首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nuclear cyt-4 mutants of Neurospora crassa have been shown previously to be defective in splicing the group I intron in the mitochondrial large rRNA gene and in 3' end synthesis of the mitochondrial large rRNA. Here, Northern hybridization experiments show that the cyt-4-1 mutant has alterations in a number of mitochondrial RNA processing pathways, including those for cob, coI, coII and ATPase 6 mRNAs, as well as mitochondrial tRNAs. Defects in these pathways include inhibition of 5' and 3' end processing, accumulation of aberrant RNA species, and inhibition of splicing of both group I introns in the cob gene. The various defects in mitochondrial RNA synthesis in the cyt-4-1 mutant cannot be accounted for by deficiency of mitochondrial protein synthesis or energy metabolism, and they suggest that the cyt-4-1 mutant is defective in a component or components required for processing and/or turnover of a number of different mitochondrial RNAs. Defective splicing of the mitochondrial large rRNA intron in the cyt-4-1 mutant may be a secondary effect of failure to synthesize pre-rRNAs having the correct 3' end. However, a similar explanation cannot be invoked to account for defective splicing of the cob pre-mRNA introns, and the cyt-4-1 mutation may directly affect splicing of these introns.  相似文献   

2.
O Malek  V Knoop 《RNA (New York, N.Y.)》1998,4(12):1599-1609
The fragmentation of group II introns without concomitant loss of splicing competence is illustrated by extraordinary gene arrangements in plant mitochondrial genomes. The mitochondrial genes nad1, nad2, and nad5, all encoding subunits of the NADH dehydrogenase, require trans-splicing for functional assembly of their mRNAs in flowering plants. Tracing the origins of trans-splicing group II introns shows that they have evolved from formerly cis-arranged homologs whose descendants can still be identified in lineages of early branching land plants. In this contribution we present the full set of ancestor introns for all five conserved mitochondrial trans-splicing positions. These introns are strikingly small in the quillwort Isoetes lacustris, the continuous nad2 gene intron in this species representing the smallest (389 nt) land plant group II intron yet identified. cDNA analysis shows correct splicing of the introns in vivo and also identifies frequent RNA editing events in the flanking nad gene exons. Other representatives of the ancestral cis-arranged introns are identified in the fern Osmunda regalis, the horsetail Equisetum telmateia, and the hornwort Anthoceros crispulus. Only the now identified intron in Osmunda carries significant traces of a former maturase reading frame. The identification of a continuous homolog in Anthoceros demonstrates that intron invasion into the affected genes in some cases predated the split of vascular and nonvascular plants more than 400 million years ago. As an alternative to disruption after size increase, the respective introns can get secondarily lost in certain lineages.  相似文献   

3.
Mitochondrial introns in flowering plant genes are virtually all classified as members of the group II ribozyme family although certain structural features have degenerated to varying degrees over evolutionary time. We are interested in the impact that unconventional intron architecture might have on splicing biochemistry in vivo and we have focused in particular on intronic domains V and VI, which for self-splicing introns provide a key component of the catalytic core and the bulged branchpoint adenosine, respectively. Notably, the two transesterification steps in classical group II splicing are the same as for nuclear spliceosomal introns and release the intron as a lariat. Using RT-PCR and circularized RT-PCR, we had previously demonstrated that several wheat mitochondrial introns which lack a branchpoint adenosine have atypical splicing pathways, and we have now extended this analysis to the full set of wheat introns, namely six trans-splicing and sixteen cis-splicing ones. A number of introns are excised using non-lariat pathways and interestingly, we find that several introns which do have a conventional domain VI also use pathways that appear to exploit other internal or external nucleophiles, with the lariat form being relatively minor. Somewhat surprisingly, several introns with weakly-structured domain V/VI helices still exhibit classical lariat splicing, suggesting that accessory factors aid in restoring a splicing-competent conformation. Our observations illustrate that the loss of conventional group II features during evolution is correlated with altered splicing biochemistry in an intron-distinctive manner.  相似文献   

