首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.

Background

Norwalk virus causes outbreaks of acute non-bacterial gastroenteritis in humans. The virus capsid is composed of a single 60 kDa protein. In a previous study, the capsid protein of recombinant Norwalk virus genogroup II was expressed in an E. coli system and monoclonal antibodies were generated against it. The analysis of the reactivity of those monoclonal antibodies suggested that the N-terminal domain might contain more antigenic epitopes than the C-terminal domain. In the same study, two broadly reactive monoclonal antibodies were observed to react with genogroup I recombinant protein.

Results

In the present study, we used the recombinant capsid protein of genogroup I and characterized the obtained 17 monoclonal antibodies by using 19 overlapping fragments. Sixteen monoclonal antibodies recognized sequential epitopes on three antigenic regions, and the only exceptional monoclonal antibody recognized a conformational epitope. As for the two broadly reactive monoclonal antibodies generated against genogroup II, we indicated that they recognized fragment 2 of genogroup I. Furthermore, genogroup I antigen from a patient's stool was detected by sandwich enzyme-linked immunosorbent assay using genogroup I specific monoclonal antibody and biotinated broadly reactive monoclonal antibody.

Conclusion

The reactivity analysis of above monoclonal antibodies suggests that the N-terminal domain may contain more antigenic epitopes than the C-terminal domain as suggested in our previous study. The detection of genogroup I antigen from a patient's stool by our system suggested that the monoclonal antibodies generated against E. coli expressed capsid protein can be used to detect genogroup I antigens in clinical material.  相似文献   

2.
The second open reading frame (ORF2) gene of the Chitta virus (CHV) was cloned to construct a recombinant baculovirus. The CHV ORF2 is predicted to encode a capsid protein of 535 amino acids (aa). CHV showed a high aa identity in the capsid region with genogroup II Norwalk virus (NV) (65-85%), but a low aa identity with genogroup I NV (44-46%). Phylogenetic analysis of the ORF2 gene demonstrated that CHV is genetically closely related to the Hawaii virus included in genogroup II NV. The recombinant capsid protein of CHV (rCHV) self-assembled to form empty virus-like particles (VLPs) when expressed in insect cells with the recombinant baculovirus. An enzyme-linked immunosorbent assay (ELISA) based on antisera to rCHV was developed to detect CHV antigen in stools. The antigen ELISA appeared to be highly specific to both rCHV and CHV-like strains. In addition, combined use of antigen ELISAs using antibodies against two antigenically distinct recombinant VLPs, the recombinant Chiba virus (rCV) and recombinant Seto virus (rSEV), enabled us to determine the genetic as well as antigenic relationship among these three viruses.  相似文献   

3.
Passive immunoprophylaxis or immunotherapy with norovirus-neutralizing monoclonal antibodies (MAbs) could be a useful treatment for high-risk populations, including infants and young children, the elderly, and certain patients who are debilitated or immunocompromised. In order to obtain antinorovirus MAbs with therapeutic potential, we stimulated a strong adaptive immune response in chimpanzees to the prototype norovirus strain Norwalk virus (NV) (genogroup I.1). A combinatorial phage Fab display library derived from mRNA of the chimpanzees'' bone marrow was prepared, and four distinct Fabs reactive with Norwalk recombinant virus-like particles (rVLPs) were recovered, with estimated binding affinities in the subnanomolar range. Mapping studies showed that the four Fabs recognized three different conformational epitopes in the protruding (P) domain of NV VP1, the major capsid protein. The epitope of one of the Fabs, G4, was further mapped to a specific site involving a key amino acid residue, Gly365. One additional specific Fab (F11) was recovered months later from immortalized memory B cells and partially characterized. The anti-NV Fabs were converted into full-length IgG (MAbs) with human γ1 heavy chain constant regions. The anti-NV MAbs were tested in the two available surrogate assays for Norwalk virus neutralization, which showed that the MAbs could block carbohydrate binding and inhibit hemagglutination by NV rVLP. By mixing a single MAb with live Norwalk virus prior to challenge, MAbs D8 and B7 neutralized the virus and prevented infection in a chimpanzee. Because chimpanzee immunoglobulins are virtually identical to human immunoglobulins, these chimpanzee anticapsid MAbs may have a clinical application.  相似文献   

