the Cre recombinase irrespective of the presence of the Cre transgene. The Cre recombinase transgenic birds were healthy and reproductively normal. The Cre and GFP genes in two of the lines were closely linked whereas the genes segregated independently in a third line. These founders allowed development of GFP-expressing and non-GFP-expressing Cre recombinase lines. These lines of birds create a myriad of opportunities to study developmentally-regulated and tissue-specific expression of transgenes in chickens.  相似文献   

9.
We have established transgenic mice expressing the Cre recombinase under the control of the anti-Müllerian hormone (AMH) gene promoter. Cre activity and specificity were evaluated by different means. In AMH-Cre mice, expression of the Cre recombinase mRNA was confined to the testis and ovary. AMH-Cre mice were crossed with reporter transgenic lines and the offspring exhibited Cre-mediated recombination only in the testis and the ovary. In male, histochemical analysis indicated that recombination occurred in every Sertoli cells. In female, Cre-mediated recombination was restricted to granulosa cells, but the protein was not evenly active in every cells. From these results, we conclude that potentially, this transgenic line possessing AMH promoter-driven expression of the Cre recombinase is a powerful tool to delete genes in Sertoli cells only, in order to study Sertoli cell gene function during mammalian spermatogenesis.  相似文献   

10.
Loss-of-function approaches by the Cre/loxP technology have provided powerful tools for functional analyses of genes of interest expressed preferentially in a particular tissue. Here we describe the generation of transgenic mouse lines expressing Cre recombinase under the control of the promoter/enhancer unit of the gene for the alpha2 chain of collagen type I (Col1alpha2). As an expression vector, we used a P1-derived artificial chromosome (PAC), which harbors approximately 100 kb carrying the col1alpha2 gene. The improved coding sequence of the Cre recombinase was introduced to replace the first exon of col1alpha2. Cre expression was determined by immunohistochemistry and Cre-mediated onset of beta-galactosidase expression in ROSA26R-Cre reporter mice. In four analyzed transgenic lines, Cre recombinase was efficiently expressed during embryogenesis and in adult animals in cells of mesenchymal origin, such as dermal fibroblasts, mesenchymal cells of blood vessel walls, and cells in fibrous connective tissues surrounding internal organs.  相似文献   

11.
12.
Xu Y  Liu S  Yu G  Chen J  Chen J  Xu X  Wu Y  Zhang A  Dowdy SF  Cheng G 《Gene》2008,419(1-2):70-74
The Cre/loxP site-specific recombination system is a widely used tool for genetic engineering of mammalian genomes. Recombination of loxP-modified alleles is often induced by introduction of foreign DNA vector expressing Cre into the cells. But the introduced DNA vector has the potential to integrate into the genome of the cells and continuous expression of Cre recombinase from the foreign vector has the potential to yield cytotoxicity and genotoxicity in various cells. In this study, we investigate the possibility of overcoming this limitation by using a cell-permeable TAT-Cre recombinase. We found that TAT-Cre treatment of transgenic goat fibroblast cells did not compromise the development competency of reconstructed embryos by using these TAT-Cre-treated cells as nuclear donor in nuclear transfer. Finally, we obtained two live cloned goats where a selectable gene cassette was removed. Our work not only provided an efficient protein transduction-based system for removing selectable genes from transgenic goats, but also presented strong evidence that no severe damage was made to the host cells during the process of protein transduction.  相似文献   

13.
We generated pdx1(PB)CreERtrade mark transgenic mice in which a pancreatic endocrine-specific enhancer (pdx1(PB)) drives expression of a tamoxifen (TM)-inducible Cre recombinase/estrogen receptor fusion protein. We previously showed that this enhancer directs expression to immature endocrine cells as well as postnatal islets. This transgene provides spatial and temporal control of gene inactivation in pancreatic islets. Three transgenic lines were generated and crossed with R26R mice to assess recombination efficiency. TM-dependent lacZ expression was observed in islets from all three lines. One line was chosen for further study based on its strong islet-specific recombination in embryos and adults. In this line, a dose-dependent increase in recombination efficiency was observed in endocrine cells. Our data suggest that this transgenic line will be a valuable tool to inactivate genes in pancreatic endocrine cells during development or in the adult. The dose-dependent nature of recombination suggests a potential use for this line in the generation of genetic mosaic animals.  相似文献   