4.
5.
Mitochondrial genomes (mtDNAs) in angiosperms contain numerous group II-type introns that reside mainly within protein-coding genes that are required for organellar genome expression and respiration. While splicing of group II introns in non-plant systems is facilitated by proteins encoded within the introns themselves (maturases), the mitochondrial introns in plants have diverged and have lost the vast majority of their intron-encoded ORFs. Only a single maturase gene (matR) is retained in plant mtDNAs, but its role(s) in the splicing of mitochondrial introns is currently unknown. In addition to matR, plants also harbor four nuclear maturase genes (nMat 1 to 4) encoding mitochondrial proteins that are expected to act in the splicing of group II introns. Recently, we established the role of one of these proteins, nMAT2, in the splicing of several mitochondrial introns in Arabidopsis. Here, we show that nMAT1 is required for trans-splicing of nad1 intron 1 and also functions in cis-splicing of nad2 intron 1 and nad4 intron 2. Homozygous nMat1 plants show retarded growth and developmental phenotypes, modified respiration activities and altered stress responses that are tightly correlated with mitochondrial complex I defects.  相似文献   

6.
Pentamidine inhibits in vitro splicing of nuclear group I introns from rRNA genes of some pathogenic fungi and is known to inhibit mitochondrial function in yeast. Here we report that pentamidine inhibits the self-splicing of three group I and two group II introns of yeast mitochondria. Comparison of yeast strains with different configurations of mitochondrial introns (12, 5, 4, or 0 introns) revealed that strains with the most introns were the most sensitive to growth inhibition by pentamidine on glycerol medium. Analysis of blots of RNA from yeast strains grown in raffinose medium in the presence or absence of pentamidine revealed that the splicing of seven group I and two group II introns that have intron reading frames was inhibited by the drug to varying extents. Three introns without reading frames were unaffected by the drug in vivo, and two of these were inhibited in vitro, implying that the drug affects splicing by acting directly on RNA in vitro, but on another target in vivo. Because the most sensitive introns in vivo are the ones whose splicing depends on a maturase encoded by the intron reading frames, we tested pentamidine for effects on mitochondrial translation. We found that the drug inhibits mitochondrial but not cytoplasmic translation in cells at concentrations that inhibit mitochondrial intron splicing. Therefore, pentamidine is a potent and specific inhibitor of mitochondrial translation, and this effect explains most or all of its effects on respiratory growth and on in vivo splicing of mitochondrial introns.  相似文献   

7.
RNA helicases participate in nearly all aspects of RNA metabolism by rearranging RNAs or RNA–protein complexes in an adenosine triphosphatedependent manner. Due to the large RNA helicase families in plants, the precise roles of many RNA helicases in plant physiology and development remain to be clarified. Here, we show that mutations in maize(Zea mays) DEAD-box RNA helicase48(Zm RH48) impair the splicing of mitochondrial introns, mitochondrial complex biosynthesis,and seed development. Loss of Z...  相似文献   

8.
J M Burke 《Gene》1988,73(2):273-294
In vivo and in vitro genetic techniques have been widely used to investigate the structure-function relationships and requirements for splicing of group-I introns. Analyses of group-I introns from extremely diverse genetic systems, including fungal mitochondria, protozoan nuclei, and bacteriophages, have yielded results which are complementary and highly consistent. In vivo genetic studies of fungal mitochondrial systems have served to identify cis-acting sequences within mitochondrial introns, and trans-acting protein products of mitochondrial and nuclear genes which are important for splicing, and to show that some mitochondrial introns are mobile genetic elements. In vitro genetic studies of the self-splicing intron within the Tetrahymena thermophila nuclear large ribosomal RNA precursor (Tetrahymena LSU intron) have been used to examine essential and nonessential RNA sequences and structures in RNA-catalyzed splicing. In vivo and in vitro genetic analysis of the intron within the bacteriophage T4 td gene has permitted the detailed examination of mutant phenotypes by analyzing splicing in vivo and self-splicing in vitro. The genetic studies combined with phylogenetic analysis of intron structure based on comparative nucleotide sequence data [Cech 73 (1988) 259-271] and with biochemical data obtained from in vitro splicing experiments have resulted in significant advances in understanding the biology and chemistry of group-I introns.  相似文献   