4.
A foot-and-mouth disease virus (FMDV) cDNA cassette containing sequences encoding the capsid precursor P1, peptide 2A and a truncated 2B (abbreviated P1-2A) of type C FMDV, has been modified to generate the authentic amino terminus and the myristoylation signal. This construct has been used to produce a recombinant baculovirus (AcMM53) which, upon infection of Spodoptera frugiperda insect cells, expressed a recombinant P1-2A precursor with a high yield. This polyprotein reacted with neutralizing monoclonal antibodies (MAbs) that bind to continuous epitopes of the major antigenic site A (also termed site 1) of capsid protein VP1. Unexpectedly, it also reacted with neutralizing MAbs which define complex, discontinuous epitopes previously identified on FMDV particles. The reactivity of MAbs with P1-2A was quantitatively similar to their reactivity with intact virus and, in both cases, the reactivity with MAbs that recognized discontinuous epitopes was lost upon heat denaturation of the antigen. The finding that a capsid precursor may fold in such a way as to maintain discontinuous epitopes involved in virus neutralization present on the virion surface opens the possibility of using unprocessed capsid precursors as novel antiviral immunogens.  相似文献   

5.
Antibody to the capsid (PORF2) protein of hepatitis E virus (HEV) is sufficient to confer immunity, but knowledge of B-cell epitopes in the intact capsid is limited. A panel of murine monoclonal antibodies (MAbs) was generated following immunization with recombinant ORF2.1 protein, representing the C-terminal 267 amino acids (aa) of the 660-aa capsid protein. Two MAbs reacted exclusively with the conformational ORF2.1 epitope (F. Li, J. Torresi, S. A. Locarnini, H. Zhuang, W. Zhu, X. Guo, and D. A. Anderson, J. Med. Virol. 52:289-300, 1997), while the remaining five demonstrated reactivity with epitopes in the regions aa 394 to 414, 414 to 434, and 434 to 457. The antigenic structures of both the ORF2.1 protein expressed in Escherichia coli and the virus-like particles (VLPs) expressed using the baculovirus system were examined by competitive enzyme-linked immunosorbent assays (ELISAs) using five of these MAbs and HEV patient sera. Despite the wide separation of epitopes within the primary sequence, all the MAbs demonstrated some degree of cross-inhibition with each other in ORF2. 1 and/or VLP ELISAs, suggesting a complex antigenic structure. MAbs specific for the conformational ORF2.1 epitope and a linear epitope within aa 434 to 457 blocked convalescent patient antibody reactivity against VLPs by approximately 60 and 35%, respectively, while MAbs against epitopes within aa 394 to 414 and 414 to 434 were unable to block patient serum reactivity. These results suggest that sequences spanning aa 394 to 457 of the capsid protein participate in the formation of strongly immunodominant epitopes on the surface of HEV particles which may be important in immunity to HEV infection.  相似文献   

6.
Sapovirus (SaV), a member of the family Caliciviridae, is an important cause of acute epidemic gastroenteritis in humans. Human SaV is genetically and antigenically diverse and can be classified into four genogroups (GI, GII, GIV, and GV) and 16 genotypes (7 GI [GI.1–7], 7 GII, [GII.1–7], 1 GIV and 1 GV), based on capsid sequence similarities. Monoclonal antibodies (MAbs) are powerful tools for examining viruses and proteins. PAI myeloma cells were fused with spleen cells from mice immunized with a single type of recombinant human SaV virus‐like particles (VLPs) (GI.1, GI.5, GI.6, GII.3, GIV, or GV). Sixty‐five hybrid clones producing MAbs were obtained. Twenty‐four MAbs were characterized by ELISA, according to their cross‐reactivity to each VLP (GI.1, GI.5, GI.6, GII.2, GII.3, GII.4, GII.7, GIV, and GV). The MAbs were classified by this method into: (i) MAbs broadly cross‐reactive to all GI, GII, GIV and GV strains; (ii) those reactive in a genogroup‐specific; and (iii) those reactive in a genotype‐specific manner. Further analysis of three broadly cross‐reactive MAbs with a competitive ELISA demonstrated that at least two different common epitopes are located on the capsid protein of human SaVs in the four genogroups. The MAbs generated and characterized in this study will be useful tools for further study of the antigenic and structural topography of the human SaV virion and for developing new diagnostic assays for human SaV.  相似文献   