14.
To study the physiological control of osteoclasts, the bone resorbing cells, we generated transgenic mice carrying the Cre recombinase gene driven by either the tartrate-resistant acid phosphatase (TRAP) or cathepsin K (Ctsk) promoters. TRAP-Cre and Ctsk-Cre transgenic mouse lines were characterized by breeding with LacZ ROSA 26 (R26R) reporter mice and immunohistochemistry for Cre recombinase. The Cre transgene was functional in all lines, with Cre-mediated recombination occurring primarily in the long bones, vertebrae, ribs, and calvaria. Histological analyses of the bones demonstrated that functional Cre protein was present in 1) osteoclasts (Ctsk-Cre); 2) osteoclasts, columnar proliferating, and hypertrophic chondrocytes (TRAP-Cre line 4); and 3) round proliferating chondrocytes (TRAP-Cre line 3). In conclusion, we generated transgenic mouse lines that will enable the deletion of floxed target genes in osteoclasts, which will be valuable tools for studying the regulation of osteoclast function.  相似文献   

15.
The Cre-loxP technology allows the introduction of somatic gene alterations in a tissue and/or cell type specific manner. The development of transgenes that target Cre expression to specific cell types is a critical component in this system. Here, we describe the generation and characterization of transgenic mouse lines expressing Cre recombinase under the control of the baboon alpha-chymase promoter, designated Chm:Cre, in order to direct Cre expression specifically to mouse mast cells. Chm:Cre expression was detected in mast cells in lung and colon tissue. Cre-mediated recombination in these mice identified a population of mature tissue resident mast cells using ROSA26R reporter mice. No Cre-expression and Cre-mediated recombination was induced in in vitro generated bone marrow derived mast cells or mast cells isolated from the peritoneal cavity indicating that Cre-expression under the control of the alpha-chymase promoter is solely activated in tissue resident mast cells. These Chm:Cre transgenic mice represent a useful tool to specifically inactivate genes of interest in mast cells of these tissues.  相似文献   

16.
Two transgenic mouse lines expressing an inducible form of the Cre recombinase (CreER(TM)) under the control of the human GFAP promoter have been generated and characterized. In adult mice, expression of the fusion protein is largely confined to astrocytes in all regions of the central nervous system. Minimal spontaneous Cre activity was detected and recombination was efficiently induced by intraperitoneal administration of tamoxifen in adult mice. The pattern of recombination closely mirrored that of transgene expression. The percentage of astrocytes undergoing recombination varied from region to region ranging from 35% to 70% while a much smaller portion (<1%) of oligodendrocytes and neural precursor cells showed evidence of Cre activity. These mouse lines will provide important tools to dissect gene function in glial cells and in gliomagenesis.  相似文献   

17.
Organ-specific expression of a Cre recombinase allows the analysis of gene function in a particular tissue or cell type. Using a 6.1 kb promoter from the mouse tyrosinase gene, we generated and characterized two lines of transgenic mice that express Cre recombinase in melanoblasts. Utilizing a Cre-responsive reporter mouse strain, genetic recombination was detected in the melanoblasts of the skin from embryonic day 11.5. In addition, Cre-expression was detected in the skin and eyes of mice. Cre transgene activity was occasionally detected in the brain and peripheral nerves but not in other tissues. When Tyr::Cre mice were crossed with mice carrying a homozygous loxP conditional mutation for the insulin-like growth factor receptor gene (Igf1r), Cre-melanoblast-specific recombination pattern was confirmed and no abnormal phenotype was observed. In conclusion, Tyr::Cre transgenic mice provide a valuable tool to follow the cell lineage and to examine gene function in melanocyte development and transformation.  相似文献   