9.
RNA splicing defects in mitochondrial intron mutants can be suppressed by a high dosage of several proteins encoded by nuclear genes. In this study we report on the isolation, nucleotide sequence, and possible functions of the nuclear MRS2 gene. When present on high copy number plasmids, the MRS2 gene acts as a suppressor of various mitochondrial intron mutations, suggesting that the MRS2 protein functions as a splicing factor. This notion is supported by the observations that disruption of the single chromosomal copy of the MRS2 gene causes (i) a pet- phenotype and (ii) a block in mitochondrial RNA splicing of all four mitochondrial group II introns, some of which are efficiently self-splicing in vitro. In contrast, the five group I introns monitored here are excised from pre-mRNA in a MRS2-disrupted background although at reduced rates. So far the MRS2 gene product is unique in that it is essential for splicing of all four group II introns, but relatively unimportant for splicing of group I introns. In strains devoid of any mitochondrial introns the MRS2 gene disruption still causes a pet- phenotype and cytochrome deficiency, although the standard pattern of mitochondrial translation products is produced. Therefore, apart from RNA splicing, the absence of the MRS2 protein may disturb the assembly of mitochondrial membrane complexes.  相似文献   

10.
11.
Recently, cis-acting elements and trans-acting RNA and protein factors necessary for splicing nuclear pre-mRNAs, group II introns or group III introns, have been discovered, and new roles for the splicing factors have been elucidated. Parallels among the pathways for splicing these different classes of introns have been identified.  相似文献   

12.
Group II introns are large catalytic RNAs that are found in bacteria and organellar genomes of lower eukaryotes, but are particularly prevalent within mitochondria in plants, where they are present in many critical genes. The excision of plant mitochondrial introns is essential for respiratory functions, and is facilitated in vivo by various protein cofactors. Typical group II introns are classified as mobile genetic elements, consisting of the self‐splicing ribozyme and its own intron‐encoded maturase protein. A hallmark of maturases is that they are intron‐specific, acting as cofactors that bind their intron‐containing pre‐RNAs to facilitate splicing. However, the degeneracy of the mitochondrial introns in plants and the absence of cognate intron‐encoded maturase open reading frames suggest that their splicing in vivo is assisted by ‘trans’‐acting protein factors. Interestingly, angiosperms harbor several nuclear‐encoded maturase‐related (nMat) genes that contain N‐terminal mitochondrial localization signals. Recently, we established the roles of two of these paralogs in Arabidopsis, nMAT1 and nMAT2, in the splicing of mitochondrial introns. Here we show that nMAT4 (At1g74350) is required for RNA processing and maturation of nad1 introns 1, 3 and 4 in Arabidopsis mitochondria. Seed germination, seedling establishment and development are strongly affected in homozygous nmat4 mutants, which also show modified respiration phenotypes that are tightly associated with complex I defects.  相似文献   

13.
14.
Self-splicing of yeast mitochondrial ribosomal and messenger RNA precursors   总被引:25,自引:0,他引:25  
G van der Horst  H F Tabak 《Cell》1985,40(4):759-766
We have previously shown linear and circular splicing intermediates resembling intermediates that result from self-splicing of ribosomal precursor RNA of Tetrahymena to be present in mitochondrial RNA. Here we show that splicing of yeast mitochondrial precursor RNA also occurs in vitro in the absence of mitochondrial proteins. The large ribosomal RNA gene, consisting of the intron and part of the flanking exon regions, was inserted behind the SP6 promoter in a recombinant plasmid and was transcribed in vitro. The resulting RNA shows self-catalyzed splicing via incorporation of GTP at the 5'-end of the excised intron, 5'- to 3'-exon ligation, and intron circularization. When purified mitochondrial RNA is incubated under similar conditions with alpha-32P-GTP, the excised ribosomal intron RNA is also labeled, as well as several other RNA species. Some of these RNAs are derived from excised introns from the multiply split gene coding for cytochrome oxidase subunit I.  相似文献   

15.
Self-splicing group II and nuclear pre-mRNA introns: how similar are they?   总被引:20,自引:0,他引:20  
The splicing pathway of pre-mRNA introns bears similarities to that of the group II introns, some members of which undergo self-splicing. The snRNAs may provide the pre-mRNA introns with RNA structures in trans comparable to those available in cis in group II introns. This article examines the available evidence for the hypothesis that the catalysis of these two splicing pathways is fundamentally equivalent.  相似文献   