7.
Thirty-five monoclonal antibodies (MAbs) against glycoprotein (G protein) of the RC-HL strain of the rabies virus have been established. Using these MAbs, two antigenic sites (I and II) were delineated on the G protein of the RC-HL strain in a competitive binding assay. Of these, 34 MAbs recognized the epitopes on site IL Site II was further categorized into 10 subsites according to their patterns in a competitive binding assay. Each site II-specific MAb showed 5 to 23 nonreciprocal competitions. The reactivities of 35 MAbs to rabies and rabies-related viruses in an indirect immunofluorescent antibody test showed that six MAbs in group A binded to rabies and rabies-related viruses and eight MAbs in group E reacted only with rabies viruses, considering that the former represent the genus-specific of Lyssavirus and the latter are rabies virus-specific. From biological assays, 28 of the 35 MAbs showed neutralization activity, 31 showed hemagglutination inhibition (HI) activity, and 18 showed immunolysis (IL) activity. The MAbs recognizing neutralization epitopes fell into at least three groups: those exhibiting both HI and IL activity, those showing only HI activity, and those showing neither HI nor IL activity. All IL epitopes overlap with HA epitopes. Five of the nine MAbs which reacted with the antigen treated by sodium dodecyl sulfate in ELISA were not reduced, or reduced only slightly, in the titer. None of the MAbs reacted with 2-mercaptoethanol-treated antigen. Only one MAb that recognized site I reacted with the denatured G protein in a Western blotting assay, indicating that its epitope is linear. These results suggest that almost all of the epitopes on the G protein of the rabies virus are conformation-dependent and the G protein forms a complicated antigenic structure.  相似文献   

8.
Complementary DNA fragments (nucleotides 935–1475, 1091–1310, and 935–1193) encoding the N-terminal portion of glycoprotein E of West Nile virus (WNV), strain LEIV-Vlg99-27889-human, were cloned. Recombinant polypeptides of glycoprotein E (E1–180, E53–126, and E1–86) of the WNV having amino acid sequences corresponding to the cloned cDNA fragments and mimicking the main functional regions of domains I and II of surface glycoprotein E were purified by affinity chromatography. According to ELISA and Western blotting, 12 types of monoclonal antibodies (MAbs) raised in our laboratory against recombinant polypeptide E1–180 recognized the WNV glycoprotein E. This is indicative of similarity between the antigenic structures of the short recombinant polypeptides and corresponding regions of the glycoprotein. Analysis of interactions of the MAbs with short recombinant polypeptides and protein E of tick-borne encephalitis virus revealed at least six epitopes within domains I and II of the WNV protein E. We found at least seven MAb types against the region between amino acid residues (aa) 86 and 126 of domain II, which contains the peptide responsible for fusion of the virus and cell membranes (residues 98–110). The epitope for antireceptor MAbs 10H10 was mapped within the 53–86 aa region of domain II of WNV protein E, which is evidence for the spatial proximity of the fusion peptide and the coreceptor of protein E (residues 53–86) for cellular laminin-binding protein (LBP). The X-ray pattern of protein E suggests that the bc loop (residues 73–89) of domain II interacts with LBP and, together with the cd loop (fusion peptide), determines the initial stages of flavivirus penetration into the cell.  相似文献   