18.
We report a transgenic mouse line that expresses Cre recombinase exclusively in podocytes. Twenty- four transgenic founders were generated in which Cre recombinase was placed under the regulation of a 2.5-kb fragment of the human NPHS2 promoter. Previously, this fragment was shown to drive beta-galactosidase (beta-gal) expression exclusively in podocytes of transgenic mice. For analysis, founder mice were bred with ROSA26 mice, a reporter line that expresses beta-gal in cells that undergo Cre recombination. Eight of 24 founder lines were found to express beta-gal exclusively in the kidney. Histological analysis of the kidneys showed that beta-gal expression was confined to podocytes. Cre recombination occurred during the capillary loop stage in glomerular development. No evidence for Cre recombination was detected in any of 14 other tissues examined.  相似文献   

19.
Neural crest cells are embryonic, multipotent stem cells that give rise to various cell/tissue types and thus serve as a good model system for the study of cell specification and mechanisms of cell differentiation. For analysis of neural crest cell lineage, an efficient method has been devised for manipulating the mouse genome through the Cre-loxP system. We generated transgenic mice harboring a Cre gene driven by a promoter of protein 0 (P0). To detect the Cre-mediated DNA recombination, we crossed P0-Cre transgenic mice with CAG-CAT-Z indicator transgenic mice. The CAG-CAT-Z Tg line carries a lacZ gene downstream of a chicken beta-actin promoter and a "stuffer" fragment flanked by two loxP sequences, so that lacZ is expressed only when the stuffer is removed by the action of Cre recombinase. In three different P0-Cre lines crossed with CAG-CAT-Z Tg, embryos carrying both transgenes showed lacZ expression in tissues derived from neural crest cells, such as spinal dorsal root ganglia, sympathetic nervous system, enteric nervous system, and ventral craniofacial mesenchyme at stages later than 9.0 dpc. These findings give some insights into neural crest cell differentiation in mammals. We believe that P0-Cre transgenic mice will facilitate many interesting experiments, including lineage analysis, purification, and genetic manipulation of the mammalian neural crest cells.  相似文献   

20.
Studies of cardiac muscle gene expression and signaling have been hampered by the lack of immortalized cardiomyocyte cell lines capable of proliferation and irreversible withdrawal from the cell cycle. With the goal of creating such cell lines, we generated transgenic mice using cardiac-specific cis-regulatory elements from the mouse Nkx2.5 gene to drive the expression of a simian virus 40 large T-antigen (TAg) gene flanked by sites for recombination by Cre recombinase. These transgenic mice developed tumors within the ventricular myocardium. Cells isolated from these tumors expressed cardiac markers and proliferated rapidly during serial passage in culture, without apparent senescence. However, they were unable to exit the cell cycle and failed to exhibit morphological features of terminal differentiation. Introduction of Cre recombinase to these cardiac cell lines by adenoviral delivery resulted in the elimination of TAg expression, accompanied by rapid cessation of cell division, and increase in cell size without an apparent induction of cellular differentiation. Incubation of cells lacking TAg in serum-deficient media with various pharmacological agents (norepinephrine, phenylephrine, or bone morphogenetic protein-2/4) or constitutively active calcium/calmodulin-dependent protein kinase I and/or calcineurin led to the formation of sarcomeres and up-regulation of cardiac genes involved in excitation-contraction coupling. The combination of TAg expression under the control of an early cardiac promoter and Cre-mediated recombination allowed us to derive an immortal cell line from the ventricular myocardium that could be controllably withdrawn from the cell cycle. The conditional expression of TAg in this manner permits propagation and regulated growth termination of cell types that are otherwise unable to be maintained in cell culture and may have applications for cardiac repair technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号