16.
Extant bryophytes are regarded as the closest living relatives of the first land plants, but relationships among the bryophyte classes (mosses, liverworts and hornworts) and between them and other embryophytes have remained unclear. We have recently found that plant mitochondrial genes with positionally stable introns are well suited for addressing questions of plant phylogeny at a deep level. To explore further data sets we have chosen to investigate the mitochondrial genes nad4 and nad7, which are particularly rich in intron sequences. Surprisingly, we find that in these genes mosses share three group II introns with flowering plants, but none with the liverwort Marchantia polymorpha or other liverworts investigated here. In mitochondria of Marchantia, nad7 is a pseudogene containing stop codons, but nad7 appears as a functional mitochondrial gene in mosses, including the isolated genus Takakia. We observe the necessity for strikingly frequent C-to-U RNA editing to reconstitute conserved codons in Takakia when compared to other mosses. The findings underline the great evolutionary distances among the bryophytes as the presumptive oldest division of land plants. A scenario involving differential intron gains from fungal sources in what are perhaps the two earliest diverging land plant lineages, liverworts and other embryophytes, is discussed. With their positionally stable introns, nad4 and nad7 represent novel marker genes that may permit a detailed phylogenetic resolution of early clades of land plants.  相似文献   

17.
The 3' regions of several group II introns within the mitochondrial genes nad1 and nad7 show unexpected sequence divergence among flowering plants, and the core domains 5 and 6 are predicted to have weaker helical structure than those in self-splicing group II introns. To assess whether RNA editing improves helical stability by the conversion of A-C mispairs to A-U pairs, we sequenced RT-PCR amplification products derived from excised intron RNAs or partially spliced precursors. Only in some cases was editing observed to strengthen the predicted helices. Moreover, the editing status within nad1 intron 1 and nad7 intron 4 was seen to differ among plant species, so that homologous intron sequences shared lower similarity at the RNA level than at the DNA level. Plant-specific variation was also seen in the length of the linker joining domains 5 and 6 of nad7 intron 3; it ranged from 4 nt in wheat to 11 nt in soybean, in contrast to the 2-4 nt length typical of classical group II introns. However, this intron is excised as a lariat structure with a domain 6 branchpoint adenosine. Our observations suggest that the core structures and sequences of these plant mitochondrial introns are subject to less stringent evolutionary constraints than conventional group II introns.  相似文献   

18.
19.
Research on mitochondrial nucleic acids has produced major surprises. These include: (1) a novel mechanism for reading the genetic code, (2) the first examples of deviations from the ‘universal’ genetic code, and (3) the finding that protein genes can be located totally within introns of other genes. The first indication that sequences within introns are important in RNA splicing came from analyses of mitochondrial introns and recent studies have revealed a close relationship between the majority of mitochondrial introns on the one hand and one class of nuclear introns, the ‘self-splicing’ rRNA introns, on the other.  相似文献   

20.
Chloroplast genomes in land plants harbor approximately 20 group II introns. Genetic approaches have identified proteins involved in the splicing of many of these introns, but the proteins identified to date cannot account for the large size of intron ribonucleoprotein complexes and are not sufficient to reconstitute splicing in vitro. Here, we describe an additional protein that promotes chloroplast group II intron splicing in vivo. This protein, RNC1, was identified by mass spectrometry analysis of maize (Zea mays) proteins that coimmunoprecipitate with two previously identified chloroplast splicing factors, CAF1 and CAF2. RNC1 is a plant-specific protein that contains two ribonuclease III (RNase III) domains, the domain that harbors the active site of RNase III and Dicer enzymes. However, several amino acids that are essential for catalysis by RNase III and Dicer are missing from the RNase III domains in RNC1. RNC1 is found in complexes with a subset of chloroplast group II introns that includes but is not limited to CAF1- and CAF2-dependent introns. The splicing of many of the introns with which it associates is disrupted in maize rnc1 insertion mutants, indicating that RNC1 facilitates splicing in vivo. Recombinant RNC1 binds both single-stranded and double-stranded RNA with no discernible sequence specificity and lacks endonuclease activity. These results suggest that RNC1 is recruited to specific introns via protein-protein interactions and that its role in splicing involves RNA binding but not RNA cleavage activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号