9.
Noroviruses are major etiological agents of acute viral gastroenteritis. In 2002, a GII.4 variant (Farmington Hills cluster) spread so rapidly in the human population that it predominated worldwide and displaced previous GII.4 strains. We developed and characterized a panel of six monoclonal antibodies (MAbs) directed against the capsid protein of a Farmington Hills-like GII.4 norovirus strain that was associated with a large hospital outbreak in Maryland in 2004. The six MAbs reacted with high titers against homologous virus-like particles (VLPs) by enzyme-linked immunoassay but did not react with denatured capsid protein in immunoblots. The expression and self-assembly of newly developed genogroup I/II chimeric VLPs showed that five MAbs bound to the GII.4 protruding (P) domain of the capsid protein, while one recognized the GII.4 shell (S) domain. Cross-competition assays and mutational analyses showed evidence for at least three distinct antigenic sites in the P domain and one in the S domain. MAbs that mapped to the P domain but not the S domain were able to block the interaction of VLPs with ABH histo-blood group antigens (HBGA), suggesting that multiple antigenic sites of the P domain are involved in HBGA blocking. Further analysis showed that two MAbs mapped to regions of the capsid that had been associated with the emergence of new GII.4 variants. Taken together, our data map antibody and HBGA carbohydrate binding to proximal regions of the norovirus capsid, showing that evolutionary pressures on the norovirus capsid protein may affect both antigenic and carbohydrate recognition phenotypes.  相似文献   

10.
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC-1) elicits a largely serotype-specific immune response directed against previously described determinants designated antigenic sites I and II. To more precisely define these two immunodominant antigenic regions of gC-1 and to determine whether the homologous HSV-2 glycoprotein (gC-2) has similarly situated antigenic determinants, viral recombinants containing gC chimeric genes which join site I and site II of the two serotypes were constructed. The antigenic structure of the hybrid proteins encoded by these chimeric genes was studied by using gC-1- and gC-2-specific monoclonal antibodies (MAbs) in radioimmunoprecipitation, neutralization, and flow cytometry assays. The results of these analyses showed that the reactivity patterns of the MAbs were consistent among the three assays, and on this basis, they could be categorized as recognizing type-specific epitopes within the C-terminal or N-terminal half of gC-1 or gC-2. All MAbs were able to bind to only one or the other of the two hybrid proteins, demonstrating that gC-2, like gC-1, contains at least two antigenic sites located in the two halves of the molecule and that the structures of the antigenic sites in both molecules are independent and rely on limited type-specific regions of the molecule to maintain epitope structure. To fine map amino acid residues which are recognized by site I type-specific MAbs, point mutations were introduced into site I of the gC-1 or gC-2 gene, which resulted in recombinant mutant glycoproteins containing one or several residues from the heterotypic serotype in an otherwise homotypic site I background. The recognition patterns of the MAbs for these mutant molecules demonstrated that (i) single amino acids are responsible for the type-specific nature of individual epitopes and (ii) epitopes are localized to regions of the molecule which contain both shared and unshared amino acids. Taken together, the data described herein established the existence of at least two distinct and structurally independent antigenic sites in gC-1 and gC-2 and identified subtle amino acid sequence differences which contribute to type specificity in antigenic site I of gC.  相似文献   

11.
Previously, a panel of monoclonal antibodies (MCAb) was used to define specific epitopes of herpes simplex virus glycoprotein D (gD) (R. J. Eisenberg et al., J. Virol. 53:634-644, 1985). Three groups of antibodies recognized continuous epitopes; group VII reacted with residues 11 to 19 of the mature protein (residues 36 to 44 of the predicted sequence), group II reacted with residues 272 to 279, and group V reacted with residues 340 to 356. Four additional antibody groups recognized discontinuous epitopes of gD, since their reactivity was lost when the glycoprotein was denatured by reduction and alkylation. Our goal in this study was to localize more precisely the discontinuous epitopes of gD. Using a nondenaturing system of polyacrylamide gel electrophoresis ("native" gel electrophoresis) coupled to Western blotting, we analyzed the antigenic activity of truncated forms of gD. These fragments were generated either by recombinant DNA methods or by cleavage of purified native gD-1 (gD obtained from herpes simplex virus type 1) and gD-2 (gD obtained from herpes simplex virus type 2) with Staphylococcus aureus protease V8. Antibodies in groups III, IV, and VI recognized three truncated forms of gD-1 produced by recombinant DNA methods, residues 1 to 287, 1 to 275, and 1 to 233. Antibodies in group I recognized the two larger forms but did not react with the gD-1 fragment of residues 1 to 233. On the basis of these and previous results, we concluded that a protion of epitope I was located within residues 233 to 259 and that epitopes III, IV, and VI were upstream of residue 233. Antibodies to continuous epitopes identified protease V8 fragments of gD-1 and gD-2 that contained portions of either the amino or carboxy regions of the proteins. None of the V8 fragments, including a 34K polypeptide containing residues 227 to 369, reacted with group I antibodies. This result indicated that a second portion of epitope I was located upstream of residue 227. Two amino-terminal fragments of gD-1, 33K and 30K, reacted with group III, IV, and VI antibodies. A 33K fragment of gD-2 reacted with group III antibodies. Based on their size and reactivity with endo-beta-N-acetylglycosaminidase F, we hypothesized that the 33K and 30K molecules represented residues 1 to 226 and 1 to 182 of gD-1, respectively. These results suggest that epitopes III, IV, and VI are located within the first 182 residues of gD.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Evidence from clinical and experimental studies of human and chimpanzees suggests that hepatitis C virus (HCV) envelope glycoprotein E2 is a key antigen for developing a vaccine against HCV infection. To identify B-cell epitopes in HCV E2, six murine monoclonal antibodies (MAbs), CET-1 to -6, specific for HCV E2 protein were generated by using recombinant proteins containing E2t (a C-terminally truncated domain of HCV E2 [amino acids 386 to 693] fused to human growth hormone and glycoprotein D). We tested whether HCV-infected sera were able to inhibit the binding of CET MAbs to the former fusion protein. Inhibitory activity was observed in most sera tested, which indicated that CET-1 to -6 were similar to anti-E2 antibodies in human sera with respect to the epitope specificity. The spacial relationship of epitopes on E2 recognized by CET MAbs was determined by surface plasmon resonance analysis and competitive enzyme-linked immunosorbent assay. The data indicated that three overlapping epitopes were recognized by CET-1 to -6. For mapping the epitopes recognized by CET MAbs, we analyzed the reactivities of CET MAbs to six truncated forms and two chimeric forms of recombinant E2 proteins. The data suggest that the epitopes recognized by CET-1 to -6 are located in a small domain of E2 spanning amino acid residues 528 to 546.  相似文献   

13.
Complementary DNA fragments (nucleotides 466-966 and 878-1088) encoding prM protein and polypeptide M31-75-E1-30 of West Nile virus (WNV), strain LEIV-Vlg99-27889-human, were obtained and cloned. Recombinant polypeptides prM and M3175-E1-30 having amino acid sequences corresponding to the cloned cDNA fragments were purified by affinity chromatography. According to ELISA and Western blotting prM protein interacted with polyclonal antibodies against WNV. This is indicative the immunochemical similarity of WNV recombinant and native protein prM. 6 types of species-specific monoclonal antibodies (MAbs) raised against recombinant polypeptide prM recognized at least four epitopes within recombinant polypeptides prM and M31-75-E1-30. MAbs 7D11 were active in the virus - neutralization assay. Analysis of interaction of the MAbs with recombinant polypeptides prM, M31-75-EI-30, E1-180, E260-466 revealed cross-reactive epitopes within 260-466 amino acid residues (aa) of WNV protein E, 31-75 aa of polypeptide M31-75-E1-30 and protein prM. Proposed spatial model of proteins E and M C-end fragments shown similarity of their three-dimensional structures confirming results of immunochemical assay. Neutralization of viral infectivity by MAbs 7D11 raised against epitope within 31-75 aa t of protein M is evidence of important function of C-end region in the process of flaviviral penetration into host cell.  相似文献   

14.
The Eastern equine encephalitis virus (EEEV) E2 protein is one of the main targets of the protective immune response against EEEV. Although some efforts have done to elaborate the structure and immune molecular basis of Alphaviruses E2 protein, the published data of EEEV E2 are limited. Preparation of EEEV E2 protein-specific antibodies and define MAbs-binding epitopes on E2 protein will be conductive to the antibody-based prophylactic and therapeutic and to the study on structure and function of EEEV E2 protein. In this study, 51 EEEV E2 protein-reactive monoclonal antibodies (MAbs) and antisera (polyclonal antibodies, PAbs) were prepared and characterized. By pepscan with MAbs and PAbs using enzyme-linked immunosorbent assay, we defined 18 murine linear B-cell epitopes. Seven peptide epitopes were recognized by both MAbs and PAbs, nine epitopes were only recognized by PAbs, and two epitopes were only recognized by MAbs. Among the epitopes recognized by MAbs, seven epitopes were found only in EEEV and two epitopes were found both in EEEV and Venezuelan equine encephalitis virus (VEEV). Four of the EEEV antigenic complex-specific epitopes were commonly held by EEEV subtypes I/II/III/IV (1-16aa, 248-259aa, 271-286aa, 321-336aa probably located in E2 domain A, domain B, domain C, domain C, respectively). The remaining three epitopes were EEEV type-specific epitopes: a subtype I-specific epitope at amino acids 108–119 (domain A), a subtype I/IV-specific epitope at amino acids 211–226 (domain B) and a subtype I/II/III-specific epitope at amino acids 231–246 (domain B). The two common epitopes of EEEV and VEEV were located at amino acids 131–146 and 241–256 (domain B). The generation of EEEV E2-specific MAbs with defined specificities and binding epitopes will inform the development of differential diagnostic approaches and structure study for EEEV and associated alphaviruses.  相似文献   

15.
Gu TJ  Wei W  Duan Y  Jiang CL  Chen Y  Yu XH  Wu JX  Wu YG  Kong W 《Protein and peptide letters》2011,18(11):1099-1106
Single-chain Fv fragment (scFv) of anti-rabies glycoprotein (G protein) has been recommended as a new agent for detecting and neutralizing lethal rabies virus. In this study, we constructed scFv that corresponded to the FV fragment of CR57, a monoclonal antibody against rabies virus, and called it FV57. Despite its virus neutralization activity, FV57 may or may not recognize the same epitope as that recognized by CR57. To resolve this issue, the binding epitope of rabies virus G protein recognized by FV57 was identified. A recombinant rabies virus G protein fragment (RVG179; residues 179-281) comprising several epitopes was expressed in E.coli, purified, and the specificity of its binding with FV57 was determined. In addition, a peptide (abbreviated as EP, residues 224-236) comprising the known epitope of G protein to which CR57 binds was synthesized and the potency of its binding with FV57 was also determined. The results showed that FV57 could specifically bind to RVG179 and EP. Competitive ELISA experiments indicated that RVG179 and EP were able to compete with the rabies virus G protein for binding with FV57. Since no other epitope within residues 224- 236 has been reported, except for the epitope to which CR57 binds (residues 226-231), the epitope recognized by FV57 was the same as its intact antibody CR57. This demonstrated that the complementarity-determining regions (CDRs) of the heavy and light chains of FV57 have folded into the correct conformation as those of CR57.  相似文献   

16.
The surface of the mature dengue virus (DENV) particle is covered with 180 envelope (E) proteins arranged as homodimers that lie relatively flat on the virion surface. Each monomer consists of three domains (ED1, ED2, and ED3), of which ED3 contains the critical neutralization determinant(s). In this study, a large panel of DENV-2 recombinant ED3 mutant proteins was used to physically and biologically map the epitopes of five DENV complex-specific monoclonal antibodies (MAbs). All five MAbs recognized a single antigenic site that includes residues K310, I312, P332, L389, and W391. The DENV complex antigenic site was located on an upper lateral surface of ED3 that was distinct but overlapped with a previously described DENV-2 type-specific antigenic site on ED3. The DENV complex-specific MAbs required significantly higher occupancy levels of available ED3 binding sites on the virion, compared to DENV-2 type-specific MAbs, in order to neutralize virus infectivity. Additionally, there was a great deal of variability in the neutralization efficacy of the DENV complex-specific MAbs with representative strains of the four DENVs. Overall, the differences in physical binding and potency of neutralization observed between DENV complex- and type-specific MAbs in this study demonstrate the critical role of the DENV type-specific antibodies in the neutralization of virus infectivity.  相似文献   

17.
A set of 29 monoclonal antibodies (MAbs) specific for the rabies virus nucleoprotein (N protein) was prepared and used to analyze the topography of antigenic sites. At least four partially overlapping antigenic sites were delineated on the N protein of rabies virus by competitive binding assays. Indirect immunofluorescent antibody tests using MAbs with a series of rabies and rabies-related viruses showed that epitopes shared by various fixed and street strains of rabies virus were mainly localized at antigenic sites II and III, while epitopes representing the genus-specific antigen of Lyssavirus were widely presented at sites I, III and IV. All but one of seven MAbs specific for antigenic sites I, IV and bridge site (I and II) reacted with the antigen that had been denatured by sodium dodecyl sulfate or 2-mercaptoethanol, as well as with the denatured N protein in Western blotting assays. However, none of the MAbs against antigenic sites II and III reacted with the denatured antigen. These data indicate that antigenic sites I and IV, and sites II and III on the N protein of rabies virus are composed of linear and conformation-dependent epitopes, respectively.  相似文献   

18.
A major histocompatibility complex (MHC) class I-restricted cytotoxic T-lymphocyte (CTL) response is induced in BALB/c mice upon immunization with poliovirus serotype 1 (Mahoney strain). A similar class I-restricted response is also induced upon immunization with purified VP1 capsid proteins. Thus, poliovirus-specific MHC class I CTL responses can be induced independently of viral infection in murine hosts. In experiments using recombinant vaccinia virus vectors expressing different segments of the poliovirus capsid proteins and synthetic peptides, two regions of the VP1 capsid protein appear to contain epitopes recognized by this bulk CTL population. These epitope regions contain a Kd-restricted peptide-binding motif. Interestingly, each of these CTL epitopes is located near previously defined neutralizing antigenic sites.  相似文献   

19.
The only major structural protein (35 kDa) of the lactococcal small isometric-headed bacteriophage ul36, a member of the P335 species, was isolated from a preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Monoclonal antibodies (MAbs) were raised against the denatured 35-kDa protein. Six MAbs were selected and characterized. Western blots (immunoblots) showed that all MAbs recognized the 35 kDa but also a 45 kDa that is in lower concentration in the phage structure. Binding inhibition assays identified five families of MAbs that recognized nonoverlapping epitopes of the 35- and 45-kDa proteins. Immunoelectron microscopy showed that these two proteins are localized within the phage head, therefore indicating that the 35 kDa is a major capsid protein of ul36 and that the 45 kDa is a minor capsid protein. With two MAbs, a sandwich enzyme-linked immunosorbent assay (ELISA) was developed for direct detection of lactococcal phages in whey and milk samples. Whey and milk components, however, interfered with the conduct of the assay. Partial denaturation of milk samples by heat treatment in the presence of SDS and β-mercaptoethanol removed the masking effect and increased the sensitivity of the assay by 100-fold. With the method used here, 107 PFU/ml were detected by the ELISA within 2 h without any steps to enrich or isolate bacteriophages.  相似文献   

20.
The largest cyanogen bromide fragment (GP-14,5; coordinates 78-176) of E protein belonging to the envelope of the tick-borne encephalitis (TBE) virus (Far Eastern subtype, strain Sofjin) interacted with five out of twelve E-specific monoclonal antibodies (MAbs). Having compared; efficiencies of some MAbs binding to the antigens of TBE viruses of Far Eastern and West European subtypes and primary structures of analogous peptides of these viruses, we suggested the epitopes of these MAbs to be located in the vicinity of 89 and/or 116-th amino acid residues of E protein. Effect of denaturing agents and reduction followed by carboxymethylation on the protein E antigenic properties was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号